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Abstract  

Ongoing questions surround the influence of protein dynamics on rapid processes such as 

biological electron transfer.  Such questions are particularly addressable in light-activated 

systems. In Rhodobacter sphaeroides reaction centers, charge recombination or back electron 

transfer from the reduced bacteriopheophytin, HA
-, to the oxidized dimeric 

bacteriochlorophyll, P+, may be monitored by both transient absorption spectroscopy and 

transient fluorescence spectroscopy. Signals measured with both these techniques decay in a 

similar three-exponential fashion with lifetimes of ~0.6-0.7 ns, ~2-4 ns, and ~10-20 ns, 

revealing the complex character of this electron transfer reaction. In this study a single kinetic 

model was developed to connect lifetime and amplitude data from both techniques. The 

model took into account the possibility that electron transfer from HA
- to P+ may occur with 

transient formation of the state P+BA
-. As a result it was possible to model the impact of 

nanosecond protein relaxation on the free energy levels of both P+HA
- and P+BA

- states relative 

to that of the singlet excited state of P, P*. Surprisingly, whereas the free energy gap between 

P* and P+HA
- increased with time in response to protein reorganization, the free energy gap 

between P* and P+BA
- decreased. This finding may be accounted for by a gradual polarization 

of the protein environment which stabilizes the state P+HA
- and destabilizes the state P+BA

-, 

favoring productive charge separation over unproductive charge recombination. 
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Introduction 

The appearance of electrical charges and their transfer inside a protein is expected to 

trigger a dielectric response from the protein environment.1  It is well known that in the case 

of photosynthetic reaction centers (RCs), pigment-protein complexes specialized in 

transferring electrons across a biological membrane in response to light absorption, the 

lifetimes of the measureable electron transfer reactions extend from picoseconds (primary 

electron transfer) to milliseconds (last steps of forward electron transfer) or seconds 

(membrane-spanning charge recombination reactions).2 However, the dynamics of the 

dielectric response of the reaction center protein to the individual electron transfer events 

remains poorly understood.  

In purple bacterial reaction centers such as that from Rhodobacter (Rba.) sphaeroides, 

the ultrafast (~3 ps) primary charge separation reaction comprises electron transfer from the 

excited primary donor P* (a dimer of bacteriochlorophyll a (BChl)) to the primary acceptor 

HA (a bacteriopheophytin (BPhe)), leading to formation of the state P+HA
- (Fig. 1A, B).  This 

reaction has been studied intensively as it is crucial for efficient conversion of excitation 

energy into chemical energy,3 and it has been proposed that protein dynamics play an 

important role in this ultrafast reaction.4 However, the efficiency of energy conversion 

depends not only on the rate and yield of this forward reaction but also on the rates and yields 

of unwanted charge recombination reactions. Among the latter the most critical is the primary 

charge recombination process, P+HA
-  PHA, which leads to the loss of energy initially 

captured through light absorption and stored in the form of the primary charge separated state. 

It was proposed that an important factor preventing this wasteful charge recombination step is 

protein reorganization triggered by appearance of the charges on P+ and HA
- .5 The protein 

response quickly shifts the free energy level of the state P+HA
- down away from the state 

P+BA
- (Fig. 1C), the latter being a short-lived intermediate that, in addition to facilitating 

electron transfer from P* to HA, also could facilitate charge recombination from HA
- to P+.5-9 

The BA cofactor is a BChl located between the P BChl dimer and the HA BPhe (Fig. 1A). This 

increase in free energy gap is important since otherwise the state P+BA
-, initially almost 

isoenergetic with P+HA
-,5, 10,11 could be efficiently repopulated from P+HA

-. As a consequence, 

since the intrinsic lifetime of P+BA
- 
 PBA charge recombination is of the same order of 

magnitude (200-700 ps)12-15 as the lifetime of the next forward electron transfer step from HA
- 

to the quinone QA (~200 ps),16 the initially accumulated energy would be lost with a 

significant probability. Accordingly, relaxation of the state P+HA
- together with relatively 

slow direct P+HA
-  PHA charge recombination (of the order of 20 ns;2,11,17 Fig. 1B) protects 
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the system against wasteful charge recombination. Studies of mutant RCs with decreased free 

energy gap between P+BA
- and P+HA

- have shown that the reaction of P+HA
-  PHA charge 

recombination, via the state P+BA
-, competes with forward electron transfer from HA

- to 

QA.5,14,18  

 In order to study P+HA
-  PHA charge recombination it is necessary to block electron 

transfer from HA
- to the next acceptor, the QA ubiquinone. This is usually achieved by either 

removal or reduction of QA, and such reaction centers are described as being in a “closed” 

state).5,11  One of the first experimental manifestations of protein relaxation occurring on the 

time scale of charge recombination in closed Rba. sphaeroides RCs was the detection of 

multiexponential decay of fluorescence from P* (originating from P* repopulated from the 

states P+BA
-/P+HA

-; Fig. 1A).19 However during two decades subsequent to this finding there 

was a lack of experimental transient absorption data that could clearly support the idea of 

protein relaxation in purple bacterial RCs. Counter to this interpretation, a large body of 

evidence indicated that transient absorption signals from closed RCs, achieved by both 

reduction and removal of QA, decayed monoexponentially with a lifetime of 12-15 ns at room 

temperature.2,17 Only recently it was well documented that transient absorption signals in 

closed, QA-reduced RCs decay in a multiexponential fashion8,11 with lifetimes similar to those 

observed in time-resolved fluorescence studies (< 1 ns, 2-4 ns and 10-20 ns). In RCs with QA 

reduced the two fastest components are dominant. RCs with QA removed showed a 

significantly slower decay dominated by a >10 ns component.5,8 The common use of RCs 

without QA, together with lower temporal resolution of older transient absorption 

experiments, was probably the reason why non-monoexponential charge recombination was 

not detected in many previous studies.  

 In this contribution we combined new and old data on multiexponential decay of P* 

fluorescence with recent data on a multiexponential decay of P+HA
- measured by transient 

absorption, both in QA-reduced RCs.11,19,20 The determination of similar sets of three lifetimes 

from both of these techniques prompted us to propose a unified model for charge 

recombination that includes an active role of protein polarization dynamics.  

 

Materials and Methods 

Charge recombination reaction was studied by time-resolved fluorescence in wild-type 

Rba. sphaeroides RCs that were purified according to a procedure described previously.21 

Before the experiments, isolated RCs were diluted in 15 mM Tris buffer (pH 8.2), containing 

0.025% LDAO (N,N–dimethyldodecylamine-N-oxide) to a final optical density of OD800nm, 
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1cm ≈ 0.1. In order to keep the RCs in the closed state (i.e. with QA reduced), 10 mM sodium 

ascorbate was added.11 During the experiment, the sample was kept in a stirred quartz cell (1 

cm path length).  

An instrument equipped with a streak camera was used to measure time-resolved 

fluorescence.22 Samples were excited by 150 fs laser pulses of 800 nm wavelength  provided 

by Ti:Sapphire oscillators pumped by a high stability Nd:YVO4 DPSS CW laser. The 

standard pulse repetition rate (76 MHz) of our Ti:Sapphire oscillators was reduced to 4.75 

MHz by a pulse-picker in order to provide an appropriate time between pulses. The detection 

system for fluorescence decay time experiments consisted of a Hamamatsu S1 streak camera  

coupled to a 0.3 m focal length monochromator. The fluorescence decay was detected with 

~0.5-ns temporal resolution in a 50 ns time window. 

Time-resolved fluorescence traces were fitted with three exponential functions, 

Fl(t) = ∑ Fi
3
i=1 exp⁡(−

t

τi
), using the program Origin. The fits were performed without 

convolution with the instrumental response function. This approach is justified because the 

previously published transient absorption kinetics characterized by a similar temporal 

resolution of ~0.5 ns,11 analyzed in this study together with the fluorescence kinetics using the 

unified model, were also performed without convolution with the instrumental response 

function. The reference data of decay of absorption change was fitted with the function 

∑ Ai
3
i=1 exp (−

t

τi
) + A4. Transient absorption signals were measured at 690 nm (signal from 

HA
-) in ref. 11 or at wavelengths of 369, 420, 454, 668 nm (from 0 to 1 ns) combined with 

970 nm (from 0 to 80 ns; signal mostly from P+) in ref. 20. Average fluorescence and 

absorption decay times were calculated as τav = ∑ τiFi
3
i=1  and τav = ∑ τiAi

3
i=1 , respectively. 

Steady-state fluorescence spectra were measured using a CCD InGAs Camera.  

 

Results and Discussion 

Fig. 1D presents the fluorescence spectrum of closed (with QA
-)  Rba. sphaeroides 

RCs excited at 800 nm, overlaid on the absorbance spectrum of the same complex; emission 

was obtained to the red of the lowest energy P absorbance band at 865 nm.  The shoulder on 

the blue side of the fluorescence spectrum is probably due to a very small amount of free 

pigment and/or by the shape of the response function of the detecting system. Fig. 2 shows the 

fluorescence decay signal integrated over a part of the P* emission band near the maximum 

from ~920 to ~940 nm, again following excitation at 800 nm. Superimposed on the decay 

trace is the best three-exponential free fit with lifetimes of 0.63, 2.4, and 9.6 ns (Fig. 2). No 
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faster fluorescence components were detected due to the limited temporal resolution of the 

instrument, which was similar to that of previous transient absorption measurements (~0.5 

ns). The multiexponential character of this decay of P* fluorescence was previously attributed 

to a combined effect of charge recombination and protein relaxation.11,19 

Fig. 3 compares the best free fit of the decay of P* fluorescence (blue trace) with the 

fit made using lifetimes of 0.7, 3.8 and 17.7 ns obtained from a previous transient absorption 

study (dashed black trace).11 As is evident from the way these fit curves superimpose, and the 

similarity of the residuals from these fits shown in Fig. 3 (traces a and b, respectively), the 

difference between these two fits was not significant. The best fit to the previous transient 

absorption data11 using the 0.7, 3.8 and 17.7 ns lifetimes is also shown in Fig. 3 (red trace).  

The divergence from the fits to the fluorescence data is due to the different relative amplitudes 

for the respective components. In the fluorescence data the fastest component dominated (F1 = 

0.73 or 0.79), whereas in transient absorption data the intermediate component had the largest 

amplitude (A2 = 0.48). This difference in relative amplitudes is due to the fact that the 

amplitude of the fluorescence signal is proportional to the transient concentration of the P* 

state formed by charge recombination whereas the amplitude of the absorption signal is 

proportional to the transient concentration of the state P+HA
- (with admixture of the state 

P+BA
-; most of the ΔA signal at 690 nm comes from HA

- and BA
-).9,23 Thus, a gradual increase 

over time of the free energy gap between P* and P+HA
- due to protein relaxation is expected 

to decrease the amplitude of the signal from P* faster than that of the signal from HA
-/BA

- 

(compare the transient absorption and fluorescence traces in Fig. 3). 

Lifetimes and amplitudes obtained in the three-exponential fits of charge 

recombination measured either by time-resolved fluorescence or time-resolved absorption are 

compared in Table 1. Parameters obtained from the free fit of the fluorescence decay data (set 

A in Table 1) were similar to those obtained in a previous study by Woodbury and Parson19 

(set D in Table 1), the main variance being a difference in the calculated average fluorescence 

lifetime (1.61 vs. 2.45 ns, respectively). Two sets of parameters obtained from free fits of 

transient absorption data obtained in recent studies11, 20 were also similar to one another (sets 

F and G in Table 1) and the lifetime parameters were not markedly different from those 

estimated from the fluorescence measurements. Parameter sets B and C were obtained after 

fixing the lifetimes taken from transient absorption experiments (ref. 11 and ref 20, 

respectively), and set E results from old fluorescence decay data19 but fitted with fixed 

lifetimes taken from transient absorption studies.11 As will be shown below the differences 

between the respective sets of parameters (A-E and F-G), and in particular the differences 
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between lifetime parameters in all the sets (A-G), were not critical for the conclusions drawn 

in this study. The similarity in the lifetime parameters found in transient fluorescence and 

transient absorption experiments justifies an assumption that in model calculations one set of 

lifetimes should be sufficient to describe the processes underlying the results of both types of 

experiment.  

A mathematical model allowing calculation of the free energy levels of the states 

P+BA
- and P+HA

- relative to that of P* on the basis of fluorescence decay parameters (Tab. 1; 

sets A-E) and biphasic protein relaxation parameters τ12 and τ23 (Tab. 1) estimated earlier on 

the basis of transient absorption measurements11 is presented in the Supporting Information. 

This is an extension of a model developed previously and applied to simulation of the 

temporal evolution of the free energy gap between the states P+BA
- and P+HA

- based 

exclusively on data from a previous transient absorption study.11 The output from the 

extended model were populations of the states P*, P+BA
- and P+HA

- and free energy gaps (ΔG) 

between these states in three relaxation states of the protein (Tab. 2).  

Example results of the model calculations are collected in Table 2 and the results for 

two of the parameter sets (A and B) are presented graphically in Fig. 4. In all cases the free 

energy gap between the states P+BA
- and P+HA

- at a given relaxation state of the protein was 

adopted from a recent transient absorption study,11 and thus the added value of the current 

modeling is an estimation of the temporal resolution of the free energy gap between P* and 

P+BA
-. Careful comparison of the sets of results in Table 2 (columns 4-7) and Fig. 4 (A and B) 

leads to conclusion that, whichever set of fit parameters one puts into the model calculations, 

the temporal evolution of the free energy levels of the states P+BA
- and P+HA

- relative to that 

of P* is qualitatively the same. In all cases the gap between P+HA
- and P* increases with time, 

and the gap between P+BA
- and P* decreases with time on a (sub)nanosecond time scale.  

The observed effect may be explained in the following way (see the Table of Contents 

graphic for a visualisation). Formation of the initial unrelaxed form of states P+BA
- and P+HA

-, 

(P+BA
-)1 and (P+HA

-)1, occurs very quickly, within a few picoseconds, this time being beyond 

the temporal resolution of the applied instrumentation. Since the initial free energy gap 

between (P+BA
-)1 and (P+HA

-)1 is small (ΔG1 = 8 meV, Table 2), there is only a small 

population excess of (P+HA
-)1 over (P+BA

-)1 (see population probabilities P1 and P1
’ in Table 

2). This situation only slightly favors protein polarization with positive poles directed towards 

HA
-/HA and negative poles directed towards P+ and BA

-/BA.  The change in distribution of 

charge within the protein associated with a mixture of (P+BA
-)1 and (P+HA

-)1 triggers the first 

phase of protein reorganization that corresponds to lifetime τ12 (Table 1). This 0.6-0.7 ns 
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process comprises a partial polarization of the protein environment of the cofactors resulting 

in partially relaxed states (P+BA
-)2 and (P+HA

-)2; this polarization can be envisaged as the 

reorientation of positive partial charges directed towards HA
-/HA and negative partial charges 

directed towards P+. When the free energy gap between P+BA
- and P+HA

- increases due to this 

partial polarization (ΔG2 = 92 meV, Table 2), the population excess of (P+HA
-)2 over (P+BA

-)2 

becomes large (see P2 and P2
’ in Table 2). This results in the protein polarization becoming 

stronger (second phase of protein reorganization, τ23) with a further increase in the relative 

population of a fully relaxed (P+HA
-)3 state over (P+BA

-)3.  A consequence of the protein 

polarization is that the negative poles near BA shift the free energy level of the state P+BA
- up 

towards P*, due to electrostatic repulsive interaction with the negative charge on BA
-, whereas 

the positive poles stabilize the state P+HA
- due to the attractive interaction with the negatively 

charged HA
-.  Thus stabilization of P+HA

- is accompanied by destabilization of P+BA
-. 

Naturally, this qualitative explanation of the observed effect does not solve the 

question of the nature of the protein polarization. Is it simply nuclear reorganization of dipolar 

groups of amino acids in the vicinity of BA and HA, or one or more protonation/deprotonation 

events occurs somewhere between BA and HA? Systematic studies similar to those performed 

in this work on WT RCs are needed on mutant RCs with altered polarity or charges around BA 

and HA to address this question. 
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Figures and tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Structure, electron transfer reactions, energetic diagram, and spectra of Rba. 

sphaeroides RCs. A – cartoon of the structural arrangement of the electron transfer cofactors; 

reversible electron transfer reactions are represented by the arrows. B – electron transfer 

reactions schemes for open and closed RCs. C – simplified free energy diagram of RC 

cofactor states; the arrow represents temporal evolution of the free energy level of P+HA
-. D – 

steady state absorption and fluorescence spectra of Rb. sphaeroides RCs; absorption bands are 

labeled according to the contribution of particular cofactors; the fluorescence spectrum was 

measured with an excitation wavelength of 800 nm. 
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Fig. 2. Decay of fluorescence integrated over the central part of the emission band of P between ~920 

and ~940 nm. The best three-exponential fit is shown in red and superimposed on the data. The best fit 

parameters were τ1 = 0.63 ± 0.03 ns (F1 = 0.73), τ2 = 2.4 ± 0.6 ns (F2 = 0.20), τ3 = 9.6 ± 2.5 ns (F3 = 

0.07). 
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Fig. 3. Comparison of fits to absorbance changes at 690 nm from ref. 11 and to the 

fluorescence decay trace from Fig. 2, both revealing P+HA
- charge recombination. The 

fluorescence decay was fitted with a three-exponential function (blue), whereas absorption 

changes were fitted with three-exponential function plus a small constant due to triplet state 

formation (red). A second fit of the fluorescence decay is shown (dashed black) with three 

fixed lifetimes taken from previous transient absorption studies.11 Residuals (a) and (b) of the 

two fits to the fluorescence decay curve are shown. Note that the difference between the two 

fluorescence fits is smaller than the width of the lines. 
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Fig. 4. Temporal evolution of the free energy of states P+BA
- and P+HA

- relative to that of  P*. 

The value of ΔG3T = 210 meV was fixed and taken from ref. 3, and those for ΔG1,  ΔG2, ΔG3 

were taken from ref. 11. ΔG3’ was calculated as a difference ΔG3T – ΔG3. (A) ΔG1’ and ΔG2’ 

were estimated on the basis of parameters F1, F2, F3 and τ1, τ2, τ3 of the best fit to fluorescence 

decay (Fig. 3 – residuals a; and Tab. 2, col. 4). (B) ΔG1’ and ΔG2’ were estimated on the basis 

of parameters F1, F2, F3 and τ1, τ2, τ3 estimated from the fit in which τ1, τ2, and τ3 were fixed 

and taken from the transient absorption studies11 (Fig. 3 – residuals b; and Tab. 2, col. 5). 
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Table 1. Fit parameters of fluorescence and absorption kinetics depicting P+HA
-
 charge 

recombination and model parameters depicting protein dynamics. 

 Fit parameters Model 
parameters 

Set Fluorescence 
τ1[ns]    τ2[ns] τ3[ns] τav[ns] 

F1 F2 F3  
 

Absorption 
τ1[ns] τ2[ns] τ3[ns]  τav[ns] 
A1 A2 A3 A4  

 

Absorption  
τ12[ns] τ23[ns]    

A 0.63 2.4 9.6  1.61 
0.73 0.2 0.07  

 

  

B 0.7 3.8 17.7 1.73 
0.79 0.17 0.03  

 

  

C 
 

0.7 4.0 14.0 1.62 
0.8 0.16 0.03  

 

  

D 0.67 3.2 10.6 2.45 
0.62 0.27 0.11  

 

  

E 0.7 3.8 17.7 2.82 
0.63 0.3 0.07  

 

  

F  0.7 3.8 17.7  5.74 
0.28 0.48 0.21 0.03  

 

0.55 10 
 

G  
 

 

0.7 4.0 14.0  4.12 
0.26 0.60 0.11 0.03  

 

 

The fit parameters were taken from the following studies: (A) our  measurement, free fit; (B) 

our  measurement; lifetimes fixed - taken from transient absorption experiment;11 (C) our  

measurement; lifetimes fixed - taken from transient absorption experiment;20 (D) ref. 19; (E) 

experimental decay taken from ref. 19; lifetimes fixed - taken from transient absorption 

experiment;11 (F) ref. 11; (G) ref. 20. The sets A and B correspond to fits, the residuals of 

which are shown in Fig. 3 and are labeled a and b, respectively. 
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Table 2. Probabilities of population of states P*, P+BA
- and P+HA

- and free energy gaps 

between these states in three protein relaxation states of isolated RCs from Rba. sphaeroides 

for four sets of fluorescence decay parameters used in model calculations. 

The symbols used are further explained in Fig. 4 and in the Supporting Information. The sets 

A-D correspond to those depicted in the footnote to Tab. 1. The values of free energy gaps 

between the states P+BA
- and P+HA

- were taken from ref. 11, and ∆G3T was fixed at 0.21 eV.3 

The remaining values (typed in bold) were estimated from the expressions shown in the 

Supporting Information.  

Probabilities 
of 

population 
and free 
energy     

gaps 
symbols 

 
              
        

States of 
cofactors 

State of 
protein 

Probabilities of population and free energy gaps [eV] values 
for four input sets of fluorescence decay parameters, A-D 

A B C D 

τ1 = 0.63   [ns] 
τ2 = 2.4     [ns] 
τ3 = 9.6     [ns] 
F1 = 0.73 
F2 = 0.2 
F3 = 0.07 
 

τ1 = 0.7    [ns] 
τ2 = 3.8    [ns] 
τ3 = 17.7  [ns] 
F1 = 0.79 
F2 = 0.17 
F3 = 0.03 
 

τ1 = 0.7   [ns] 
τ2 = 4       [ns] 
τ3 = 14    [ns] 
F1 = 0.8 
F2 = 0.16 
F3 = 0.03 
 

τ1 = 0.67   [ns]  
τ2 = 3.2     [ns] 
τ3 = 10.6   [ns] 
F1 = 0.62 
F2 = 0.27 
F3 = 0.11 
 

               1 2 3 4 5 6 7 

P1
’’ 

 
P1

’ 
 

P1 
 
∆G1

’ [eV] 
 
∆G1 [eV] 

 
∆G1T [eV] 
 

(P*)1 
 
(P+BA

-)1 

 
(P+HA

-)1 

 
(P*)1  -  (P+BA

-)1 

 
(P+BA

-)1 - (P+HA
-)1 

 
(P*)1  - (P+HA

-)1 
 

u
n

re
la

xe
d

 s
ta

te
 

st
at

e 
1

 

0,000875 
 

0.423 
 

0.576 
 

0.159 
 

0.008 
 

0.167 

0.00349 
 

0.422 
 

0.574 
 

0.123 
 

0.008 
 

0.131 

0.00391 
 

0.422 
 

0.574 
 

0.12 
 

0.008 
 

0.128 

0.000902 
 

0.423 
 

0.576 
 

0.159 
 

0.008 
 

0.167 

P2
’’ 

 
P2

’ 
 

P2 
 
∆G2

’ [eV] 
 
∆G2 [eV] 

 
∆G2T [eV] 
 

(P*)2 
 
(P+BA

-)2 

 
(P+HA

-)2 

 
(P*)2  -  (P+BA

-)2 

 
(P+BA

-)2 - (P+HA
-)2 

 
(P*)2  - (P+HA

-)2 
 

p
ar

ti
al

ly
  r

el
ax

e
d

 s
ta

te
 

st
at

e 
2

 

0.000292 
 

0.0282 
 

0.972 
 

0.118 
 

0.092 
 

0.21 

0.000818 
 

0.0282 
 

0.971 
 

0.091 
 

0.092 
 

0.183 

0.000874 
 

0.0282 
 

0.971 
 

0.089 
 

0.092 
 

0.181 

0.000415 
 

0.0286 
 

0.971 
 

0.110 
 

0.092 
 

0.202 

P3
’’ 

 
P3

’ 
 

P3 
 
∆G3

’ [eV] 
 
∆G3 [eV] 

 
∆G3T [eV] 

(P*)3 
 
(P+BA

-)3 

 
(P+HA

-)3 

 
(P*)3  -  (P+BA

-)3 

 
(P+BA

-)3 - (P+HA
-)3 

 
(P*)3  - (P+HA

-)3 
 

 

fu
lly

 r
el

ax
ed

 s
ta

te
 

st
at

e 
3

 
 

0.000279 
 

0.00519 
 

0.995 
 

0.075 
 

0.135 
 

0.21 

0.000279 
 

0.00519 
 

0.995 
 

0.075 
 

0.135 
 

0.21 

0.000279 
 

0.00519 
 

0.995 
 

0.075 
 

0.135 
 

0.21 

0.000279 
 

0.00519 
 

0.995 
 

0.075 
 

0.135 
 

0.21 
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Supporting Information 

In order to estimate the free energy gaps between P* and the charge separated states 

we used the model presented graphically in Fig. A1. This is an extension of a previous 

model11 which did not allow estimation of the free energy levels of the state P*.  

  

    

Fig. A1. Working model used for calculations. See text for details. 

 

We assumed that the RCs consecutively adopt three states numbered by index i = 1 .. 3 (Fig. 

A1). Furthermore, we assume that the transitions between these states are irreversible 

(characterized by time constants τ12 and τ23) and in each of these states an equilibrium 

between exited, (P*)i, and charge separated, (P+BA
-)i, and (P+HA

-)i, states is established. 𝑃𝑖
′′, 

𝑃𝑖
′, and 𝑃𝑖 denote equilibrium probabilities of population of the states (P*)i , (P+BA

-)i, and 

(P+HA
-)i, respectively. In the equilibrium states: 

⁡
𝑃𝑖
′′

𝑃𝑖
′ ⁡⁡= ⁡ 𝑒−⁡

∆Gi
′

𝑘𝑇          (A1) 

𝑃𝑖
′

𝑃𝑖
⁡= ⁡ 𝑒−⁡

∆Gi
𝑘𝑇          (A2) 

𝑃𝑖
′′

𝑃𝑖
⁡= ⁡

𝑃𝑖
′′

𝑃𝑖
′ ∙

𝑃𝑖
′

𝑃𝑖
⁡= ⁡ 𝑒−

∆Gi
′

𝑘𝑇
⁡ ∙ 𝑒−⁡

∆Gi
𝑘𝑇 ⁡= ⁡ 𝑒−⁡

(∆Gi
′+∆Gi)

𝑘𝑇 = 𝑒−⁡
∆GiT
𝑘𝑇    (A3) 

where k is the Boltzman factor, T is absolute temperature, and free energy gaps ∆Gi, ∆Gi
’, and 

∆GiT  are explained in Fig. A1. The probabilities are normalized: 

𝑃𝑖 ⁡+ ⁡𝑃𝑖
′⁡ +⁡𝑃𝑖

′′ = 1        (A4) 

From the eqn. A1- A4 one can show that: 
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𝑃𝑖
′′ =⁡⁡

𝑒⁡
−
∆GiT
𝑘𝑇

1+𝑒⁡
−
∆Gi
𝑘𝑇 ⁡+⁡𝑒⁡

−
∆GiT
𝑘𝑇

       (A5) 

𝑃𝑖
′ =⁡⁡

𝑒⁡
−
∆Gi
𝑘𝑇

1+𝑒⁡
−
∆Gi
𝑘𝑇 ⁡+⁡𝑒⁡

−
∆G⁡iT
𝑘𝑇

       (A6) 

𝑃𝑖 =⁡⁡
1

1+𝑒⁡
−
∆Gi
𝑘𝑇 ⁡+⁡𝑒⁡

−
∆GiT
𝑘𝑇

        (A7) 

The state 3P in Fig. A1 is the triplet state of the primary donor. Since we did not observe non-

decaying component in fluorescence decay traces, it was assumed in the model that the 

formation of the triplet state did not affect the fluorescence kinetics unlike the transient 

absorption kinetics. 

 

Calculations  for state 3 (relaxed state)  

The ∆G3T values found in the literature range from 0.21 eV to 0.26 eV 3 and the value 

of ∆G3 was proposed to be 0.135 eV.11 After introducing these values to Eqn. A1-A4 (for i = 

3), one may calculate probabilities 𝑃3, 𝑃3
′, and 𝑃3

′′. The free energy gap ∆G3
’ is simply 

calculated as difference between ∆G3T and ∆G3. 

 

Calculations  for states 1 and 2 (unrelaxed and partially relaxed states)  

Fluorescence amplitudes F1-F3⁡(see Tab. 1) are complex functions of time constants 

τ12 and τ23, rate constants kPHi (i = 1,2,3) and probabilities 𝑝𝑖
′′⁡ (i = 1, 2, 3)  and 𝑃1

⁡. 

F1⁡ = 𝑝1
′′ +⁡𝑝2

′′ 𝜏12
−1𝑃1

𝑘𝑃𝐻2−⁡𝑘𝑃𝐻1
+⁡𝑝3

′′ 𝜏12
−1𝑃1

𝑘𝑃𝐻2−⁡𝑘𝑃𝐻1
⁡

𝜏23
−1

𝑘𝑃𝐻3−⁡𝑘𝑃𝐻1
⁡   (A8) 

F2⁡ = −(𝑝2
′′ 𝜏12

−1𝑃1

𝑘𝑃𝐻2−⁡𝑘𝑃𝐻1
+⁡𝑝3

′′ 𝜏12
−1𝑃1

𝑘𝑃𝐻2−⁡𝑘𝑃𝐻1
⁡

𝜏23
−1

𝑘𝑃𝐻3−⁡𝑘𝑃𝐻1
)⁡   (A9) 

F3⁡ = −⁡𝑝3
′′ 𝜏12

−1𝑃1𝜏23
−1

𝑘𝑃𝐻2−⁡𝑘𝑃𝐻1
[

1

𝑘𝑃𝐻3−⁡𝑘𝑃𝐻1

1

𝑘𝑃𝐻3−⁡𝑘𝑃𝐻2
]    (A10) 

 

Time constants τ12 and τ23 are shown in Fig. A1 and depict two phases of protein 

reorganization dynamics. Rate constants kPH1, kPH2, and kPH3 are the inverted lifetimes τ1, τ2, 

τ3 of the states (P+HA
-)1, (P+HA

-)2, and (P+HA
-)3, respectively, achieved from the fit of 

fluorescence decay. 𝑝1
′′⁡, 𝑝2

′′⁡, and 𝑝3
′′⁡ are equilibrium probabilities of population of the 

states  (P*)1, (P
*)2, and (P*)3, respectively. Note that the probabilities 𝑝1

′′⁡, 𝑝2
′′⁡, 𝑝3

′′⁡ do not 

fulfill the normalization condition similar to A4 (for example 𝑝1
′′ + 𝑝1

′ + 𝑝1 ≠ 1⁡). Their exact 

values originate from another normalization condition: 

F1 ⁡+ ⁡F2
⁡ +⁡F3 = 1        (A11) 
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However, the ratios between probabilities 𝑝𝑖, 𝑝𝑖
′⁡, and 𝑝𝑖

′′⁡ (i=1, 2, 3) are the same as the 

respective ratios between probabilities  𝑃𝑖, 𝑃𝑖
′, 𝑃𝑖

′′ and therefore also fullfil the eqn. A1-A3: 

𝑝𝑖
′′

𝑝𝑖
′ ⁡⁡= ⁡ 𝑒−⁡

∆Gi
′

𝑘𝑇          (A12) 

𝑝𝑖
′

𝑝𝑖
⁡= ⁡ 𝑒−⁡

∆Gi
𝑘𝑇          (A13) 

𝑝𝑖
′′

𝑝𝑖
⁡= ⁡ 𝑒−⁡

∆GiT
𝑘𝑇          (A14) 

Eqn. A8-A10 were derived from a set of differential equations depicting temporal evolution 

of the concentrations of states P*, P+BA
- and P+HA

- in a similar way as was done for 

absorption amplitudes.11 

Eqn. A8-A10 allow the calculation of probabilities 𝑝1
′′⁡, 𝑝2

′′⁡, and 𝑝3
′′⁡, taking the 

values of time constants τ12 and τ23 from ref. 11 and taking the lifetimes τ1
⁡ =

1

𝑘𝑃𝐻1
,  τ2

⁡ =

1

𝑘𝑃𝐻2
, and τ3

⁡ =
1

𝑘𝑃𝐻3
, and amplitudes F1, F2, and F3 from one of the sets of fluorescence 

parameters (Tab. 1, sets A-E). 

Knowing the values of 𝑃3, 𝑃3
′, 𝑃3

′′ (see above calculations, for state 3), 𝑝1
′′⁡, 𝑝2

′′⁡, and 

𝑝3
′′⁡ (Eqn. A8- A10), taking the values of ∆G1= 0.008 eV and ∆G2=0.92 eV from transient 

absorption measurements,11 and using  Eqn. A1-A3 and A12-A14 one may calculate ∆G1
’ and 

∆G2
’. 

 

 


