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 
Abstract— Although the Finite Difference Time Domain 

(FDTD) method is well established for addressing a wide variety 
problems, a long standing challenge is to reduce discretization 
errors while avoiding the use of impractically large numbers of 
cells, particularly when the structure is large and contains 
regions of fine detail. One solution is to use sub-grids but in most 
published work, Cartesian sub-grids are proposed which are 
constrained to have the same orientation as the main grid. 
However there is considerable benefit to allowing for the sub-grid 
to be rotated. In this work, a method for introducing a rotated 
sub-grid into the FDTD mesh is presented and its effectiveness, 
accuracy and stability is demonstrated by means of some simple 
examples. 
 

Index Terms—FDTD methods  
 

I. INTRODUCTION 

HE Finite Difference Time Domain (FDTD) method has 
been used to solve a wide variety of electromagnetic 
problems over a period of many decades. Nevertheless 

structures which contain fine geometrical detail and which are 
also electrically large still present a challenge. The difficulty is 
much greater for structures such as conformal antenna arrays 
in which different elements are orientated in different 
directions. An example of this is the system described in [1]  
which is a hemispherical array of slot antenna elements 
designed for use in a breast tumor detection system. In [2] and 
[3], a method is presented whereby each element of the array 
is modeled using a Cartesian mesh which is orientated in the 
most appropriate way for that element. The results were then 
rotated so that they matched the orientation of the element in 
the array. By means of a three stage process, the antenna array 
was characterized using computational resources which were 
several orders of magnitude smaller than would be needed if 
using direct FDTD methods. 

Although good results were obtained, the approximation was 
made that energy was transferred only in one direction, ie. 
from the excited element to all the non-excited ones and 
multiple reflections were ignored. When the coupling between 
elements is small, as in the case of [1], this is appropriate. If 
the coupling is high, however, then a more rigorous approach 
is needed. 

In the literature, a number of sub-gridding schemes have been 
proposed to address this type of problem, for instance [4][5] 
[6][7] but these have only been applied to situations where all 
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the grids are orientated along the same Cartesian axes. For 
structures such as conformal antenna arrays, it would be 
preferable if sub-grids were orientated in the same directions 
as the elements such as in the situation shown in Figure 1. A 
scheme which does allow this in two dimensions is described 
in [8], however a constant time step is used throughout the 
problem space which leads to inefficiency when the sub-grid 
cell size is much smaller than the main grid size. A number of 
hybrid schemes have also been proposed in order to overcome 
the limitation to a fixed coordinate system, for instance the 
combination of FDTD with FEM [9], MoM [10], FVTD [11] 
and conformal FDTD [12] but there is very little in the 
literature concerning methods which allow several different 
FDTD grids to be combined. 

In this contribution, the methods of [3], [6] and [13] are 
generalized and extended to allow application to sub-grids 
which are rotated with respect to the main grid and which 
account for the flow of energy in all directions. A preliminary 
outline of the approach is given in [14]. An added benefit of 
the proposed method is that the ratio of cell sizes in the main 
grid to those in the sub-grid is not restricted. In particular, 
unlike most sub-gridding schemes, this ratio does not need to 
be an integer. 

 
Figure 1 - Rotated sub-grids used to model tilted antenna 
elements. 

II. THE ALGORITHM IN ONE DIMENSION 

In order to set the scene, the proposed sub-gridding algorithm 
is first described for one dimensional problems then, in 
Section IV, the description is extended to full three 
dimensional situations. 
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In one dimension, the problem to be solved is expressed as an 
array of staggered E and H nodes terminated at each end by a 
suitable boundary condition as shown in Figure 2. The E and 
H nodes are shown as circles and lines respectively.  When 
sub-gridding is required, the system can be expressed as an 
equivalent problem which is illustrated in Figure 3. Here, 
following  [6], the original array is retained but a second array 
is placed so that it overlaps, and extends beyond, the region in 
which the sub-grid is required. The node spacing of this 
second array may be chosen arbitrarily and independently of 
the node spacing of the main array. At each edge of the region 
where the sub-grid is required, two points are defined, labeled 
as IS and OS, which represent Huygens surfaces. These points 
are located half way between an E node and its neighboring H 
node in the sub-array. At points OS, the fields in the sub-array 
are expressed as equivalent currents which are used as sources 
in the main array. At points IS, the fields in the main array are 
expressed as equivalent currents which are used as sources in 
the sub-array. The arrows in Figure 3 indicate the direction of 
energy flow. 
In the absence of discretization errors, the fields, sources and 
media outside the OS surface in the main array and inside IS 
in the sub-array, called the "working regions", as well as the 
gap between OS and IS are identical to those in the original 
problem  [6]. The regions of the sub-array outside the surface 
OS and of the main array inside the surface IS are "non-
working regions" and could in principle be removed. However 
for convenience, and to reduce numerical noise, they are 
retained. Similarly, the boundary conditions placed at the sub-
array outer boundary can, in principle, be arbitrary but have 
been chosen to be absorbing in order to minimize numerical 
noise. 

 
Figure 2 - The original problem in one dimension 
  
 
 

 
Figure 3 - The equivalent one dimensional problem 
 
A more detailed picture of the way the Huygens surfaces are 
implemented is shown in Figure 4 and Figure 5. Unlike in [6], 
the node spacing and position of the sub-array is completely 
independent of those of the main array, hence all nodes are, in 
general, at different locations.  
Taking the case of IS first, the Huygens surface is defined as 
being half way between E and H nodes of the sub-array as 
shown by the thick vertical line. In order to correctly apply the 
equivalent currents from the main array, the values of E and H 
in the main array need to be known at the positions of the E 
and H nodes in the sub-array. These values are obtained by 
linear interpolation in space. In Figure 4, the interpolated E 

node is shown as the empty circle and the arrows indicate the 
nodes used in the interpolation process. Similarly, the 
interpolated H node is shown as a grey vertical line. 
For OS, the Huygens surface is again defined as being half 
way between E and H nodes of the sub-array as shown by the 
thick vertical line in Figure 5. To apply the equivalent currents 
to the main array, the process used is the reverse as that used 
for IS except that the source nodes which are used in the sub-
grid are spaced by half the size of the main grid cell instead of 
using adjacent nodes. This modification has been found not to 
affect the accuracy but it improves the stability performance. 
The values of the equivalent currents in the main array are 
known at the positions of the E and H nodes in the sub-array, 
shown by the empty circle and grey vertical line in Figure 5. 
These currents are distributed to the neighboring E and H 
nodes using the same weightings as would be used for linear 
interpolation. 
It is noted that in [6], only the H field in the main array 
requires interpolation in space because all the other required 
values are directly available due to the alignment of the main 
array and the sub-array. In the more general situation 
described in this paper, both E and H fields need to be 
interpolated. 
 

 
Figure 4 - Detail of the IS surface implementation 
 

 
Figure 5 - Detail of the OS surface implementation 

III. STABILITY ISSUES 

The method as described exhibits a similar problem of late 
time instability to the one reported in [6] which was, in that 
case, mitigated using spatial filtering. It has been found that a 
similar approach is effective for the case of rotated sub-arrays 
presented in this contribution. To facilitate this, a "filtered 
array" is defined which has nodes at the same positions as the 
main array but only those which are required for interpolation 
are needed. The field value of each filtered node is calculated 
by taking a weighted sum of the corresponding main array 
value together with the values of its nearest neighbors as 
shown in Figure 6 and given in equation 1. For clarity, only 
the H field filtering is shown but an identical scheme is used 
for E fields. The filtered array values  are then used for the 
spatial interpolation as before. In three dimensions, the 
weighted sum is taken with the 6 nearest neighbors using the 
template given in equation 2.  
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Figure 6 - Filtering scheme for H fields in one dimension 
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For distribution on OS, the opposite process is followed 
Instead of distributing the equivalent currents directly to the 
main array, as in Figure 5, they are first distributed to an 
"intermediate array" from where they are further distributed to 
the main array using the same weightings as used for filtering. 
This is shown in Figure 7. Results showing the effectiveness 
of this scheme are given in Section VII. 

 

Figure 7 - Distribution to H field nodes in one dimension 

IV. SUB-GRIDS ROTATED WITH RESPECT TO THE MAIN GRID 

AXES IN THREE DIMENSIONS 

In three dimensions, OS and IS are cuboidal Huygens surfaces 
which are aligned with the sub-grid and may be rotated with 
respect to the main grid. This general situation is shown in 
Figure 8 where the inner cuboid is the surface IS and the outer 
cuboid is OS. A cross-section of the sub-grid is shown in 
Figure 9 with the two surfaces indicated. The outer boundary 
of the sub-grid corresponds to the two end points of the sub-
array in Figure 3 and is terminated with an absorbing 
boundary. 

The structure shown in Figure 8 and Figure 9 is set up in the 
following way: 

i. Choose a cuboidal region in the computational 
domain in which the sub-grid is required. Call the 
bounding surface of this region the Inner Surface, IS. 
The orientation of this surface with respect to the 
main grid can be freely chosen. In Figure 8 it is 
shown to be rotated by an angle of 30O. 

ii. Define a second surface, the Outer Surface, OS, 
which surrounds the Inner Surface at a distance 
which is an integer multiple of the sub-grid cell size, 
usually chosen to be 9. 

iii. Define a third surface, the sub-grid outer boundary, 
which surrounds the Outer Surface at a distance 
which is an integer multiple of the sub-grid cell size 
from the Outer Surface.  

In Figure 10, which is an expanded view of the area shown in 
red in Figure 9, a more detailed view of the interface between 
the two grids can be seen. Only the relevant nodes close to the 
boundaries are shown. Energy is transferred between the two 
grids in the direction of the grey arrows by applying the 
equivalence principle. Fields impinging on the inner surface, 
IS, from the main grid are replaced by equivalent electric and 
magnetic currents which are used as excitation sources for the 
sub-grid.  

Similarly the fields impinging on the outer surface, OS, from 
the sub-grid are replaced by equivalent electric and magnetic 
currents which are used as excitation sources for the main 
grid.  

The key steps of the algorithm are summarized as follows. 
Details are given in the Section V. 

i. At each coarse grid time step, the field values on the 
OS boundary nodes in the sub-grid are expressed as 
equivalent currents and these are distributed firstly to 
the intermediate grid nodes and thence to the 
surrounding main grid nodes and added to their 
update equations. 

ii. At each sub-grid time step, the field values in the 
main grid are filtered and assigned to the filtered grid 
nodes. These values are then interpolated to the IS 
boundary nodes in the sub-grid. They are converted 
to equivalent currents which are added to the update 
equations for the sub-grid nodes. Since the time step 
in the coarse grid is larger than in the fine grid, 
interpolation in time is required in order to find the 
value of the main grid fields at each sub-grid time 
step. 
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Figure 8 - A sub- grid rotated with respect to the main grid 
coordinate system showing the IS and OS surfaces. 
 

 

Figure 9 - Section through the rotated sub-grid showing 
boundary surfaces 

 
Figure 10 – Interface between tilted sub-grid and the main 
grid. 

V. INTERFACE BETWEEN THE MAIN GRID AND THE SUB-GRID 

A. The Inner surface - interpolation 

For illustration, Figure 11 and Figure 12 show a portion of the 
û boundary on the surface, IS. The surface itself is in 

between the rows of E and H field nodes which are shown in 
green. On this surface the fields in the main mesh are 
approximated by interpolation and represented as equivalent 
currents which are used as excitation sources for the sub-grid 
in the following way. 

i. Referring to Figure 11, for the position of each H 
node on IS in the sub-grid, shown as a green circle, 
the value of H in the main grid is found from the 
surrounding Hx, Hy and Hz nodes using linear 
interpolation. Each field component is individually 
interpolated from eight surrounding nodes to 
approximate the full H vector at that point. The 
arrows show one of the target nodes in the sub-grid 
and some of the main grid nodes from which the field 
values are interpolated. 

ii. The amplitudes of the equivalent current at these 
nodes are found using HuJ  ˆ . 

iii. The J vector, which, at this stage, is still expressed in 
(x,y,z) components, is rotated to obtain the (u,v,w) 
components. 

iv. The Ev or Ew sub-grid field amplitude is updated 

using Maxwell’s equation JE 1  . The 
contribution of curl H to this equation will have 
already been included using the usual FDTD update 
equations. The contributions of these currents are 
added to the update equations for the E nodes in the 
sub-grid which are half a cell size in the direction of 
the inward normal to the surface as shown by the 
blue arrow. 

For example, if the cell containing the target H node has the 
index (p,q,r) then the update equation for the affected Ev node 
is given by equation 3 where u,v,w,t are the sub-grid cell 
sizes and time step respectively.  
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v. Referring to Figure 12, for each E node on IS in the 
sub-grid, shown as a green cross, the value of E in 
the main grid is found from the surrounding Ex, Ey 
and Ez nodes using linear interpolation in the same 
way as described for the H field.  

vi. The amplitudes of the equivalent current are found at 
these nodes using EuM  ˆ . 
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vii. The M vector, which, at this stage, is still expressed 
in (x,y,z) components, is rotated to obtain the (u,v,w) 
components. 

viii. The Hv or Hw sub-grid field amplitude is updated 

using Maxwell’s equation MH 1  . The 

contribution of curl H to this equation will have 
already been included using the usual FDTD update 
equations. The contributions of these currents are 
added to the update equations for the H nodes in the 
sub-grid which are half a cell size in the direction of 
the outward normal to the surface as shown by the 
blue arrow. 

 
For example, if the cell containing the target E node has index 
(p+1,q,r) then the update equation for the affected Hw node is 
given by equation 4.  
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B. The Outer surface - distribution 

Figure 13 and Figure 14 shows a portion of the surface, OS. 
On this surface the fields in the sub-grid are represented as 
equivalent currents which are used as excitation sources for 
the main grid in the following way. 

i. Referring to Figure 13, for each H node on OS in the 
sub-grid, shown as green circles, the value of the 
equivalent current, J, is found using HuJ  ˆ .  

ii. This current is shared out to the surrounding H nodes 
in the main grid using the same weightings as were 
used for the inner surface interpolation. The arrows 
show one of the source sub-grid nodes and the target 
main grid nodes. 

iii. The contributions of these currents are added to the 
update equations for the E nodes in the main grid 
which are half a main grid cell size towards the sub-
grid as shown by the blue arrows. 

iv. Referring to Figure 14, for each E node on OS in the 
sub-grid, the value of the equivalent currents, M are 
found using EuM  ˆ . 

v. This current is shared out to the surrounding E nodes 
in the main grid using the same weightings as would 
be used for linear interpolation. 

vi. These contributions of these currents are added to the 
update equations for the H nodes in the main grid 
which are half a main grid cell size away from the 
sub-grid. 

 

As in [6], interpolation in time as well as space is necessary at 
each iteration and, in order to do this correctly, the nodes near 
the boundary need to be advanced in time before those in the 
rest of the mesh. These precursors are calculated in a way 
analogous to [6] but because the two grids are not aligned, all 
the nodes which are required for the E and H field 
interpolations need to be advanced. 

      

 
Figure 11 - Detail of H field interpolation 
 
 

 
 
Figure 12 - Detail of E field interpolation  
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Figure 13 - Detail of H field distribution 
 

 
Figure 14 - Detail of E field distribution. 

VI. RESULTS 

A. Plane wave propagation through the sub-grid 

 
As a first test in order to demonstrate that waves will 
propagate through a sub-grid region without undue distortion 
or reflection, the arrangements shown in Figure 15a and 
Figure 16a were set up. Here there is a main grid, of size 
(1500,375,375)mm, which is excited by a plane wave pulse of 
width 439ps, having a peak frequency of 2.3GHz and 
corresponding to 80 main grid time steps, propagating from 
left to right. Within the main grid, a sub-grid having a size of 
(300,75,75)mm is placed and centered at coordinates 
(450,186,186). The cell size for the main grid was 3mm and 
for the sub-grid was 1mm. Probes were placed in the main 
grid at positions of 150mm, 185mm, 700mm and 750mm from 
the left hand boundary and in the sub-grid at positions of 
350mm, 450mm and 550mm from the left hand boundary of 
the main grid. The positions of the probes are shown in the 

figures and these allow the pulse to be tracked as it 
propagates. The probes in the main grid are shown in red those 
in the sub-grid are shown in green.  
Figure 15 shows the results for the case where the sub-grid is 
not rotated and Figure 16 shows the results for the case where 
the sub-grid is rotated by 30O with respect to the main grid. In 
each case it can be seen that the pulse propagates with little 
distortion.  
 

          
(a) 

 
(b) 

 
Figure 15 - Propagation through an unrotated sub-grid 
 
 
 

             
(a) 

   
(b) 

 
Figure 16 - Propagation through a rotated sub-grid 
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In order to ascertain the amount of reflection from the sub-grid 
region, the ratio of the incident and reflected pulse at the 
position of the left hand main grid probe was calculated. The 
results for various angles of rotation and a frequency up to 
5GHz, corresponding to /20 in the main grid, is shown in 
Figure 17. Here it can be seen that the reflection is less than -
50dB over almost all of the frequency range and angles of 
rotation. Results were also obtained using a sub-grid cell size 
of 0.6mm and, again, reflection levels better than -50dB were 
observed. 
 

 
Figure 17 - Reflection from sub-grids rotated by various 
angles 

B. Resonance frequency of a rotated resonant cavity 

As a second example, the resonance frequency of a 
rectangular cavity which is rotated with respect to the main 
grid was calculated.  

 
Figure 18 - Rotated air-filled resonant cavity 
 
The cavity, shown in Figure 18, has a slot on one face through 
which energy from an incident plane wave is coupled in. In 
Figure 19 and Figure 20 the spectra of the field at the probe 
point are shown for various angles of rotation.  
The size of the cavity is 20x20x20mm which has a lowest 
resonance frequency of 10.61GHz. It is placed in a sub-grid 
having dimensions of 99x25x25mm and the size of the main 
grid was 510x125x125mm. The cell size in the main grid was 
3mm and in the sub-grid was 1mm.The structure was excited 
with a plane wave pulse having a width of 165ps and the field 
inside the cavity was probed at the position of the red circle. 

The position of the probe is arbitrary so long as nulls in the 
dominant mode are avoided. By taking the Fourier Transform 
of the field values, the calculated resonant frequency is 
obtained.  
Figure 19 shows the results where rotated sub-grids are used 
and, for comparison, the corresponding results for a uniform 
mesh having a cell size of 1mm are shown in Figure 20. It can 
be seen that, for a uniform mesh the calculated frequency is 
not correct if the cavity is rotated, whereas when the rotated 
sub-grid is used, the results are consistent and accurate. 
 
 

 
Figure 19 - Spectrum of the field inside the cavity 
calculated using a rotated sub-grid. 
 

 
Figure 20 - Spectrum of the field inside the cavity 
calculated using a uniform mesh. 

VII. STABILITY CHECKS 

As stated in Section III, the basic method exhibits stability 
problems and filtering is introduced in order to mitigate these. 
A test case, similar to the scenario shown in Figure 16, was 
run until instability became apparent in order to see the 
effectiveness of the filtering.  The results are shown in Figure 
21 - Figure 24 for the cases of an unrotated sub-grid and a sub-
grid which is rotated by 30O with respect to the main grid.  

Here it can be seen that without filtering, instability appears 
after approximately 15ns whereas, when filtering is used, 
instability only starts to appear after approximately 220ns, or 
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40,000 main grid iterations, which allows results to be 
obtained for many realistic problems. Similar behavior was 
observed for other angles of rotation. 

 
Figure 21 - Unrotated mesh unfiltered. 

 
Figure 22 - 30 degree rotated mesh unfiltered. 
 

 
Figure 23 - Unrotated mesh filtered. 
 

 
Figure 24 - 30 degree rotated mesh filtered. 
 

VIII. CONCLUSIONS 

In this contribution, a novel method for implementing rotated 
sub-grids in the FDTD method has been described and results 
presented which show that the method is effective. This 
method shows considerable promise and lends itself to being 
generalized to the use of rotated Cartesian sub-grids which 
have non-uniform cell sizes or to sub-grids with different 
coordinate systems, such as spherical or cylindrical 
coordinates. This would allow the efficient analysis of large, 
complicated and more realistic problems such as described in 
[1] and [3]. 
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