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Abstract: In this article, the development of a proper Linear Fractional Transformation model for the
robust analysis of the atmospheric controllers of the European VEGA launcher is presented. By proper it
is meant a model that: (i) captures the key launcher’s behavior during the ascent atmospheric phase, (ii)
has a complexity in terms of number of parameters and repetitions that does not limit the applicability
of robust analyses, (iii) can be easily updated with very different trajectory profiles, and (iv) arises from
a methodology that is well connected with industrial practice and can be understood and used relatively
easy. This last requirement is fundamental to transfer the LFT methodology into the VEGA program,
which is critical if robust analysis is to be used within their verification and validation process. The
potential of the proposed methodology and the validity of the developed LFT models for robust analysis
have been successfully verified using simulation data from three of the four VEGA qualification flights.
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1. INTRODUCTION

A concept widely used in robust control is the structured
singular value µ , which analytically evaluates the robustness
of uncertain systems Doyle, J. et al. (1991). A key aspect on
the application of µ is the development of a proper Linear
Fractional Transformation (LFT) model. By proper it is meant
a model that captures the critical parametric behavior of the
nonlinear system under consideration within a complexity that
still enables the application of the µ analysis algorithms Balas,
G.J. et al. (1998).

The use of these concepts, methods and tools is quite consol-
idated and nowadays is ingrained in those industrial groups
that had the opportunity and interest in learning them. For
example, for satellites see references Charbonnel, C. (2010)
and Pittet, C. and Arzelier, D. (2006), and for their use on
the European Automated Transfer Vehicle (ATV) see Ganet-
Schoeller, M. et al. (2009). Nevertheless, transferring these
methods to other industrial groups is still difficult, and despite
well document manuals, tutorials and many publications, there
is always the need of demonstrating the techniques’ poten-
tial through tailored-made simplified study cases, as well as
through application to a relatively sophisticated benchmark of
the system under consideration.

An example of the potential difficulties of transferring these
methods to a launcher programme can be seen in Jang, J.W.
et al. (2008). In that reference a simple mass-spring-damper
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case was used to illustrate the “limitations” of µ in evaluating
its potential for the Ares I programme. It was claimed that µ

suffered of conservativeness and had to be used with care even
for that simple case. But actually, it can be shown that if a
proper LFT model is used then µ correctly identifies a worst-
case right on the stability boundary of the (damping, spring)
coefficients plane. Since the authors were key control experts in
the Ares I programme, their conclusions probably carried quite
a weight in accepting or sidelining the use of µ within their
verification and validation (V&V) process.

Thus, this article aims to evince that LFT modeling can be used
very effectively and efficiently to obtain a proper LFT model
that includes the key behavior of a launcher during atmospheric
phase, and thus can be used subsequently for robust analysis of
the launcher’s controllers. The methodology developed recon-
ciles the standard examination of the analytical representation
of the system with the identification of uncertainty models and
variability levels based on time-data obtained from a high-
fidelity, nonlinear simulator. The proposed method has been
applied to the European VEGA launcher during its ascent atmo-
spheric phase, and the obtained LFT models were successfully
used subsequently by µ analysis to identify parameter combi-
nations that had to be examined by the VEGA control design
group as potential problematic issues.

The layout of the article is as follows: first, the VEGA launcher
and mission are presented, including a detailed derivation of
the equations of motion applicable to the benchmark. Then,
the LFT modeling and uncertainty identification methodology
is presented. It follows a step-by-step description of the appli-
cation to the VEGA launcher prior to the conclusions.



2. VEGA LAUNCHER AND BENCHMARK

2.1 VEGA launcher and mission

VEGA, see Figure 1, is the new European Small Launch
Vehicle developed under the responsibility of ESA by ELV
as prime contractor. The launcher successfully performed a
maiden launch at the beginning of 2012 from the Centre Spatial
Guyanais in Kourou and three more qualifications flight since,
the 4th flight on 11th February 2015.

Fig. 1. VEGA launcher in LARES mission configuration

VEGA follows a four-stage approach formed by three solid
propellant motors (P80, Zefiro 23 and Zefiro 9) providing thrust
for the 1st , 2nd and 3rd stages; and, a bi-propellant liquid engine
(LPS) on the 4th stage. All stages are controlled via a thrust
vectoring system (TVC). There is also a Roll and Attitude
Control System (RACS) performing 3-axes control during the
ballistic phase and roll rate control during the propelled phases.

2.2 VEGA high-fidelity simulators and mission

The official high-fidelity, non-linear simulator used in the
VEGA program for all GNC verification and validation is called
VEGAMATH. This simulator is characterized by:

- High-fidelity 6 Degrees-of-Freedom motion
- Tail-Wag-Dog effects
- Bending and sloshing modes
- Full external environment (rotating Earth, winds...)
- Disturbances (torques at separation, bias, offsets)
- Nonlinear aerodynamics (incl. aero-elastic effects)
- TVC system (including computing delays, backlash, bias)
- Full representative code implementing the actual Guid-

ance, navigation and control (GNC) system
- Propulsion and mass-center-inertia (MCI) properties
- Detailed inertial navigation system (INS)
- Detailed RACS models (with thermal & thrust dynamics,

filters, quantization, noise...)

VEGAMATH cannot be distributed due to proprietary reasons,
thus another simulator called VEGACONTROL was provided
with most sub-systems as black-boxes, see Figure 2. The main
differences with the official one are that it simulates only the
1st atmospheric phase of VEGA (i.e. P80) and it is prepared for
accelerated-time simulation (through protected and compiled
code). Note that it retains most of the VEGAMATH sophisti-
cation, including bending/sloshing modes, RACS model, wind-
scaling profiles, and enhanced correlation of key parameters.

Both simulators allow modifying the scattering values (uncer-
tainties and dispersions) of up to 125 different parameters,

Fig. 2. VEGACONTROL Simulink implementation

including MCI, aerodynamics, wind profiles, INS mounting
and thrust among others. Each scattering variable is represented
by a normalized ”flag” parameter (i.e. ranging between [−1,1]
with the zero value indicating nominal behaviour).

In terms of the VEGA mission used for the work in this
article, Figure 3 shows the nominal flight profiles for altitude,
Mach and dynamic pressure times angle (Q ∗ α), which is a
specifically critical measure for launchers as it provides an
indication of the experimented loads –the upper bound indicates
its limit. In addition, it is noted that the approach presented in
this article had already being applied to two previous missions:
one for the release of the LARES satellite, i.e. VEGA’s maiden
flight, and another called DT1 and characterized by minimum
mass and inertia (but that turned out to be very sizing for
the GNC performance). The missions are quite different, each
with a substantially different payload, trajectory profile, and as
typical for launchers with a specifically tuned controller.

Fig. 3. VEGA mission profile: altitude, Mach and Qα

2.3 VEGA equations of motion

Orr, J.S. et al. (2009) details the equations of motion for a
flexible launcher in a clear state-space format showing the
uncoupled and coupled effects for the three main contributors:
rigid, flexible and sloshing. In this article this reference is
followed, but focusing on the yaw motion with flexible effects,
and using a notation more agreeable to aeronautical standards,
i.e. yaw plane and associated angle are defined as the XY -plane
and sideslip angle β respectively.



For any launcher vehicle, its yaw or pitch dynamics are com-
pletely described by its attitude (yaw ψ or pitch θ ) and linear
motion (y or z) in a frame linked to the trajectory velocity,
see Figure 4. For axis-symmetric launchers, both motions are
identical.

Fig. 4. VEGA yaw-motion diagram

The trajectory’s total angular acceleration ψ̈ and linear acceler-
ation ÿ are expressed as the sum of the rigid and flexible forces
and moments (with m mass and Jyy moment of inertia):

mÿ = Fr +Ff Jyyψ̈ = Mr +M f (1)
The rigid-motion force Fr and moment Mr are given by (using
short-hand for the cosine c# and sine s# functions):

Fr = Asψ −Nβ cψ −T sψ −Tc(cδψ
sψ + sδψ

cψ)
Mr = Nβ (xCP− xCG)−Tcsδψ

(xCG− xPV P)
(2)

where A is axial force, Nβ = Nβ is the normal force in the
XY -plane, (T , Tc) are respectively ungimballed and gimballed
thrust, (xCG, xCP, xPV P) are the x-coordinates for center of
gravity, center of pressure and TVC pivot-point. The sideslip
angle is defined as β = ψ +(ẏ+ xCPψ̇)/V assuming that the
angle is computed locally at the CP and there is no wind
(WXY =0). The Lift coefficient is given by N =Q Sre fCNβ , where
the latter term is the lift gradient in the XY -plane, Sre f the
launcher surface reference and Q the dynamic pressure.

Using small-angle approximations, total force F = T + Tc,
x̄CP = (xCP− xCG) and x̄CG = (xCG− xPV P):

Fr =−(F−A)ψ−Nψ−N
Ẏ

Vrel
−Tcδψ

Mr = Nx̄CPψ +Nx̄CP
Ẏ

Vrel
−Tcx̄CGδψ

(3)

Next, the flexible forces and moments are considered:

Ff = Tc

k

∑
i=1

RMCPV Pi qi

M f =−Tc(x̄CG

k

∑
i=1

RMCPV Pi +
k

∑
i=1

T MCPV Pi) qi

(4)

where T MCPV Pi and RMCPV Pi are the ith bending mode transla-
tional and rotational lengths at pivot point (PVP) –as opposed
to at the inertial navigation system (INS) for the output equa-
tions, see C-matrix in equation 6. The flexible dynamics are
given based on a free-free beam model with orthogonal bending
modes qi represented as 2nd order model with frequency ωiB
and damping ζiB:

q̈i +2ζiBωiBq̇i +ω
2
iBqi =−Tc T MCPV P δψ (5)

Adding up all the contributions and using 2 bending modes, the
dynamic equations can be expressed in state-space format using
four rigid states (y, ẏ,ψ, ψ̇), four flexible states (q1,q2, q̇1, q̇2),
three outputs (ψ, ẏ,y) and one input (δψ ) as:

A =

[
Ar Ar f
A f r A f

]
B =

[
Br
B f

]
C = [C f C f ]

A =


0 1 0 0 01q 01q
0 a1 a2 a3 azq 01q
0 0 0 1 0q 01q
0 a4 A6 a5 aψq 01q

0q1 0q1 0q1 0q1 0qq Iq
0q1 0q1 0q1 0q1 Aqq Aqq̇

 B =


0
ap
0

K1
0q1
aqk1



C =

[ 0 0 1 0 −RMCINS 01q
0 1 0 aZ 01q T MCINS
1 0 aZ 0 T MCINS 01q

]
D =

[0
0
0

]
(6)

where 01q, 0q1, 0qq and Iq are zero and unit matrices of ap-
propriate order (based on the number of modes used). Notice
that the matrix A is rank deficient in this formulation since the
displacement y is used as a state without any dynamics from a
sensor model. This is not an issue, since it is possible to remove
the channel and use the integrated velocity signal in the output,
and in any case during the LFT process any unobservable and
uncontrollable channel is removed.

The corresponding matrix coefficients are given by:

νβ =−N
x̄CP

Jyy
; acc =

F−A
m

;

a1 =−N
1
m

1
Vrel

; a2 =−a1x̄CP; a3 =−acc+a1Vrel

a4 =−νβ

1
Vrel

; A6 = a4Vrel ; a5 =−a4x̄CP

aZ = xCoG− xINS; aP =−Tc

m
; K1 =−

Tc

Jyy
x̄CG

azqi =
Tc

m
RMCPV Pi ; aψqi =

Tc

Jzz
(RMCPV Pi x̄CG +T MCPV Pi)

Aqqi =−ω
2
iB; Aqq̇i =−2ζiBωiB;

azq = [azq1 azq2 ] aψq = [aψq1 aψq2 ]

Aqq = diag(Aqq1 ,Aqq2) Aqq̇ = diag(Aqq̇1 ,Aqq̇2)

aqk1i =−Tc T MCINS aqk1 = [aqk11 aqk12 ]
T

(7)
All the launcher variables can be represented as depending on
time t or on non-gravitational speed, V NG. All these variables
can be used to derive an LFT/LPV model, see Section 3.3.1 for
details on the specific choice used in this work. The launcher
dynamic model given in equation 6 captures the main charac-
teristics of the 1st atmospheric phase (P80) and is typically used
to design the launchers’ controllers for this phase.



3. LFT MODELING AND UNCERTAINTY
IDENTIFICATION METHODOLOGY

In this section, a cursory presentation of the main theoretical
concepts for LFT and µ is given first, the latter is provided since
the purpose of the LFT model is mostly for robust analysis (and
design). Then, a discussion on the main LFT modeling choices
and their effect is given followed by the proposed methodology.

3.1 Robust analysis: Linear Fractional Transformations and µ

A LFT is a representation of a system using a feedback inter-
connection and two matrix operators, M = [M11 M11; M11 M11]
and ∆. The matrix M represents the nominal (known) part of
the system while ∆ contains the unknown, time-varying or un-
certain parameters ρi(t). There are two possible types of LFTs:
lower and upper (see Fig. 5).

Fig. 5. Lower and upper LFTs

The matrix ∆ is unrestricted in form (structured or un-
structured) or type (nonlinear, time-varying or constant). It is
important to note that unstructured uncertainty at component
level becomes structured at system level. The selection and
uncertain modeling of the variable set ρ(t) ∈ ∆ that captures
the behavior of the nonlinear system is a task that is not always
obvious a priori. Indeed, this step is key to obtain a reliable LFT
that will yield relevant and meaningful results and, despite its
apparent simplicity, is where most of the LFT modeling effort
is concentrated. There are several approaches that can be used
to obtain a reliable LFT model (see Lambrechts, P. et al. (1993);
Magni, J.F. (2004); Marcos, A. et al. (2007) and references
therein).

3.2 LFT modeling choices and their effect

The proposed LFT methodology reconciles the standard exam-
ination of a system analytical representation with the identi-
fication of uncertainty models and variability levels based on
simulated time-data. Thus, it is founded on the availability of
a mathematical, analytical model of the system as well as of
a high-fidelity, nonlinear simulator (but not necessary visible
to the LFT modeling engineer, i.e. black-box). It is noted that
these two requirements are typically available for most indus-
trial control design projects.

Before presenting the approach, the four main choices for any
LFT modeling process are listed:

(1) Type of uncertain parameters, ∆x: non-physical, physi-
cal or constituent. The first term relates to parameters,
fictitious or otherwise, that are mathematical in nature
and not directly related to a single physical parameter.
For example, one of the matrix coefficients in equation 6
is given by the aerodynamic parameter A6 and contains
the effects from several other physical parameters, i.e.

A6 = Nx̄CP/Jyy. One of these physical parameters, the lift
coefficient N, can also be expressed in turn based on a sub-
set of physical constituent parameters, N = Q Sre fCN/β .
Thus, the term constituent can be defined as those physical
variables that are also directly responsible for the uncer-
tainty in other parameters.

(2) Type of LFT model: multiplicative x = x0(1+σx∆x), addi-
tive x = x0 +σx∆x, or inverse x = x0(1+σx∆x)

−1; Note
that some models are equivalent from a mathematical
perspective, i.e. additive and multiplicative, but that the
actual implementation will change the character of the
LFT model, and thus of the analysis results.

(3) Level of uncertainty, σx: range of the uncertainty, chosen
from experience, approximation or data-analysis;

(4) Correlation of the uncertain parameters: as shown before,
most physical parameters tend to be correlated to a basis
set of other physical parameters (which we termed con-
stituents). Even if the most constituent dependence is not
used (as it may yield very high LFT dimension by the
sheer number of repetitions of the constituent parameters),
some level of correlation should be attempted in order to
avoid correlated uncertainty changing in complete inde-
pendent manner, and thus resulting in non-physical system
behavior. For example, the mass and moment of inertia of
a launcher will change coordinately as the fuel is burnt
(i.e. the more fuel is consumed, the less mass there is and
the moment changes accordingly). The complex depen-
dency underlying the mass, moment of inertia and fuel
burning can be easily captured using either the physical
constituent parameter, fuel burning ratio δT c, or a non-
physical parameter that reflects the correlated changes.

The importance of using more physical and correlated LFT
models cannot be understated since a simpler uncertainty set
may result in an easier to get LFT model, and of smaller
dimension, but at the expense of resulting in an over-bounded
parameter space. The effect of having such an over bounded
space is negative from the dual perspectives of:

(1) Design, since the designer must ensure satisfaction of ob-
jectives for the selected parameter space region. And thus,
if it is much larger than the actual system behavior then
the controller will need to have stronger (than necessary)
robustness properties in detriment of performance.

(2) Analysis, since depending on the system and the type of
analysis (i.e. LTI eigenvalue or gain/phase margin), more
effort and time must be spent analyzing the larger space,
thus leading to conservative or even void analysis results
(e.g. in µ robust analysis, bounds impossibly apart).

3.3 LFT modeling and uncertainty identification process

The proposed process follows three distinct steps:

3.3.1 System Examination

The goal of this step is to find: (i) the largest set Ωsys of
system parameters representing the behavior of the system,
(ii) the smallest set Ω∆ of uncertain parameters that can be
varied by the designer and are connected to Ωsys , and (iii) the
smallest number of time simulations (y(t),u(t))i = 1, ...p such
that the individual and group effects of the parameters in Ω∆ are
adequately examined by analyzing their effects on Ωsys. Note
that optimal terms such as minimal and maximal are not used
due to the practical impossibility of guaranteeing the optimality.



This goal is accomplished by examining:

A. Analytical system (linear). The ordinary differential equa-
tions (ODEs) representing the system’s equations of motion as
well as their linearized counterparts, e.g. state-space matrices,
are examined to extract into the set Ωsys all the relevant system
parameters. The priority is to choose physical parameters, as
they are easier to analyze, but mathematical parameters clearly
condensing the effect of some of these physical variables can
also be included in the set. For example, from examination of
equation 7 it is easy to see (the coefficients have been written
with this goal in mind) that N affects all the rigid coefficients
(through νβ ) but that a1 and a4 can also be used as a choice
as they affect respectively (a2,a3) and (a5,A6). The populating
of Ωsys can be as straight forward as picking out all the pa-
rameters present in the ODEs or in the state-space coefficients.
But system knowledge can, and should, also be used to exploit
system structure. Note, that all the parameters in Ωsys must be
available, or be calculated, from the measurements y(t). For the
VEGA P80, the rigid, flexible and mathematical subsets are:

Ωsys−RIG = {m,Jyy,Tc,Vrel ,xCG,xCP,Q,CN ,acc,β}
Ωsys−FLX = {ωiB,T MCPV Pi ,RMCPV Pi} i=1,2

Ωsys−MT H = {N,νbeta,a1,a4,A6,K1}
(8)

Subsequently, the set Ω∆ is populated with uncertain parame-
ters known, or with potential, to affect the parameters in Ωsys.
The departure point is the list of the uncertainty flags available
in the highest-fidelity, nonlinear simulator Ω f lags = {δ#}. Note
that the dimension of Ω∆ has a direct effect on the number of
simulations that will be required, thus it should be kept as small
as possible based on the knowledge of the physics of the system
(especially in cases as VEGACONTROL that has 125 flags):

Ω∆−RIG = {δm,δJyy ,δxCG ,δxCP−DSP ,δxCP−UNC , . . .

δCN−DSP,δCN−UNC,δISP,δT c,δρ}
Ω∆−FLX = {δωB ,δT MCPV P ,δRMCPV P ,δT MCINS ,δRMCINS}

(9)

where δISP is the specific impulse, and (δ#−DSP,δ#−UNC) in-
dicate a parameter determined by dispersions and uncertainty
constants, see Roux, C. and Cruciani, I. (2008).

Note that if time-varying parameters are included in Ω∆, e.g.
rotational velocity V NG, and all the subsequents steps are
followed, the result will be an LPV model in LFT format.

B. Simulation data-analysis (nonlinear) Once the sets Ωsys and
(especially) Ω∆ are identified, time-domain simulations using
the nonlinear simulator must be performed. The number of
simulations is given by p = n×m× k, where n = dim(Ω∆) and
m and k are the number of grid points used respectively to set
iteratively each parameter in Ω∆ at mi while setting all other
uncertainty flags in the simulator to the same value k j.
For the VEGA case, n = dim(Ω∆−RIG)+ dim(Ω∆−FLX ) = 16,
and a minimal set of runs is performed by choosing the grids
as the minimum, nominal and maximum value of the flags, i.e.
m=k=[-1, 0, +1]. This yields p = 16×3×3 = 144 simulations,
but after a first examination 4 more sets were added to Ω∆ to
test groupings of parameters for a total of 180 simulations.

3.3.2 Uncertainty Identification

The goals in this step are to: [1] reduce the sets Ω∆ and Ωsys,
by analyzing the effects of the former on the later using the
simulation data (y(t),u(t))i = 1, ...180, and then [2] identify the
most appropriate structure and data for the final Ωsys(Ω∆), e.g.:

τ = τ0 +σ
a
τ δ

a
τ +σ

b
τ δ

b
τ +σ

c
τ δ

a
τ δ

b
τ . . . (10)

where τ ∈Ωsys, (δ a
τ ,δ

b
τ . . .) ∈Ω∆ and (τ0,σ

a
τ ,σ

b
τ ,σ

c
τ . . .) repre-

sent the calculated nominal and uncertainty levels for τ .

In achieving these goals is of paramount importance to apply
engineering judgement to minimize the amount of data to
analyze (or be capable to handle in a semi-automated fashion
the identification process). A proper visualization of the results
is thus found to be key to rationalize the data analysis.

In the present case, it was opted to automatically generate three
sets of two figures, one with 14 plots for the rigid parameters
(the 10 physical parameters in Ωsys−RIG plus 4 other parameters
known to be important, such as Qα) and another with 16
plots providing the responses for the first 4 bending modes
and their derivatives (qi, q̇i). The plots in each figure contain
three responses, one for each of the m = [−1,0,+1] of the Ω∆

parameter tested, and each of the three 2-figures sets is obtained
by setting all the other flags at respectively k = [−1,0,+1].
Thus, the 180 simulations can be “easily” visualized in 20 sets
of 2-figures (one for rigig and the other for bending).

As an example, Fig. 6 shows the effect of the flag δT c (burnt
time) on the set of rigid variables.The figure shows the results
for δT c=[-1, 0, 1] with all other flags set at k=-1. The impact
of this parameter on the launcher dynamics is apparent, which
indicates that likely it is one of the variables to take into account
in the search for worst-cases (this also coincides with the
physics knowledge on the launcher). For ease of comparison,
the Q parameter is shown in Fig 7 for the variations in δT c (top)
and δm (bottom) –each column for a value of k. Note that it is
immediately seen that the latter has no effect while the former
has a similar linear effect across k.

Fig. 6. VGCTRL time responses for δT c=[-1, 0, 1] and k=[-1]

Fig. 7. VGCTRL time responses for δT c (top) and δm (bottom)



As aforementioned, the first goal is to identify a reduced combi-
nation of uncertain and system parameters that account for the
most changes with respect to the nominal flight. The potential
bad extremes are to select: (i) many system variables and many
uncertain parameters, (ii) many system variables but insuffi-
cient number of uncertain parameters, (iii) many uncertain pa-
rameters but insufficient system variables, and (iv) insufficient
number of system and uncertain parameters.

From the visual inspection of the 20 sets of 2-figures, it was
determined that all the parameters in {Ωsys−RIG ∪Ωsys−FLX},
except for the angle β , will be considered as dependent on un-
certainty. Thus, the uncertain physical set τ(δ #

τ ) has dimension
14 (using 2 bending modes), while δ #

τ is given by:
δ

#
τ = {δT c,δρ ,δxCP−DSP ,δxCP−UNC ,δCN−DSP ,δCN−UNC , . . .

δωB ,δT MCPV P ,δRMCPV P ,δT MCINS ,δRMCINS}
(11)

This down-selection leads to the last goal of this step of repre-
senting the set τ(δ #

τ ) as polynomials in (δ #
τ ,τ0,σ

#
τ ), i.e. choos-

ing the structure (uncertain model type) and obtaining the asso-
ciated data (nominal values and uncertainty variability levels).

To find the structure essentially means to asses the correlation
between the system variables in τ and the uncertain param-
eters in δ #

τ , as well as the cross-correlation between system
parameters (or between uncertain parameters). The key idea is
to use simple structures first, and increment the complexity as
required. Indeed, always start with a linear structure (a one-
to-one dependency between system and uncertain parameters)
and/or bilinear (when a system variable is influenced by two
uncertain parameters) before trying higher-order dependencies.
For ease of identification the additive LFT model type is pre-
ferred, especially if the dependency is on several uncertain
parameters.

For VEGA, and based also on the observed trends from the
visual data-analysis (plus numerical tests to ensure the error in
the identification is within acceptable limits), only linear and
bilinear polynomial fits were used. For example,

xCG = xCG0 +σ
δT c
xCG

δT c Tc = Tc0 +σ
δT c
T c δT c

xCP = xCP0 +σ
CPDPS
xCP

δxCP−DSP +σ
CPUNC
xCP

δxCP−UNC

Q = Q0 +σ
δT c
Q δT c +σ

δρ

Q δρ

(12)

And the nominal τ0 and uncertainty level σ#
τ values are directly

obtained numerically by calculating respectively the mean and
maximum modulo standard deviation of the time responses for
the minimum, nominal, maximum of the δτ =[-1, 0, +1].

3.3.3 LFT Modeling

The final step is to introduce all the obtained polynomial
functions (one per selected system variable and each dependent
on one or several of the selected uncertain parameters) into the
state-space formulation of the system and then transform the
resulting polynomial matrix into an LFT model. This step is
not treated in detail as there are several toolboxes available to
perform it automatically – see Balas, G.J. et al. (1998); Magni,
J.F. (2004); Marcos, A. et al. (2007); Szabo, Z. et al. (2011).

The final LFT model has 11 uncertain parameters (eq. 11)
and a total order of 37, i.e. most parameters repeated 2 or 3
times except for δT c which is present 11 times. This model, or
others similarly derived, has been used to analyze the robust
performance and stability of the VEGA controllers for the 2nd ,
3rd and 4th qualification flights, see Marcos, A. et al. (2015).

4. CONCLUSION

In this article, a methodological process to derive proper LFT
models for the VEGA launcher during atmospheric flight has
been presented. The proposed methodology was tailored to
transfer the LFT modeling approach (and the associated robust
µ analysis method) to the VEGA GNC group at ELV. Thus,
emphasis was given to clearly present the modeling choices,
its effects, the visualization of the simulation data, and the
definition of the polynomial structures required for the LFT.

Although the LFT modeling and µ analysis approaches are not
yet part of the official VEGA V&V process, the methodologies
are been used routinely nowadays by the GNC group to increase
their confidence on the tools and results.
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