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ABSTRACT

Detecting underlying trends in time series is important in
many settings, such as market analysis (stocks, social media
coverage) and system monitoring (production facilities, net-
works). Although many properties of the trends are common
across different domains, others are domain-specific. In par-
ticular, modelling human activities such as their behaviour on
social media, often leads to sharply defined events separated
by periods without events. This paper is motivated by time
series representing the number of tweets per day addressed
to a specific Twitter user. Such time series are characterized
by the combination of (1) an underlying trend, (2) concen-
trated bursts of activity that can be arbitrarily large, often
attributable to an event, e.g., a tweet that goes viral or a real-
world event, and (3) random fluctuations/noise. We present
a new probabilistic model that accurately models such time
series in terms of peaks on top of a piece-wise exponential
trend. Fitting this model can be done by solving an efficient
convex optimization problem. As an empirical validation of
the approach, we illustrate how this model performs on a
set of Twitter time series, each one addressing a particular
music artist, which we manually annotated with events as a
reference.

Index Terms— Trend detection, time series, convexity

1. INTRODUCTION

Trend detection from numerical time series is important in
many settings: it is used for technical analysis of financial
time series analysis (e.g. the stock market); for the detection
of anomalous behaviour, e.g., in monitoring industrial plants
such as offshore windfarms and chemical reactors, in which
case the deviation from the trend is of interest; and for the
analysis of time series that quantify the public’s interest in a
certain matter, e.g. derived from microblogs such as tweets.
In the latter case, both the trend itself is relevant to understand
longer-term shifts in the public’s interest, as well as devia-
tions from the trend, to detect particular events that could be
of interest in their own right and that may be underlying these
deviations. Despite the similar goals, each domain carries dif-
ferent underlying assumptions.

Twitter time series This paper is motivated by time se-
ries derived from Twitter, and more specifically the number
of tweets per day about a certain ‘topic’. This topic can
be defined by a specific search query to the Twitter API.
For example, in our experiments, each query is defined by
the Twitter handle of a popular artist listed on the website
reverbnation.com, and we retrieve all tweets that di-
rectly address this artist. The Twitter time series then consists
of the number of such tweets per day. An example is shown
in Figure 1.
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Fig. 1. Number of tweets per day (blue line), trend (red line),
trend plus peaks (black line, occluded by red when there are
no peaks). Peak positions are indicated by red triangles, and
changes in trend indicated by blue squares.

Twitter time series contain rich information about the pub-
lic interest enjoyed by a topic: the trend reveals the baseline
amount of public interest the topic attracts, while the peaks
deviating from the trend are often symptomatic of real-world
or viral virtual events that boost the public’s interest for a very
short time period, often less than 1 day. Importantly, peaks are
(almost) always positive: it is hard to imagine a situation that
would cause the number of tweets about a certain topic to be
dramatically lower on a specific day.

Contributions The main contribution in this paper is an ef-
ficient algorithm to separate trend from peaks in a Twitter
time series. Although we use Twitter time series as motivating
example, we expect that the proposed trend detection method
is applicable to any time series with the following properties:

e The measurements are counts.

e The majority of measurements are close to a slowly



varying trend, potentially affected by periodic fluctu-
ations (e.g., seasonal or weekday effects).

e Very large positive deviations from the trend (peaks)
are possible, but sparse (i.e., occurring at few time
points).

e Negative peaks are not possible.

These assumptions are formalised in Section 2, leading to
a principled probabilistic interpretation for the trend, peaks,
and observed time series.

The L, filter [1] is arguably the state-of-the-art method in
trend detection. This and other related works are discussed in
Section 3. In Section 4, we demonstrate the potential of the
proposed method, illustrating that (1) it compares favourably
with the L, filter, (2) it effectively extracts visual trends in
a subjective evaluation on Twitter time series, and (3) events
detected by the method correspond to events that were identi-
fied by detailed inspection of the Twitter data.

2. A SIMPLE GRAPHICAL MODEL FOR TWITTER
TIME SERIES

2.1. Measurements, trend, and peaks

Let us denote the time series by means of a vector y € N7
with 7' € N the number of time points, i.e., assuming all
measurements to be positive integers. We will refer to the
measurement at time ¢ as y;. For simplicity, we shall assume
that time points are equidistant, though our results are easy to
generalise should this not be the case.

We postulate the existence of a trend, denoted using a vec-
torx € R{_, and its ¢’th value as x;. Additionally, we postu-
late a peak time series denoted z € RI, with z; denoting the
t’th value in this series.

While the meaning of y is obvious - it contains the ob-
served number of tweets on the consecutive time points - let
us clarify the meaning of x and z. First note that y;, being
a count, can be modeled well as a Poisson random variable,
assuming it is possible to estimate the Poisson rate parame-
ter. We take x; to represent that Poisson rate parameter in the
absence of a peak. Since the expected value of a Poisson ran-
dom variable is equal to its rate parameter, this means that the
expected value of y; is equal to x; whenever there is no peak
at time ¢, so y; ~ Poisson(x;), where Poisson(\) signifies
a Poisson distribution with rate parameter A, i.e. for which
P(k) = 37 exp(= ).

We argue that the effect of a peak is best modelled as a
multiplicative effect. To be precise, the same peak value z;
should have the same multiplicative effect on the expected
value of y, regardless of the trend z;. (In the example of mu-
sic artists, this would mean that the release of a comparable
music video should multiply their expected number of tweets
by the same factor.) This can be modeled by assuming that the
rate parameter in the presence of a peak is simply the product

Fig. 2. Probabilistic graphical model for a Twitter time series.
Shaded nodes represent observed variables while non-shaded
nodes represent hidden variables.

of x; and z, in other words, so y; ~ Poisson(x;z;). Thus,
the absence of a peak at time ¢, can be modelled by ensuring
that z; = 1.

For reasons that will become clear below, it will prove
convenient to use the logarithms of the trend values x, de-
noted as x with x; £ log(x;), as well as the logarithms of
the peaks z, denoted as ¢ with ¢, £ log(z:). Then, the above
equation can be rewritten in additive terms as:

Yyt ~ Poisson(exp(x: + (¢))- (1)

This is the essence of our probabilistic model for the time
series. It can be represented as the graphical model in Fig. 2.
The graph is partially directed (also called chain graph), with
a mix of directed and undirected edges. In terms of factor
graphs, there is a factor for each clique in the undirected part
(prior on ), another factor for the prior of (;, and finally, a
factor for each y; conditioned on y; and (;. In the next sub-
section, we will detail how the remaining assumptions spelled
out in Sec. 1 can be formalized in terms of priors on ¢ and .

2.2. The priors on the trend and the peaks

Smoothness of the trend A natural way to model smoothly
varying trends is by assuming a trend x that changes expo-
nentially, i.e., its rate of growth (be it positive or negative)
is constant. In the log domain, this means that x varies lin-
early over time. Of course, trends will occasionally change,
and it is of particular interest to find out when that happens.
One could argue however that trends whose growth rate vary
frequently are less likely. A prior reflecting that would be
Px(x) o exp(—A1||V2x|lo), where A\; € RT. Here, the
linear operator V2 represents the numerical approximation of
the second order derivative, computed as X¢+1 — 2 X¢ + X¢—1
at time point ¢. Thus, ||V?x/||o represents the number of times
the slope of x changes over the time range.



The use of the Ly norm in the prior will ensure that log-
trends x with few slope changes are preferred, such that x
is piece-wise linear and thus x piece-wise exponential. L
norms are hard to handle computationally though. Fortu-
nately, relaxing the Ly norm to an L; norm leads to a much
easier to handle prior, while still preferring sparsity of its
argument V27, such that the piece-wise exponential nature
of x is maintained. Thus, as a prior for x we will use:

px(x) o exp(=[[Vxl[1)
T-1
= H exp(—A1lxe—1 — 2x¢ + xe+1])-
t=2

We note in passing that p(xx) is an improper prior and there-
fore its integral is unbounded. Even so, as we observe y and
will be interested in estimating the trend x (as well as peaks),
the use of an improper prior is justified and will cause no
problems.

Sparse but possibly very large positive peaks We assume
the presence of positive peaks only. This means that ; > 0,
or equivalently that z; > 1 for all ¢.

Additionally, we assume that the (; (or equivalently, z;)
at different time points are i.i.d. This means that p¢({) =

T
[Ti—1 pc(Ce)-

Regarding the size of the peaks: it is well known (e.g.
Ch. 18 in [2]) that the amount of attention received by viral
memes can be dramatic, and can therefore be modelled best
by means of a Pareto (power law) distribution. We follow
this approach, and model the peak values z; as a Pareto dis-
tribution, p,(z:) = A2z, (’\2+1), with Ay the shape parame-
ter.! Pareto distributions are heavy-tailed distributions.? This
means that a large multiplicative effect of a peak on the ob-
served number of tweets can still be attributed a large proba-
bility by our model. It will prove convenient to express this
density function in the log domain, in terms of (;. Consider-
ing the relation z; = exp((;), the density function in terms of
this transformed variable (; > 0 is found as:

pc(C)dGe = pa(2e)da,
= @) = pelexn(c) - TR,

= Agexp(—(A2 + 1)¢;) exp(Gy),
= Adoexp(—A2(y).

In other words, a prior of a Pareto distribution on z; is equiv-
alent to an exponential prior on (; with rate parameter \5.

In Sec. 2.4 we will prove that this particular prior also
induces sparsity: many peak values ¢; will be equal to 0 in the
maximum likelihood estimate for x and ¢. More specifically,

I'The scale parameter is equal to 1.

2Given a random variable A ~ Exponential()), a random variable B ~
Pareto(«), and an arbitrarily large factor r € R, there always exists a value
s € Rsuchthat P(B > s) > r- P(A > s).

we will establish a relation between the shape parameter A,
and the sparsity of .

2.3. Maximum likelihood estimation of the trend and
peaks

We are now ready to formulate the joint probability model:

T
PX(X) H (Px(Ct)py\x,c(ytha Xt)) )

t=1

p(y,x,¢) =

T
X exp (—)\1||V2x\|1) Hexp (—X2Ct)

=1
exp ((x¢ + C)ye)

Yi!
Taking minus the logarithm yields the negative log-
likelihood, up to an additive constant:
—log(p(y, x;¢) = MlIV2x|h—
Sl (G + (xe + Goye — log(ye!) — exp(xe + Ge)) -

Thus, ignoring terms that are constant w.r.t. x and ¢, the
maximum likelihood estimation of the trend x and peaks ¢
amounts to solving the following optimization problem:

exp(—exp(x: + Gt))-

miny¢  Arl| Vx|l + 2)
T
D (oG = (Xt + Gy + explxe + Gr))
t=1
s.t. ¢>0.

This is a convex optimization problem, which can be
solved e.g. using interior point solvers such as those used by
Cvx.?

2.4. Properties

We list below four important properties of the proposed trend
detection method, which provide more insight and facilitate
the tuning of the parameters A; and As.

Property 2.1 (The trend x is piece-wise exponential) I is
well known that when minimising an Ly norm the solution
usually enforces sparsity on its argument (i.e., many zero
elements) [3]. In our case, this implies that the second order
derivative of the maximum likelihood trend V*x will have
many zero elements, which means that the estimated X is
piecewise linear. Therefore, this amounts to a piece-wise
exponential trend X.

We mentioned earlier that our aim is to identify possibly
large but sparse peaks. Our model naturally deals with large
peaks due to its use of a Pareto distribution for z;. However,
sparsity does not follow directly. The following theorem pro-
vides the desired result:

3http://cvxr.com/cvx/



Theorem 2.2 Let { be the minimizer of the optimization
problem (2). For any t for which y; < Ao, it holds that
G =0.

Proof We make use of the KKT conditions [4], which are
both necessary and sufficient for this optimization problem.
Let us introduce a KKT multiplier v; for the constraint (; > 0.
Then the KKT conditions are given as:

Stationarity w.r.t. (; Ao —yr +exp(xe + G) — vy =0,

Primal feasibility ¢ >0,
Dual feasibility vy >0,
Comp. slackness CGvy = 0.

For y; < Ao, it holds that A2 — y; + exp(x: + ¢;) > 0, such
that the stationarity condition can only be satisfied if v, > 0.
Thus, in order to satisfy the complementary slackness condi-
tion, ¢; = 0. |

In other words, for any ¢ for which y; < Ao, it holds that
for the maximum likelihood solution {; = 0. Note that the
converse does not necessarily hold. Even so, it allows for an
easy way to set A to a sensible value.

We now state and prove two theorems regarding the limit
cases for the smoothness parameter ;.

Theorem 2.3 Let  and x be the joint minimizers of the op-
timization problem (2), and let Ao > 0. Then for \y — 0,
exp(xt) — yt and §; — 0.

Proof This follows from the KKT stationarity condition and
complementary slackness conditions for (; (see proof of The-
orem 2.2), along with the stationarity condition for x;:

yr = exp(xt + )

Plugging this expression for y, into the stationarity condition
for (; yields:

Ay — vy =0,
such that v, = A9 > 0 and thus from the complementary
slackness condition it must follow that (; = 0. Thus, y; =
exp(xt)- [ |

This means that for A\; sufficiently small, no peaks will be
detected (regardless of \o) and, given that z; = exp(x;) (by
definition), the expected value of the Poisson random vari-
ables y, will become exactly equal to their observations.

Theorem 2.4 Let  and x be the joint minimizers of the op-
timization problem (2). Then, for \1 — oo, ||[V2x||1 — 0.

Proof Assume to the contrary that ||[V2x||; > § > 0 for \;
arbitrarily large. Then the objective function in problem (2)
becomes infinitely large for A\; — oo. On the other hand,
choosing x such that ||V?x/||; = 0 leads to a finite minimum.
Indeed, it can be upper bounded by 7T by setting { = x = 0.
Thus, for the minimizer x;, it holds that ||[V2?x||; — 0 for
A1 — 0. |

In other words, by choosing A, sufficiently large, it is possible
to ensure that the resulting trend x is a single exponential (or
a linear function in the log-domain).

2.5. Incorporating periodic trends

The approach can be extended to consider time series that in-
volve seasonal or otherwise periodic trends. In our particu-
lar application, it made sense to consider weekday variations
as a confounding factor, and hence we incorporated that into
the model. Given a period of k, this is done by including
an additional variable vector 7 € RF, and modelling the
count y; as a Poisson random variable with rate parameter
exp(x¢ + Gt + Tmod(¢—1,k)+1)> With the added constraint that

Zle m; = 0 to ensure identifiability. The complexity of the
optimization problem is hardly affected by this. If desired, a
prior on 7 could be added as well, which could make sense if
k is not much smaller than 7'.

3. RELATED WORK

Many trend detection methods have been proposed in the lit-
erature. For a detailed review on different trend extraction
techniques we refer the reader to [5].

Hodrick-Prescott filter Also known as Lo filter [6], this
approach assumes an additive model y; = x; + n;, where n,
is a random component. The L» filter consists in determining
the trend x by minimizing the following objective function,

MIV2x|13 + [y — |13

where A > 0 is the regularization parameter which controls
the trade-off between the smoothness of x and the residual
(y: — x+). From a probabilistic perspective, this is equivalent
to assuming that n, has a Gaussian prior distribution.

L, filtering and variants By replacing ||V?x||3 with
||[V2x||; (i.e. replacing the square of the Lo, norm with
the L; norm), we obtain the popular L; filter [1]. Although
no probabilistic interpretation was offered by Kim et al. [1],
it is easy to check that it amounts to maximum likelihood
estimation when the residuals are modelled as Gaussian. Im-
portantly, they also mention in passing a possible extension to
include the detection of peaks. This is done by introducing a
peak vector z similar to ours, and adding an extra term to the
optimization problem to ensure it is small in L; norm, such
that the objective function becomes:

MVl + Xollzl]y + [y = (x + 2)[[5.
Here the term \;||V?x]||; ensures a piece-wise linear trend,

X2||z||1 ensures sparsity of the peaks, and ||y — (x + z)||3
ensures a small squared error between the trend+peaks and



the measured time-series. It is possible to attach a proba-
bilistic interpretation to this time-series as follows: an im-
proper prior on the trend, ensuring a piece-wise linear trend;
an exponential distribution for the absolute value of the peaks;
Gaussian noise between trend+peaks and the measured sig-
nal. The authors do not study this objective in any great detail,
and, although this formulation bears some similarities with
our objective function, it would be suboptimal in our setting
because (1) a piece-wise linear trend makes little sense for a
time-series that is always positive, (2) it seems reasonable to
assume that the probability of a peak should depend on its
height relative to the trend, rather than on its height in abso-
lute terms, (3) Gaussian noise is only a good approximation
for the Poisson distribution when the measured counts are suf-
ficiently large, and (4) their method considers both positive
and negative peaks. The first two issues can be addressed by
using their method on the log-transformed time series, and ex-
ponentiating the resulting trend and trend+peak values. How-
ever, doing that aggravates the third problem: the logarithm
of a Poisson random variable cannot be modelled well using
a Gaussian distribution. This can easily be seen by observing
that a Poisson random variable may equal O with a high prob-
ability (and in any case with a non-zero probability), while
the probability attributed to —oo = log(0) will always be
zero under any Gaussian approximation. The last issue can
be fixed by adding the constraint z; >= 0.

4. Experiments

To demonstrate the potential of the method we will first study
how it compares to its closest competitor method on synthetic
data. Then, we will show how it effectively extracts visual
trends while the detected peaks correspond to events that were
identified by detailed inspection of the Twitter data.

4.1. Synthetic time series

In order to be as fair as possible, we implemented a modi-
fied version of the standard L, filter so that it allows for (only
positive) peaks and works with the log-transformed time se-
ries. Although then both methods behave similarly when the
counts are large enough, we want to discuss their performance
when this is not the case (i.e. when gaussian noise is no longer
a good approximation for the Poisson distribution).

Data generation We generate 10 time series with 100 time
points, following a Poisson distribution as described in (1).
In order to simplify the analysis, we consider just one trend
with no changes of slope, x; = log(15) — 0.01¢. We keep the
values of y; small to simulate reasonably small counts. The
time series contain three peaks randomly positioned within
the first half of the time series. The height of the three peaks
is the same and takes values in {0, 1,2, 3} (also in the log-
domain and therefore determining (;).

Table 1. Average number of false positives for each method.
A2
PeakHeight | 0 [ 3 [ 6 [ 9 [12]15
0 97.0 | 169 | 3.8 | 0.5 | 0.0 | 0.0
97.0 | 186 | 3.4 | 0.2 | 0.0 | 0.0
97.0 | 140 | 23 | 04 | 0.2 | 0.0
97.0 | 15.7 1 2.9 | 0.6 | 0.1 | 0.0
97.0 | 31.7 | 6.7 | 0.9 | 0.2 | 0.0
97.0 [ 324 169 | 1.1 | 0.1 | 0.0
97.0 | 25.6 | 4.3 |04 | 0.0 | 0.0
97.0 |1 29.1 | 6.0 | 0.7 | 0.0 | 0.0

Method

Probabilistic

L, filtering

W= OlW N =

Table 2. Average number of false negatives for each method.

Az

Method PeakHeight | 0 [ 3 ] 6 [ 9 [12]15
0 001]241(29|30]|30]30
e 1 0.0]0.0(00)|01]0.2]0.9
Probabilistic 2 0.0 000000/ 00] 00
3 0.0 00|00|001|0.01]0.0
0 001]20(|30)|30]|3.0]30
L, filterin 1 0.0]00(00)|02]| 17|28
! 8 2 0.0 0.0|00/|0.0]0.00.0
3 0.0 0.0(00/|0.0]0.00.0

Results From now on, our method is referred to as proba-

bilistic. We set A1 just high enough for both methods to guar-
antee that the result contains just one trend. We then vary A,
to quantify its influence. We analyse the detection of peaks
in terms of the average number of false positives (finding a
peak when there is none) in Table 1, and false negatives (not
finding a peak when there is one) in Table 2, respectively. The
proposed method performs better than the modified L, filter,
both in terms of false positives and false negatives.

4.2. Twitter time series

We applied our method to study trends using Twitter time se-
ries corresponding to several music artists.

Data collection We gathered the Twitter handles from
19,630 UK-based artists listed on reverbnation.com for whom
a Twitter handle is specified. We used Twitter’s API to
search for all tweets about these Twitter handles, collecting
6,959,940 tweets from December 3rd 2014 to March 26th
2015, tweeted by 1,359,660 individuals. Once the dataset
was generated, we manually annotated the time series, iden-
tifying peaks and looking for sensible explanations for the
corresponding events. This was done independently of the
fitting of the trend and the detection of the peaks, so that
we could use the annotations as ground truth to validate the
method. Due to the lack of space, we show a small subset of
these time series.

Parameter tuning In order to choose a pair of parameter
values that suited all the Twitter time series, we used both
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Fig. 3. Number of tweets per day (blue line), trend (red line),
trend plus peaks (black line, occluded by red when there are
no peaks) for 4 artists. Peak positions are indicated by red
triangles, and changes in trend indicated by blue squares.

Th. 2.2 and our prior knowledge to set A\, to the 80th per-
centile of y, so there can be at most 20% of peaks.

Results Fig. 3 shows the different Twitter time series (num-
ber of tweets per day, in blue) corresponding to 4 artists in our
dataset. Numbers are attached to the peaks that were manu-
ally annotated by the authors. After running the method, we
checked the peaks found by both the human annotator and the
automatic method to give some insight into the meaning of
the these peaks. Peaks 1 to 4 correspond to lucyraw actively
interacting on Twitter. Two more peaks were detected, the
first being closely related to peak 4, while the last one did not
relate to any actual event (i.e., false positive). In peak 5, sim-
mywilson released a picture that became very popular, while
in peak 6 she sparked her fan base’s interest tweeting about
ageing. The remaining detected peaks did not match any fur-
ther events. Asjoshtaylor’s collaboration with Desmond Mary

caused peak 7 and peak 9 happened to be his birthday. Inter-
estingly, we could not find events associated with peaks 8 and
10, but the human annotator interpreted those as peaks. On
the other hand, the automatic method was able to correctly
avoid those false negatives. In peak 11 Steelpanther uploaded
a photograph with a very popular band (5SOS), profiting from
their notoriety. Although the human annotator did not find
any more peaks, the automatic method found events that cor-
responding to a TV interview and a gig. In general, the pro-
posed method compares positively with the human annotator.
The automatic method detected most of the peaks that were
annotated by hand, but shows false positives. Additionally,
it also correctly identifies events that the human annotator
overlooked. However, the main advantage of the automatic
method is its scalability: the human annotator is able to deal
with tagging a few time series hand but would struggle when
faced with thousands or millions.

5. CONCLUSION

Trend detection methods are efficient tools to infer the ten-
dency in time series. However, a good estimator of the trend
depends on the problem at hand. We show that we can define a
principled probabilistic framework encompassing our beliefs
regarding the model to forecast the trend of bursty Twitter
time series in a very simple way and we apply this to extract
the trends corresponding to different music artists.
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