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Absolute pose estimation using multiple forms of
correspondences from RGB-D frames

Shuda Li and Andrew Calway

Abstract— We describe a new approach to absolute pose
estimation from noisy and outlier contaminated matching point
sets for RGB-D sensors. We show that by integrating multiple
forms of correspondence based on 2-D and 3-D points and
surface normals gives more precise, accurate and robust pose
estimates. This is because it gives more constraints than using
one form alone and increases the available measurements, espe-
cially when dealing with sparse matching sets. We demonstrate
the approach by incorporating it within a RANSAC algorithm
and introduce a novel direct least-square approach to calculate
pose estimates. Results from experiments on synthetic and real
data demonstrate improved performance over existing methods.

I. INTRODUCTION

Absolute pose estimation from noisy and outlier contami-
nated matching point sets is a fundamental task when using
RGB-D sensors for 3-D navigation and reconstruction [1],
[2], [3]. Existing methods solve either the Perspective-n-
Points (PnP) [4], [5], [6] or the Absolute Orientation (AO)
[7], [8], [9] problem, using either 2-D to 3-D or 3-D to 3-D
point correspondences, respectively. In this paper, we show
that when both of these are combined and integrated with
additional surface normal to surface normal correspondences,
then the pose can be estimated with significantly higher
accuracy, precision and robustness, as shown in Fig. 1a.

We formulate absolute pose estimation as follows (see
Fig. 1b). Given a calibrated sensor, we want to estimate the
rotation R and the camera centre c w.r.t a global map given a
query RGB-D frame. The global map is composed of a point
cloud and each point has a RGB feature descriptor, a 3-D
location qi and a surface normal mi. From the RGB-D frame,
2-D key points and RGB feature descriptors are extracted
and each point has a 3-D position pi and a surface normal
ni estimate. Feature descriptors are used to match with points
in the global map and each pair of matched points provides
up to 3 forms of correspondence, namely 2-D to 3-D (2-
3), 3-D to 3-D (3-3) and surface normal to surface normal
(N-N). The matches are assumed to contain outliers but to
have sufficient inliers to allow pose estimation. Note that in
contrast to motion tracking or relative pose estimation, for
absolute pose estimation no prior camera pose is available.

Previous approaches use either the 2-3 or the 3-3 cor-
respondences. Our approach is to use as many forms of
correspondence as possible, inspired by the observation that
the larger the number of independent measurements, the
more reliable the estimation. Moreover, when matches are
sparse due to poor image quality or lack of texture, using
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more forms of correspondence is the only option to increase
measurements and improve pose estimation. It is known that
a pair of 2-3 correspondences gives 2 non-linear constraints
[10] and that a pair of 3-3 correspondences gives 3 linear
constraints [8]. Similarly, a pair of N-N correspondences
gives another 2 linear constraints to the rotation component
of the pose. In all, allowing for dependencies between the
2-3 and 3-3 constraints, this gives 5 independent constraints
when using all 3 forms of correspondence. Our experiments
demonstrate that when these are integrated into a single algo-
rithm it yields a significant improvement in pose estimation.

Our algorithm has two components: a RANSAC com-
ponent to identify inliers; and a novel direct least-square
component to estimate the pose from the inliers. In the
former, pose candidates are generated by solving minimal
sets depending on the availability of types of correspondence
and each candidate is then voted on using all forms of cor-
respondence. The flexibility offered by using different forms
of correspondence in the candidate generating mechanism
greatly increases the chance of sampling a non-degenerated
minimal set and therefore reduces the number of RANSAC
iterations needed to obtain a good pose estimate. In the least-
square algorithm to solve for the pose, the rotation is ob-
tained first by extracting all rotational constraints from the 2-
3, 3-3 and N-N correspondences. This rotation is then used to
estimate the camera center using constraints extracted from
the 2-3 and 3-3 correspondences (the N-N correspondences
have no impact on camera centre). In both cases, dynamic
weighting of the correspondence terms is used to take
account of the uncertainty in the 2-D and 3-D position and
normal estimates. Results from synthetic and real data exper-
iments demonstrate that both the RANSAC method alone and
RANSAC followed by least-square optimisation give signifi-
cantly more robust, accurate and precise estimates than state-
of-the-art solutions using single forms of correspondence
[9], [6]. Source code of our implementation is available at
github.com/Mavericklsd/rgbd pose estimation.

II. RELATED WORK

Previous approaches to pose estimation solve either the
AO problem [7], [8], [9] or the PnP problem [4], [5]. The
former aligns one set of 3-D points with another and the
minimal solvable case is 3 pairs of 3-3 correspondences,
with each pair providing 3 linear constraints (non-colinear).
The first direct solution for the minimal and over-determined
sets was introduced by Arun et al. [8]. Independently, Horn
et al. [7] developed a similar approach using quaternions.
Later, Shinji [9] proved that the approach of Arun et al. is
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Fig. 1: (a) Rotation and translation errors for synthetic (Gaussian and ICL-NUIM) and real world (7 scenes) data,
demonstrating that the proposed method ‘o’ (RANSAC with optimisation and dynamic weighting) significantly out-performs
state-of-the-art methods ‘s’ [9], ‘k’ [6] and ’l’ [4]; (b) Pose estimation using multiple forms of correspondence 2-3 (ui↔ qi),
3-3 (pi↔ qi) and N-N (ni↔mi).

equivalent to a least squares optimisation and also solved the
reflection problem in these previous methods.

The PnP problem is to determine pose from 2-3 corre-
spondences. In this case, each pair provides 2 independent
nonlinear constraints and the minimal solvable case is P4P:
3 pairs of non-colinear 2-3 correspondences contain 6 inde-
pendent non-linear constraints which yields 4 solutions and
the extra pair is required to determine the valid one [11],
[6]. The method described by Kneip et al.. [6] represents
the state-of-the-art solution to the P4P problem with high
numerical stability and low possibility of being affected by
degenerate configurations.

For n > 4, the PnP problem has been extensively studied.
Recent methods include the non-iterative approach described
by Lepetit et al. [4] which provides an O(n) solution,
contrasting with the O(n5) of state-of-the-art methods at the
time. The method was further improved upon in [10] and [5],
which dealt with inaccuracies when n is small. Comprehen-
sive surveys of other methods can be found in [4] and [5].
However, none of these approaches make use of constraints
from depth and all of them involve solving complex non-
linear equations and having to deal with multiple solutions.

III. THREE FORMS OF CORRESPONDENCE

In this section we define each of the 3 forms of corre-
spondence. For 2-3 correspondence, we have a set of 3-D
global map points defined in a world coordinate system W ,
qi ∈R3, and their corresponding projections onto the RGB-D
image plane, ui. The ui is the homogeneous form coordinate
of corresponding 2-D key points on the image. For a sensor
with pose defined by a rotation matrix R ∈ SO3 and the
camera centre c ∈ R3 w.r.t W , then assuming the sensor
is fully calibrated, each 2-3 correspondence should satisfy
buic = Rbqi− cc, where b.c denotes the unit normalization
operator. For 3-3 correspondence, we have two sets of 3-D
points pi ∈ R3 and qi ∈ R3, where the pi are defined in the
sensor coordinate system C and the qi is in the world coor-
dinate system W . In this case each pair of correspondences
should satisfy pi = R(qi− c). Finally, we define a surface
normal to surface normal (N-N) correspondence as a pair
of surface normals which are associated with a pair of 3-3

correspondences. We denote a pair of N-N correspondences
as ni, mi which are both unit vectors in R3 and are defined in
the sensor C and world W coordinate systems, respectively.
The relationship between the pair is given by the rotation
component of the sensor pose (independent of the camera
centre), i.e. each pair should satisfy ni = Rmi.

Given the above relationships, we can combine all 3 forms
of correspondence into a single error function as a means
for determining least-square estimates of R and c. This can
formulated as follows

e2 (R,c) =
ψ

|Λ1| ∑
i∈Λ1

wi ‖buic−Rbqi− cc‖2+

1
|Λ2| ∑

i∈Λ2

vi ‖pi−R(qi− c)‖2+

ψ

|Λ3| ∑
i∈Λ3

λi ‖ni−Rmi‖2

(1)

where ψ is a weight balancing the relative contribution of
the different forms of correspondence and Λ1, Λ2 and Λ3
denote the sets of matching pairs with 2-3, 3-3 and N-N
correspondences, respectively. |Λi| is the number of elements
in the i-th set. The first and third terms are given the same
weight in this equation since they both involve minimising
unit vectors. In addition, individual correspondence pairs are
weighted dynamically using wi, vi and λi according to the
certainty of the associated 2-D position, 3-D position and
surface normal estimates. These are defined in Section VI.

IV. RANSAC USING ALL CORRESPONDENCES

We now describe a RANSAC algorithm to minimise (1)
given a set of noisy matched pairs contaminated with outliers.
Each pair will contribute either 1 (2-3), 2 (2-3 and 3-3)
or 3 (2-3, 3-3 and N-N) forms of correspondence. We first
randomly sample minimal sets of pairs from which we can
generate candidate poses. We choose minimal sets to give
a mix of the 3 forms of correspondence. Support for each
potential pose is then sought from the complete set, with
votes derived from correspondences based on the respective
terms in (1). The pose with the highest number of votes is
then selected and its inliers are used to obtain a pose estimate
using the least-square optimisation in Section V.



There are a number of possibilities for choosing minimal
sets given that the 3 forms of correspondence provide 5
independent constraints. We have opted to use those for
which solutions are available and to do so in a manner
which aims to provide a good mix of the 3 forms. These
are: 2 pairs, both with 3-3 correspondences and one with
N-N correspondence; 3 pairs, each with 3-3 correspondence;
and 4 pairs, each with 2-3 correspondence. To solve the first
we adapt the algorithm described by Drost et al.[12] and the
other two are solved using the algorithms in [9] and [6] .

The minimal sets are used as follows. In each RANSAC
iteration, we randomly select 4 matching pairs. Within these,
we identify at most one of each minimal set, choosing ran-
domly if more than one is present (recall that each matching
pair can have between 1 and 3 forms of correspondence).
Each selected set is then solved, giving between 1 and 3
candidate poses. Note that every pair will provide a 2-3
correspondence and hence 4 pairs will generate at least 1
candidate pose. We found that this approach means that we
have a good chance of utilising a mix of correspondences,
increasing the chances of sampling valid minimal sets and
reducing the number of RANSAC iterations.

Support for each candidate pose is then evaluated using
the remaining pairs in the matching set. For each pair,
each form of correspondence (if present) votes for the
pose if the corresponding error term in (1) is within a
threshold. Thus each pair can contribute up to 3 votes for
a given pose candidate. For example, given a pose candidate
(R, t), the ith pair having only 2-3 correspondence, say, i.e.
lacking depth information due to reflections in the scene,
for example, would contribute 1 vote to the candidate if
‖buic−Rbqi− cc‖2 < τ for an outlier threshold τ , where
ui and qi are its 2-D to 3-D corresponding points. Similarly,
a pair having 3 forms of correspondence would test each of
them against the relevant terms in (1) and vote accordingly.

Following a fixed number of iterations, the candidate pose
achieving the most votes is then selected. We found that
the resulting pose estimates were good and invariably better
than those obtained using single forms of correspondence.
However we also found that optimising a pose estimate from
the inliers of the selected pose yielded further improvement.
In the next section we describe how this can be done using
a novel direct approach.

V. DIRECT LEAST-SQUARE SOLUTION

We seek to minimise (1) to obtain estimates for R and
c given a set of matching pairs and their associated cor-
respondences. These are assumed to be inliers resulting
from the RANSAC process. We use a novel non-iterative
algorithm based on the direct least-square optimisation of 3-
3 correspondence solution proposed by Shinji [9]. For clarity,
we summarise the three stages of that algorithm given a set
of N 3-D corresponding points pi and qi:

1) Remove the translation by subtracting the centroid
from each set of points: q′i = qi− q̄ and p′i = pi− p̄.

2) If UDVT is the singular value decomposition (SVD)
of covariance matrix Σ= 1

N ∑p′iq′
T
i , then the optimized

rotation estimate is given by R̂ = USVT , where S is
either the identity matrix I or I with its last diagonal
element replaced by -1 if det(Σ)< 0.

3) The optimized camera centre in the world coordinate
system can be estimated using ĉ = q̄−RT p̄.

We extend the above algorithm to include all correspon-
dences available. The N-N correspondences are independent
of the camera centre and hence can be straightforwardly
combined with the covariance matrix Σ. Given that the
camera centre is available from either the method in [9] using
3-3 correspondences, the method in [13], or simply from the
output of the RANSAC algorithm, the rotational constraints
from 2-3 correspondences can be extracted from (??) and can
be combined with the covariance matrix in the same way as
the N-N correspondences. Overall, the extended covariance
matrix is:

Σ =
ψ

|Λ1| ∑
i∈Λ1

wi buicbqi− ccT +

1
|Λ2| ∑

i∈Λ2

vip′iq
′T
i +

ψ

|Λ3| ∑
i∈Λ3

λinimT
i

(2)

Since we want both the N-N and 3-3 correspondences
to play equal roles in determining the rotation we set ψ =

1
|Λ2| ∑

|p′i|2. Another option is to normalize p′i and q′i to make
them unit vectors. However, we found that this decreases the
precision of the estimated rotation matrix since the length of
p′i and q′i are lost after normalization.

After obtaining the optimized R̂ via SVD of Σ as in step
2 above, we then optimize the camera centre ĉ in W . Shinji’s
algorithm can estimate ĉs by optimizing 3-3 but not 2-3
correspondences. Below, we derive a linear solution to make
use of 2-3 correspondences. The resulting ĉ′ is then combined
with the ĉs from Shinji’s algorithm.

Inspired by the Slabaugh et al.. [14], we found that the
camera centre in the world coordinate system can be retrieved
by finding the optimal intersection of visual rays. The direc-
tion of visual rays in world coordinates can be calculated
by rotating the visual ray from the senor coordinate u′i =
R̂T buic. The line segment from a qi to the camera centre
ĉ′ should be identical to the projection of the line segment
onto the visual ray u′i:

K

∑
i=1

wi

[
(qi− ĉ′)−u′iu

′T
i (qi− ĉ′)

]
= 0 (3)

Denoting ĉ′ = [x,y,z]T , qi = [xi,yi,zi]
T and u′i = [ai,bi,ci]

T ,
the above equation can be expanded as

K

∑
i=1

wi {(xi− x)−ai [ai(xi− x)+bi(yi− y)+ ci(zi− z)]}= 0

K

∑
i=1

wi {(yi− y)−bi [ai(xi− y)+bi(yi− y)+ ci(zi− z)]}= 0

K

∑
i=1

wi {(zi− z)− ci [ai(xi− y)+bi(yi− y)+ ci(zi− z)]}= 0

(4)
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Fig. 2: Dynamic weights for N-N correspondences. The color maps show the distribution of the weights. They are calculated
using 5x5 patches over 80x60 depth maps. Note that the plane of the monitors are assigned as 0 in the right sub-figure.
This is because there are no depth values. The RGB-D frames are from the ’7 scenes’ dataset.

which can be written as ∑
K
i=1 wiAiĉ′ = ∑

K
i=1 wiAiqi, where

Ai =

1−a2
i −aibi −aici

−aibi 1−b2
i −bici

−aici −bici 1− c2
i

 (5)

from which we obtain ĉ′ = A−1b, where A = ∑
K
i=1 wiAi and

b = ∑
K
i=1 wiAiqi. Finally, the camera centre is calculated by

combining ĉs and ĉ′, i.e. ĉ = Kĉ′/(K +N)+Nĉs/(K +N)

VI. DYNAMIC WEIGHTS

Ideally, in (1), we want each pair of correspondences
multiplied with a dynamic weight (wi, vi or λi) such that
if a correspondence is more likely to be corrupted, it will be
assigned a small weight and vise versa.

To weight 2-3 correspondences, we adopt the common
practice of wi = 1− d1st

d2nd
, where d1st is the feature distance

score between a 2-D key point and its first nearest neighbour
(1-NN) in the global map and d2nd is the score to 2-
NN. The ratio represents the reliability of the match; the
smaller the ratio, the more reliable the match. To weight 3-3
correspondences, we use the method introduced by Nguyen
et al. [15] to take account of errors within the RGB-D sensor.

To weight N-N correspondences, we introduce a novel ap-
proach. Motivated by the observation that surface normals are
less reliable around corners, edges and occlusion boundaries
and are very stable inside planar regions, we weight the N-N
correspondences according to a principle component analysis
(PCA) over a fixed patch. This has the advantage that weight
calculation comes with surface normal extraction at almost
no extra cost [16], [17].

Specifically, we calculate the eigenvalues and eigenvectors
of the covariance matrix over the patch in the depth image
used to compute the normal. The eigenvector corresponding
to the smallest eigenvalue gives the direction of the normal.
The dynamic weight for the N-N correspondence is then
obtained from the 2nd and 3rd eigenvalues E2 and E3:
λ = (E2−E3)/(E2+E3). Essentially, λ ∈ [0,1] measures the
surface curvature and roughness of the patch. Fig. 2 shows
examples of weights computed for RGB-D frames. Note
that areas around high curvature and occlusion boundary are
correctly assigned with low weights indicating low reliability.

VII. EXPERIMENTS

We evaluated the above algorithms using both syn-
thetic and real data sets. For comparison, we implemented
RANSAC-based pose estimation based on Kneip et al.’s P3P
[6] and Shinji’s AO [9] algorithms, which are referred to as
’k’ and ’s’ respectively. Error metrics for rotation and camera

centre were adopted from those used in [4]. The translational
error is the distance from the estimated camera centre to the
ground truth camera centre. We denote our three algorithms
by ‘nsk’ (RANSAC only), ’opt’ (RANSAC with direct least-
square optimisation) and ’dw’ (RANSAC with least-square
optimisation and dynamic weighting).

In the first 2 synthetic experiments, we generated a set
of 100 sparse points uniformly distributed within a viewing
frustum (minimum distance 0.4m, maximum distance 8.m).
They were then transformed to world coordinates using the
ground truth rotation and camera centre and projected onto a
virtual 640x480 image plane with focal length 585 and prin-
ciple point at the image centre. The normals were uniformly
distributed and facing toward the image plane. We carried out
separate experiments using added Gaussian noise and Kinect
noise [15]. 2-D and 3-D outliers are randomly selected within
the image and the viewing frustum, respectively.

The algorithms were tested with various levels of noise
added to each of the 3 forms of correspondence. First, we
varied the noise from low to high simultaneously across all 3
and then fixed 2 at a high noise level whilst varying the 3rd
from low to high. Each experiment was run 300 times. The
outlier rejection threshold was set at 8 pixels, 6o and 20cm,
respectively, for the 2-3, 3-3 and N-N correspondences.
RANSAC iterations were set as 200 and outlier ratio as 0.5
to generate all plots except Fig. 4. By way of comparison,
we also investigated using combinations of 2 forms of
correspondence: N-N and 3-3, denoted ‘ns’; N-N and 2-3,
denoted ‘nk’; 3-3 and 2-3, denoted ‘sk’.

The results are illustrated using a standard box plot
showing the mean error and the precision. In Fig. 3, we can
see that when using all forms of correspondence, the pose
estimation is consistently more accurate and more precise
than using 3-3 or 2-3 correspondences alone. Using 2 are
better than 1 with the exception of ‘ns’ and ‘nk’. They
represent the combination of N-N and 3-3 and N-N and 2-3,
respectively. Fig. 4 shows the performance as the number of
RANSAC iterations and the outlier ratios are varied.

RGB-D sensors are known to have unique noise character-
istics and we investigated the effects of using a more realistic
noise model for the depth. We used that in [15], in which
the depth noise increases with distance from the sensor. The
angle between the visual ray and the principle axis and the
angle between the surface normal and the principle axis are
proportional to the 3-D noise. Results for different noise
levels are shown in Fig. 3e. Parameter settings were identical
to that used in the other experiments and the results again



(a) (b) (c) (d) (e)
Fig. 3: Comparing the accuracy of our method against baseline approaches. Top and bottom rows corresponds to rotational
and translational error. 30 points with normal attached are used. The outlier ratio is 0.25. In column (a) We varied the 3
noise sources simultaneously; in (b) we kept the 2-D and 3-D noise at high level and varied the normal noise; in (c) we
kept 2-D and normal noise at high level and varied 3-D noise; in (d) 3-D and normal noise were at high level and 2-D noise
was varied; in (e) 3-D noise was based on simulating Kinect-like sensor noise.

(a) (b) (c) (d)
Fig. 4: (a) & (b) comparison of our approaches with the baseline using different RANSAC iterations; (c) & (d) response
of the proposed method to outlier ratio. The standard deviation for the correspondence noise for 2-3, 3-3 and N-N was 9
pixel, 7.5cm and 6o, respectively.

(a) (b) (c) (d)
Fig. 5: Comparing the accuracy of our method against baseline approaches using public RGBD datasets. The left two figures
are results from using ICL-NUIM dataset. The right two figures show corresponding results from using the ’7 scenes’ dataset.

show the advantage of the proposed method.

We also evaluated the algorithms using the ICL-NUIM
dataset [18] consisting of RGB-D frames and ground-truths
obtained by ray-tracing 3-D models with realistic image and
depth noise. We integrated our pose estimation into our RGB-

D mapping and relocalisation framework as described in [3].
The global map was created using the 3rd sequence from the
’living room’ and our approach was tested by relocalising
frames from the remaining 3 sequences. The BRISK feature
descriptor [19] was used to match with points in global



Fig. 6: Comparing the accuracy of our method against iter-
ative non-linear optimisation (LM) using synthetic dataset.
The proposed direct approach (red) gives equivalent perfor-
mance to non-linear optimisation using 3 forms of correspon-
dences (blue) and both are more accurate than using single
forms of correspondence, especially when the data is noisy.

map. The parameter settings were identical to that used in
the other experiments. We compared performance using 3
and 2 forms of correspondence against using a single form
of correspondence. The results are shown in Fig. 5a-b and
they confirm the trend shown earlier: using all 3 forms of
correspondences out-performs using 2 or 1 and using 2 are
better than 1 with the exception of using N-N and 3-3.

We also tested the method on the real RGB-D dataset used
in [20] composed of RGB-D frames captured from 7 different
scenes. We built global maps using the‘’training’ sequences
and use our RGB-D pose estimation method to relocalise the
testing sequences. The results are shown in Fig. 5c and 5d
and again confirm that superior performance of our method.

Finally, we also compared the accuracy of the direct least-
square approach with that obtained using an iterative non-
linear optimisation. We used Levenberg-Marquardt (LM) to
optimise (4) from the inlier set resulting from RANSAC and
the results are shown as the blue bars, ’nsk+lm’, in Fig. 6.
The yellow bars, ’k+lm’ and the cyan bars ’s+lm’ are the
results of using LM to optimize the first and second terms,
respectively, i.e. the errors in 2-3 and 3-3 correspondences.
The results of using the direct least-square optimisation
using all 3 forms of correspondences are shown in red,
’opt’, and are consistently better than using single forms of
correspondences whilst delivering comparable results to that
of LM using all 3. This demonstrates that the direct approach
gives comparable accuracy whilst being computationally
more efficient than non-linear optimisation by avoiding the
need for iteration.

VIII. CONCLUSION

We have presented a novel pose estimation method for
RGB-D sensors which integrates 2-D to 3-D, 3-D to 3-D and
normal to normal correspondences. Results from experiments
on synthetic and real data show that the method gives
more accurate, more precise and more robust estimates than
existing methods based on single forms of correspondence.
Future work will investigate using alternative minimal sets
and using the method on dynamic scenes.
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