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On the distribution and mean of received power in stochastic cellular network

Fengming Cao, Ayalvadi Ganesh, Simon Armour and Mahesh Sooriyabandara ∗†‡§

Abstract

This paper exploits the distribution and mean of re-
ceived power for cellular network with stochastic net-
work modeling to study the difference between the two
cell association criteria, i.e. the strongest received
power based cell association and the closest distance
based cell association. Consequently we derive the an-
alytical expression of the distribution and the mean of
the nth strongest received power and the received power
from the nth nearest base station and the derivations
have been confirmed by simulation results. From both
the simulation results and analytical results, we can see
that the distributions of received power with both asso-
ciation criteria vary with different path loss exponents
α: there is a clear gap between the two when the ex-
ponent is small and the two are almost the same with
larger exponent. Meanwhile, the analysis on the mean
of the received power suggests that under a certain con-
verged condition,i.e. n > α/2 , the average of the re-
ceived power from the nth closest BS is actually larger
than the nth strongest one.

1. Introduction

The wireless cellular systems are getting increas-
ingly dense in order to deliver high volume of data due
to the huge demand of explosive smart phones and com-
puting devices. As a result, the topologies of recent
cellular networks are not regular-shaped any more, es-
pecially the base station (femto base station for exam-
ple) nowadays can be deployed by subscribers, and it
has been challenging to properly model the new net-
works. Modeling the networks with stochastic geome-
try has been well studied in recent years and seems to be
promising, see [1,2] and the references therein. Indeed,
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even though the stochastic network modeling does not
totally match the real deployment, it does look more
similar to the real deployment and performs better than
the conventional hexagonal grid modeling [3] [4] . In
stochastic modeling, the base stations(BSs) are placed
randomly and the locations of the BSs are modeled nor-
mally as a homogeneous Poison point process (PPP),
where the performance metrics like coverage and er-
godic rate can be determined if the radio channel and
cell association criterion are given. Regarding to the
cell association, a user will be connected to a BS either
with distance-based association where the connected
is closest to the user or receive signal strength(RSS)
based association where the connected BS provides the
strongest received power to the user. While the vast
majority of the existing stochastic modeling work as-
sumed the distance-based cell association [2–6], the
RSS-based cell association has been used in the prac-
tical system [7] and is worth being exploited within
stochastic modeling. One basic research issue regard-
ing to the two cell associations is that what is the dif-
ference between the two association in terms of dis-
tribution and moment of the strongest and the closest
received powers. More recently, cooperative transmis-
sion has been used in the practical system where a user
need to connect multiple BSs simultaneously or with
time-division manner, not just with only one strongest
or closest BS [8]. Therefore, it will be more interesting
to derive the distribution and moment for the received
power from an arbitrary BS which provide insightful
results not only for cell association, but also for other
topics like cooperative transmission. At the moment ,
only few relevant results are available in the literature.
In [9] and [10], a tier is chosen for a user within the
multi-tier network based on the strongest received sig-
nal, but the user is connected to a BS within the chosen
tier based on the nearest distance. In [11], the distri-
bution of distances in Poisson point processes has been
studied and the results was applied for bounding the in-
terference and ad hoc routing. In [12], the CDF of sig-
nal to noise ratio (SIR) with RSS based association was
presented to model lattice cellular networks

Different from previous work, we particularly fo-
cus on the distribution and mean of the nth strongest re-



ceived power and the one from the nth closest BS, aim-
ing to illustrate the difference between the two cell as-
sociations. In this paper, we model the received power
as a marked PPP by attaching the marks (fading chan-
nel) to the ground PPP which is an inhomogeneous PPP
in line-space transformed from a planar homogeneous
PPP, and use the marked PPP to analyze the distribution
and moment of the received power. The main contribu-
tions are as follows

• We derive analytical expressions for the distribu-
tions of the strongest received power and the clos-
est received power which is invariant to fading
channels, and generalize them for the nth strongest
and the nth closest received power.

• Close-forms of the average of the above-
mentioned received power are also obtained and
their comparison suggests the average of the re-
ceived power from the nth closest BS is larger than
the nth strongest received power under a certain
converged condition

• Simulation results are presented to show that out
analytical results closely match the performance
observed from the simulations.

For convenience, the nth closest received power means
the received power from the nth closest BS and they are
interchangeable in the whole paper.

The rest of the paper is organized as follows: Sec-
tion 2 introduces the system model and the derivations
of the distribution and the mean of the received power
have been elaborated in Section 3 and Section 4, respec-
tively. In Section 5, numerical results and simulations
have been presented to evaluate the derivation and illus-
trate comparison. Then Section 6 concludes the paper.

2. Poisson point process and system model

2.1. Poisson point process

Here we briefly describe the PPP for better illustra-
tion of the analysis in the remaining sections. A PPP Ω

is characterized mainly by two fundamental properties:
1) The numbers of points falling within any disjoint

regions are independent random variables ;
2) The random number of points of Ω= {vi} falling

within a region A has a Poisson distribution as

P(N(A) = k) =
Λ(A)ke−Λ(A)

k!
, (1)

where N(A) is the number of points in A and Λ(A) =∫
A Λ(dv) =

∫
A λvdv is the intensity measure of the re-

gion A, and λv is the intensity function. For homoge-
neous PPP, λv = λ and Λ(A) = λ |A| , where |A| is the
area of the region A. A PPP Ω = {vi} can be made into
a marked PPP Θ = {vi,mi} by attaching a mark mi to
each point vi of the process. [13] It can be shown that
the intensity measure for the independent marked point
process is Λ(d(v,m)) = Mv(dm)Λ(dv) where Mv is the
probability measure on dm, interpreted as the distribu-
tion of the mark of a point at v. Assuming v ∈ B and
m ∈ L, (1) will be slightly changed into (2)

P(N(B×L) = k)

=

[∫
B×L Λ(d(v,m))

]k
k!

× exp
(
−
∫

B×L
Λ(d(v,m))

)
(2)

2.2. System model

We consider a network having BSs spatially dis-
tributed as a homogeneous PPP Φ with intensity
λ in the Euclidean plane, where the probability to
have k BSs in the region A follows P(N(A) = k) =
(λ |A|)k

k! exp(−λ |A|) as mentioned in 2.1. In the network,
a user is assumed to be associated with a BS according
to either the closest-distance based or strongest received
power based association criterion and the BS is called
the user’s serving BS and the received power from the
user’s serving BS is called desired power. The path loss
is given by l(r) = r−α , where α(α > 2) is the path loss
exponent and r is the distance from a transmitter to a
receiver, and it is assumed that all the BSs transmit with
the same power. The fading power between a BS and a
user is denoted by h , and its distribution fH(h) depends
on the type of the channel. In this paper, we consider
two typical types of channels:
1) Rayleigh channel which power follows fH(h) =
1
µ

exp(−h
µ
) with mean µ .

2) Lognormal channel which power follows fH(h) =
1

hσ
√

2pi exp
{
− (ln(h)−µ)2

2σ2

}
with mean exp(µ + σ2/2)

and variance (eσ2 −1)e2µ+σ2
.

Both channels have been intensively used in scientific
community.The Rayleigh channel is relatively simple to
maintain mathematical tractability as well as provide in-
sightful engineering results, whilst the Lognormal chan-
nel usually is used to capture the shadowing in practical
systems.

For a given location as the origin, the received
power from a BS is given by

Y (r,h) = Pthr−α (3)

where Pt is the transmit power at the BS. In the next sec-
tion, we will study the distributions of the desired power



associated with cell associations, i.e. the strongest re-
ceived power and the received power from the serving
BS, and furthermore extend it to any nth strongest re-
ceived power and any received power from the nth near-
est BS.

3. Distribution of received power

3.1. Distribution of the received power from the
serving BS

We firstly converge the 2-dimension PPP in planar
space into one dimension PPP of BSs in line space in
which the ’point arrival times’ are Φ = {ri} with in-
tensity λr = 2πλ r [14]. Define a point process X =
{xi = Ptr−α

i } for x = Ptr−α = f (r) and further define a
marked point process Y = {yi : yi = hixi} to represent
the received power.

Lemma 1 The marked point process Y is an inho-
mogenoues PPP with intensity as

λy =
2πλ

α
Pt

2/α y−2/α−1EH(h2/α) (4)

Subject to

EH(h2/α)< ∞

Proof : According to the mapping theorem of PPP
[14] [15], X is also a PPP and its intensity can be ob-
tained as

λx = λ ( f−1(x))
∣∣∣∣∂ f−1(x)

∂x

∣∣∣∣
=

2πλ

α
Pt

2/α x−2/α−1 (5)

Since Y is the displacement of the point process X ,
according to the displacement theorem of PPP [14], Y
is a PPP and we can calculate its intensity as

λy =
∫

∞

0
λxρ(x,y)dx

=
∫

∞

0

2πλ

α
Pt

2/α x−2/α−1
ρ(x,y)dx

=
∫ ∞

0

2πλ

α
Pt

2/α x−2/α−1 fH(y/x)
1
x

dx

z=y/x
==

2πλ

α
Pt

2/α

∫
∞

0
y−2/α−1z2/α fH(z)dz

=
2πλ

α
Pt

2/α y−2/α−1EH(h2/α) (6)

where ρ(x,y) is the probability of y at x and obviously
EH(h2/α)< ∞ in (6) need to be satisfied to keep λy < ∞

to complete the proof.

It is interesting to see that the intensity of the Y
can be applied to arbitrary fading channel so long as
EH(h2/α) converges which is assumed in the following
analysis. Now we will investigate the distribution of the
received signal from the serving BS.

Theorem 1 (Distribution of the strongest received
power) Let S = max{Y (r,h)} be the strongest received
power, then its distribution is

P(S≤ z) = exp
(
−πλPt

2/α z−2/αEH(h2/α)
)

(7)

Proof : max(Y ) ≤ z means that there are no points
of the marked point process Y falling into the interval
(z,+∞), so

P(S≤ z) = P(max(Y )≤ z)

(a)
= exp

(
−
∫

∞

z
λydy

)
= exp

(
−2πλ

α
Pt

2/α

∫
∞

z
y−2/α−1EH(h2/α)dy

)
= exp

(
−πλPt

2/α z−2/αEH(h2/α)
)

(8)

where (a) follows the null probability of the marked
point process Y in the interval (z,+∞) and Q.E.D. Ac-
cordingly the pdf of S is given by

fS(z) =
∂P(S≤ z)

∂ z

=
2πλ

α
Pt

2/α z−2/α−1EH(h2/α)×

exp
(
−πλPt

2/α z−2/αEH(h2/α)
)

(9)

For Rayleigh channel with unit mean, (8) and (9) will
become (10) and (11), respectively.

P(SRayleigh ≤ z) = exp
(
−πλPt

2/α z−2/α
Γ(2/α +1)

)
(10)

fSRayleigh(z) =
2πλ

α
Pt

2/α z−2/α−1
Γ(2/α +1)×

exp
(
−πλPt

2/α z−2/α
Γ(2/α +1)

)
(11)

where Γ(t) =
∫

∞

0 vt−1e−vdv is the Gamma function.
Theorem 2 (Distribution of the closest received

power) Let R1 = min(r) and YR1 be the distance from
the origin to the closest BS and the received power from
the closest BS, respectively, then the distribution of YR1
is given by

P(YR1 ≤ z) =
∫

∞

0
exp(−πλ (Pth)2/α z−2/α) fH(h)dh

(12)



Proof : we firstly have

P(YR1 ≤ z) = P(R1 ≥ (
z

Pth
)−1/α)

Denote B(o, t) as the circle region with radius t to the
center i.e. the origin. R1 ≥ ( z

Pt h
)−1/α means there are

no points of Φ = {ri} falling into B(o,( z
Pt h

)−1/α), so

P(R1 ≥ (
z

Pth
)−1/α) =

(b)
= EH

[
P
(

R1 ≥ (
z

Pth
)−1/α |h

)]
=EH

{
P
(

N
(

B
(

o,(
z

Pth
)−1/α

))
= 0|h

)}
(c)
= EH

{
exp(−πλ (Pth)2/α z−2/α)

}
=
∫

∞

0
exp(−πλ (Pth)2/α z−2/α) fH(h)dh (13)

where (b) means the average is taken over the fad-
ing distribution and (c) follows the null probability of
the point process Φ = {ri} within B(o,( z

Pt h
)−1/α) ,and

Q.E.D. The pdf of YR1 is accordingly obtained as

fYR1
(z) =

∂P(YR1 ≤ z)
∂ z

=
2
α

πλPt
2/α z−2/α−1

∫
∞

0
h2/α× (14)

exp(−πλ (Pth)2/α z−2/α) fH(h)dh

3.2. Distribution of the received power from the
nth connecting BS

Now we further extend the analysis to the distri-
bution of the received power from the nth strongest
BS, followed by the one from the nth closest BS.
Since the received power is an inhomogeneous Pois-
son point process in line space with intensity λy =
2πλ

α
Pt

2/α y−2/α−1EH(h2/α) as in (6), we can calculate
its intensity measure in interval (z,+∞) as follows

Λ(z,+∞) =
∫

∞

z
Λydy

=
2πλ

α
Pt

2/α

∫
∞

z
y−2/α−1Eh(h2/α)dy

= πλPt
2/α z−2/αEh(h2/α) (15)

Theorem 3 (Distribution of the nth strongest re-
ceived power) Let Yn be the nth strongest received
power. Its distribution is given by

P(YRn ≤ z) =
Γ
[
πλPt

2/α z−2/αEH(h2/α),n
]

(n−1)!
(16)

Proof : The complementary cumulative distribution
function of YRn is the probability that there are less than
n points in Y within (z,+∞), so

P(Yn ≤ z) = P(0, ...,n−1 points in(z,+∞))

=
n−1

∑
k=0

Λk
(z,+∞)

k!
e−Λ(z,+∞)

=
n−1

∑
k=0

(πλPt
2/α z−2/αEh(h2/α))k

k!
×

exp
(
−πλPt

2/α z−2/αEH(h2/α)
)

(17)

Using the incomplete Gamma function Γ(t,k) = (k−
1)!e−t

∑
k−1
i=0

t i

i! for integer k to replace the RHS of (17)
gives the final result of (16). Similar to (9), the pdf of Yn
can be calculated as in (18). Theorem 4 (Distribution
of the nth closest received power) Let Rn be the distance
to the nth closest base station and YRn be the received
power of the nth closest base station, then the distribu-
tion of YRn is given by

P(YRn ≤ z) =
n−1

∑
k=0

∫
∞

0

(λπPt
2/α h2/α z−2/α)k

k!
×

exp(−λπPt
2/α h2/α z−2/α) fH(h)dh (19)

Proof : The proof is given in Appendix
Accordingly, its pdf is given in (20). Although

the expression for both the nth strongest and closest
received power have been derived as in Theorem 4
and Theorem 5, it is still hard to analytically compare
the both in terms of distribution, having said that, we
are able to evaluate them and illustrate their difference
through numerical results which will be presented in
section 5. Furthermore, we will study their average and
compare them analytically in the next section.

4. The mean of the received power

In this section,we are now studying the average for
both nth strongest and closest received power and the
comparison between them.

Theorem 5 (Mean of the received power) Let Ȳn =
EYn [z] be the mean of the nth strongest received power
and ȲRn = EYRn

[x] be the mean of received power from
the nth nearest BS. For n > α/2 , we have

Ȳn =
(

πλPt
2/αEh(h2/α)

)α/2 Γ(n−α/2)
Γ(n)

(21)

and

ȲRn = Γ(n−α/2)
(λπPt

2/α)α/2

Γ(n)
Eh[h] (22)



fYn(z) =
∂P(Yn ≤ z)

∂ z

=
2πλ

α
Pt

2/α z−2/α−1Eh(h2/α)e−πλPt
2/α z−2/αEh(h2/α )×(

n−1

∑
k=0

(πλPt
2/α z−2/αEh(h2/α))k

k!
−

n−1

∑
k=1

(πλPt
2/α z−2/αEh(h2/α))k−1

(k−1)!

)

=
2

zα

(πλPt
2/α z−2/αEh(h2/α))n

(n−1)!
e−πλPt

2/α z−2/αEh(h2/α ) (18)

fYRn
(z) =

∂P(YRn ≤ z)
∂ z

=
∫

∞

0

2
α

λπPt
2/α h2/α z−2/α−1 exp(−λπPt

2/α h2/α z−2/α)×(
n−1

∑
k=0

(λπPt
2/α h2/α z−2/α)k

k!
−

n−1

∑
k=1

(λπPt
2/α h2/α z−2/α)k−1

(k−1)!

)
fH(h)dh

=
∫

∞

0

2
α

z−2n/α−1 (λπPt
2/α h2/α)n

(n−1)!
exp(−λπPt

2/α h2/α z−2/α) fH(h)dh (20)

and their ratio is given by

Ȳn

ȲRn

≤1 (23)

Proof : the proof is given in Appendix
The condition n > α/2 suggests that the mean of

Yn and YRn does not always converge, for example , the
ȲR1 and ȲR1 is not able to converge. This is due to the
fact that with the PPP modeling it is likely a BS can be
indefinitely close to the origin,hence causing the con-
vergence problem. But this will not be an issue in prac-
tice since there will be a limited minimal distance from
BS to users in practical networks. Taking the limited
minimal distance into account is not within this paper
and will be our future work. It is interesting to see that
the ratio Ȳn

ȲRn
is only dependent of the channel and the

patth loss exponent , and is regardless of n. Further-
more ȲRn is always larger than or equal to Ȳn. It should
be noted that this only holds under the convergence con-
dition and cannot be applied to non-convergence condi-
tion, for example,Ȳ1 is obviously always larger than or
equal to ȲR1 . Intuitively, the ratio in (23) might pro-
vide a good implication to the case when a user need
to connect multiple n BSs simultaneously, for exam-
ple cooperative transmission, that connecting to n BSs
with mixture of RSS-based and distance-based associa-
tion is probably better than that with only RSS-based or
distance-based association.
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Figure 1. CDF of the 1st ,2nd and 3rd strongest
received power, Rayleigh channel with power
mean 1, λ = 2000 BSs per square kilometer, α =
2.2, transmit power of 1 Watt
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Figure 2. CDF of the 1st ,2nd and 3rd strongest
received power, lognormal channel with mean
1 and variance 5, λ = 2000 BSs per square kilo-
meter, α = 2.2 , transmit power of 1 Watt

5. Numerical Results

In this section, we will evaluate the numerical anal-
ysis through Monte Carlo simulations. In the simula-
tions, we randomly dropp BSs in a large area centering
at the origin according to the Poisson distribution with
the intensity of 2000 BSs per square kilometer. Then
the received power from any BS to the origin can be cal-
culated if the channel and path loss exponent are given
and the simulation results on the distribution and mean
of the received powers can be obtained. At the same
time, the numerical results from the analytical expres-
sions are also plotted to be checked with the simulation
results. We tested the results with both Rayleigh chan-
nel and Lognormal channel. Figure1 and Figure2 show
the CDF of the 1st ,2ndand 3rd strongest received power
for both channels and it can be seen that the simulation
results perfectly confirm the numerical results. Simi-
larly, Figure3 illustrates both simulation and numerical
results for the received powers from the 1st ,2ndand 3rd

closest BSs, with Rayleigh channel. Again, the sim-
ulation results match the analytical performance well.
In the figures, the ’Pmax’ , ’2ndPmax’ and ’3rdPmax’
mean the strongest, second strongest and third strongest
received power respectively, and ’Rmin’ , ’2ndRmin’
and ’3rdRmin’ mean received power from the nearest,
sencond, third nearest BSs repectively, while ’sim’ and
’num’ mean simulation result and numerical result re-
spectively.

Figure4 shows simulation and numerical results of
the CDF of Y1 and YR1 with two different α values i.e.
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Figure 3. CDF of received power from the
1st ,2nd and 3rd nearest BSs, Rayleigh channel
with power mean 1, λ = 2000 BSs per square
kilometer, α = 2.2,transmit power of 1 Watt

α = 2.2 and α = 3 with Lognormal channel. We can
see from the figure there is clearly a gap between the
two when the α is small with α = 2.2 here and the two
are almost the same for α = 3 which suggests that the
path loss exponent has impact on the association strate-
gies. Intuitively speaking, a larger α implies a heavier
path loss, which makes it harder for a farther BS to com-
pete with a nearer BS in terms of RSS. In more detail,
although the radio channel gain of a farther BS might be
higher than that of a nearer BS, the RSS-based associ-
ated with a farther BS is more likely to be smaller than
that associated with a nearer BS, particularly when α is
relatively large. Therefore, the performance of the two
investigated user association strategies converges, e.g.,
when α = 3 in our analysis

Figure5 illustrates the average of the 3rd strongest
received power and the one from 3rd nearest BS with
variant α values for Reyleigh channel. From the figure,
the simulation results are consistent with the numerical
results and the 3rd nearest averaged received power is
always larger than the 3rd strongest received power.

6. Conclusion

In this paper we have studied the distribution and
the average of the received power from the nth nearest
BS and the nth strongest received power to the origin for
stochastic network. The analytical performances have
been derived and simulation results also were provided
to confirm the analytical results. The study showed that
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it does have some difference between the two, espe-
cially when the path loss exponent is small, which im-
ply that there might be some impacts on the other per-
formance metrics such as coverage and system capacity
using different cell associations, which is one of our fu-
ture work. At the same time, analysis also suggests that
for n > α/2, the nth nearest received power is always
larger than the nth strongest received power, which pro-
vides an good implication on the association to multiple
BSs in the cases when a user need to communicate with
multiple BSs simutaneously, for example, the coopera-
tive transmission.

Appendix

Proof of theorem 4

Beginning with the definition of distribution , we
have

P(YRn ≤ z)

= P(Rn ≥ (
z

Pth
)−1/α)

= EH{P(Rn ≥ (
z

Pth
)−1/α |h)} (24)

P(Rn ≥ ( z
Pt h

)−1/α is the probability that there are less

than n points of Φ = {ri} falling into B
(

o,( z
Pt h

)−1/α

)
,
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Figure 5. Average received power of the 3rd
strongest rx power and from the 3rd nearest
BSs vs α, Rayleigh channel with unit mean, λ =
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so

P(YRn ≤ z)

= EH

{
n−1

∑
k=0

(λπ(Pth)2/α z−2/α)k

k!
exp(−λπ(Pth)2/α z−2/α)

}

=
n−1

∑
k=0

∫
∞

0

(λπPt
2/α h2/α z−2/α)k

k!
×

exp(−λπPt
2/α h2/α z−2/α) fH(h)dh (25)

which completes the proof.

Proof of theorem 5

By plugging (18) into Ȳn, we can have

Ȳn = EYn [z]

=
∫

∞

0

2
α

(πλPt
2/α z−2/αEh(h2/α))n

(n−1)!
×

exp
{
−πλPt

2/α z−2/αEh(h2/α)
}

dz (26)

Employing a change of variables x = z−2/α results in

Ȳn =
∫

∞

0

(πλPt
2/αEh(h2/α))n

(n−1)!
×

xn−α/2−1 exp
{
−πλPt

2/α xEh(h2/α)
}

dz

(d)
=
(

πλPt
2/αEh(h2/α)

)α/2 Γ(n−α/2)
Γ(n)

(27)



which completes the proof of (21).
By plugging (20) into ȲRn , we can have

ȲRn = EYRn
[z]

=
∫

∞

0

∫
∞

0

2
α

z−2n/α (λπPt
2/α h2/α)n

(n−1)!
×

exp
(
−λπPt

2/α h2/α z−2/α

)
dz fH(h)dh (28)

Similarly employing a change of variables x =
z−2/α results in

ȲRn =
∫

∞

0

∫
∞

0

(λπPt
2/α h2/α)n

(n−1)!
xn−α/2−1×

exp
(
−λπPt

2/α h2/α x
)

dx fH(h)dh

(d)
=
∫

∞

0
Γ(n−α/2)

(λπPt
2/α)α/2

Γ(n)
h fH(h)dh

= Γ(n−α/2)
(λπPt

2/α)α/2

Γ(n)
Eh[h] (29)

which completes the proof of (22). The (d) in (26)
and (28) follows the Gamma functions

∫
∞

0 xbe−axdx =
Γ(b+1)

ab+1 .
From (21) and (22), we can see that the conver-

gence condition for both Yn and YRn is n > α/2, and
under the convergence condition the ratio of Yn over YRn

is given as

Ȳn

ȲRn

=
EH [h2/α ]

α/2

EH [h]
(e)
≤ 1 (30)

where (e) follows the Lyapunov inequality: if 0 < s≤ t,
then E[xs]1/s ≤ E[xt ]1/t , and Q.E.D.

Acknowledgment

The authors would like to thank their directors at
Toshiba Research Europe Ltd. for support and approval,
and their colleagues for fruitful discussions.

References

[1] M. Win, P. Pinto, and L. Shepp, “A mathematical theory
of network interference and its applications,” Proceed-
ings of the IEEE, vol. 97, no. 2, pp. 205–230, Feb 2009.

[2] H. ElSawy, E. Hossain, and M. Haenggi, “Stochastic
geometry for modeling, analysis, and design of multi-
tier and cognitive cellular wireless networks: A survey,”
IEEE Communications Surveys & Tutorials, vol. 15,
no. 3, pp. 996–1019, 2013.

[3] J. Andrews, F. Baccelli, and R. Ganti, “A tractable ap-
proach to coverage and rate in cellular networks,” IEEE
Transactions on Communications, vol. 59, no. 11, pp.
3122–3134, 2011.

[4] C.-H. Lee, C.-Y. Shih, and Y.-S. Chen, “Stochastic ge-
ometry based models for modeling cellular networks in
urban areas,” Springer Wireless Network, vol. 19, no. 6,
pp. 1063–1072, 2013.

[5] H. Dhillon, T. Novlan, and J. Andrews, “Coverage prob-
ability of uplink cellular networks,” in Global Commu-
nications Conference (GLOBECOM), 2012 IEEE, Dec
2012, pp. 2179–2184.

[6] T. Novlan, R. Ganti, A. Ghosh, and J. Andrews, “An-
alytical evaluation of fractional frequency reuse for
ofdma cellular networks,” Wireless Communications,
IEEE Transactions on, vol. 10, no. 12, pp. 4294–4305,
December 2011.

[7] G. TS, “Evolved universal terrestrial radio access (e-
utra). further advancements for e-utra physical layer as-
pects (release 9),” 3GPP TR 36.814 V9.0.0, 2010-03.

[8] E. Pateromichelakis, M. Shariat, A. ul Quddus, and
R. Tafazolli, “On the evolution of multi-cell scheduling
in 3gpp lte / lte-a,” Communications Surveys Tutorials,
IEEE, vol. 15, no. 2, pp. 701–717, Second 2013.

[9] H. Dhillon, R. Ganti, F. Baccelli, and J. Andrews, “Mod-
eling and analysis of k-tier downlink heterogeneous
cellular networks,” Selected Areas in Communications,
IEEE Journal on, vol. 30, no. 3, pp. 550–560, April
2012.

[10] S. Singh, H. Dhillon, and J. Andrews, “Offloading in
heterogeneous networks: Modeling, analysis, and de-
sign insights,” Wireless Communications, IEEE Trans-
actions on, vol. 12, no. 5, pp. 2484–2497, May 2013.

[11] M. Haenggi, “On distances in uniformly random net-
works,” Information Theory, IEEE Transactions on,
vol. 51, no. 10, pp. 3584–3586, Oct 2005.

[12] B. Blaszczyszyn, M. Karray, and H. Keeler, “Using pois-
son processes to model lattice cellular networks,” in IN-
FOCOM, 2013 Proceedings IEEE, April 2013, pp. 773–
781.

[13] S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke,
Stochastic geometry and its applications. John Wiley
& Sons, 2013.

[14] J. F. Kingman, “Poisson processes, volume 3 of oxford
studies in probability,” 1993.

[15] R. L. Streit, Poisson Point Processes: Imaging, Track-
ing, and Sensing. Springer Science & Business Media,
2010.


