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a b s t r a c t

Apelin acts via the G protein-coupled apelin receptor (APJ) to mediate effects on cardiovascular and
fluid homeostasis. G protein-coupled receptor (GPCR) trafficking has an important role in the regu-
lation of receptor signalling pathways and cellular functions, however in the case of APJ the mecha-
nisms and proteins involved in apelin-induced trafficking are not well understood. We generated a
stable HEK-293 cell line expressing N-terminus HA-tagged mouse (m) APJ, and used a semi-automated
imaging protocol to quantitate APJ trafficking and ERK1/2 activation following stimulation with [Pyr1]
apelin-13. The mechanisms of [Pyr1]apelin-13-induced internalization and desensitization were
explored using dominant-negative mutant (DNM) cDNA constructs of G protein-coupled receptor ki-
nase 2 (GRK2), b-arrestin1, EPS15 and dynamin. The di-phosphorylated ERK1/2 (ppERK1/2) response
to [Pyr1]apelin-13 desensitized during sustained stimulation, due to upstream APJ-specific adaptive
changes. Furthermore, [Pyr1]apelin-13 stimulation caused internalization of mAPJ via clathrin coated
vesicles (CCVs) and also caused a rapid reduction in cell surface and whole cell HA-mAPJ. Our data
suggest that upon continuous agonist exposure GRK2-mediated phosphorylation targets APJ to CCVs
that are internalized from the cell surface in a b-arrestin1-independent, EPS15- and dynamin-
dependent manner. Internalization does not appear to contribute to the desensitization of APJ-
mediated ppERK1/2 activation in these cells.
© 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The apelin gene encodes a preproprotein of 77 amino acids that
is processed into multiple shorter peptides including apelin-36,
apelin-17, apelin-13 and apelin-12 (Tatemoto et al., 1998). Apelin-
13 may undergo post-translational modification leading to the
formation of a more stable and biologically active pyroglutamyl
form, [Pyr1]apelin-13. Apelin acts via the single apelin receptor
(APJ) subtype to mediate effects on the cardiovascular system

(Reaux et al., 2001; Ishida et al., 2004), fluid homeostasis (O'Carroll
and Lolait, 2003), glucose metabolism (Dray et al., 2008), and food
intake (Taheri et al., 2002), influencing not only cAMP production
but also PKC, PI3K, protein kinase B (Akt), S6 ribosomal protein
kinase (p70S6K), ERK (Masri et al., 2002, 2004) and cytoplasmic
Ca2þ concentration (Choe et al., 2000). APJ couples to Gi/o in assays
measuring extracellular acidification rates (Hosoya et al., 2000) and
phosphorylation of ERK and p70S6 kinase (Masri et al., 2002, 2004),
and activates ERK1/2 and inhibits adenylate cyclase through Gai1-
and Gai2-dependent pathways (Masri et al., 2006; Bai et al., 2008).
However apelin activation of ERK1/2 is mediated via PKC in
HEK293 cells expressing mouse APJ, indicative of coupling to either
Go or Gq/11 (Masri et al., 2002). Additionally the beneficial inotropic
effect of apelin in vivo is only partially abrogated by pertussis toxin
(PTX) and by PKC inhibitors, indicating that some of the actions of
APJ could be mediated by Gi/o and/or Gq/11 coupling (Szokodi et al.,
2002). Recently it has been shown that mechanical stretch signals
via APJ to induce myocardial hypertrophy by a G protein-
independent, b-arrestin-dependent pathway (Scimia et al., 2012).
Interestingly APJ, when stably expressed in CHO cells, shows ligand
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bias with endogenous ligands as, for example, apelin-13 preferen-
tially signals to ERK via Gai2 whereas apelin-36 does so equally well
via Gai1 and Gai2 (Masri et al., 2006).

As with most G protein-coupled receptors (GPCRs), sustained
activation of APJ can cause desensitization and this has been re-
ported to occur for APJ-mediated effects on cytoplasmic Ca2þ

concentration, as well as for effects on activity of adenylyl cyclase,
ERK and Akt (Ishida et al., 2004; Masri et al., 2006). APJ also un-
dergoes agonist-induced internalization and down-regulation and
so research has focused on the possible role for the canonical
pathway for rapid homologous receptor desensitization and traf-
ficking in mediating adaptive responses to APJ activation (Evans
et al., 2001; Zhou et al., 2003; Lee et al., 2010). In this pathway,
agonist occupied GPCRs are preferred substrates for phosphoryla-
tion by G-protein receptor kinases (GRKs) and this phosphorylation
mediates binding with b-arrestins that prevent the receptors from
activating their cognate G-proteins, thereby causing receptor
desensitization. The b-arrestins also target the desensitized re-
ceptors for internalization via clathrin-coated vesicles (CCVs). After
this the vesicles are uncoated, b-arrestins dissociate, receptors are
dephosphorylated and the receptor-containing vesicles may be
trafficked back to the plasma membrane (a process that can
mediate resensitization to the agonist) or to lysosomes for pro-
teolytic digestion (a process that can cause receptor down-
regulation). Differing patterns of b-arrestin interaction have
allowed the sorting of GPCRs into two classes: Class A receptors,
that have a brief interaction with b-arrestins (at the plasma
membrane) and preferentially bind b-arrestin2 over -1, and display
rapid recycling; and Class B receptors, that form a stable complex
with both b-arrestins with equal affinity, and which internalize
with the b-arrestins into endosomes. Additional players in this
process include epsin and EPS15, which act as adapter proteins for
clathrin-mediated endocytosis (CME) (Wolfe and Trejo, 2007), and
dynamin, a GTPase that forms a multimeric complex around the
neck of nascent endocytic vesicles and mediates their budding off
to form endosomes (Damke, 1996).

The adaptive processes outlined above are thought to be rele-
vant for APJ as apelin causes clathrin-mediated APJ internalization
(Reaux et al., 2001; El Messari et al., 2004) and also translocation of
b-arrestin1 and -2 to the cell surface, indicating translocation to
phosphorylated APJ (Lee et al., 2010). Moreover, after agonist-
induced internalization, APJ can either be recycled to the cell sur-
face or be degraded in lysosomes (Lee et al., 2010). Interestingly, APJ
trafficking displays ligand bias for both Class A and B b-arrestin/
recycling behaviour as when internalization is stimulated by [Pyr1]
apelin-13, internalized APJ is rapidly recycled to the plasma
membrane with none remaining in the cytoplasm at 60 min,
whereas APJ is retained within the cell for up to 120 min after
apelin-36-stimulated internalization (Zhou et al., 2003). Similarly,
although apelin-13 causes b-arrestin1 translocation to the plasma
membrane, the internalized receptors are not associated with b-
arrestin1 and are rapidly recycled to the cell surface via early
endosomes (Evans et al., 2001; Lee et al., 2010), whereas after
apelin-36 stimulation the internalized APJ are co-localized with b-
arrestin1 and then undergo rab-7-dependent trafficking to lyso-
somes (Lee et al., 2010). Finally, truncation of the APJ C-terminus (in
order to delete potential GRK phosphorylation sites) prevents ho-
mologous desensitization to effects of apelin-13, but not to those of
apelin-36, on inhibition of adenylyl cyclase and activation of ERK
and Akt (Masri et al., 2006; Lee et al., 2010).

Apelin/APJ has emerged as a major signalling pathway in
physiological homeostasis (O'Carroll et al., 2013) and central to
ascertaining the precise function of this receptor is an under-
standing of the system of regulation that dynamically modulates
APJ signalling. In peripheral tissues the apelinergic system appears

to be down-regulated in hypertensive disease e levels of apelin
immunoreactivity in plasma, and in ventricular and aortic tissues,
are lower in the spontaneously hypertensive rat, a genetic model of
hypertension, than in control Wistar-Kyoto normotensive rats
(Zhang et al., 2006a,b; Zhong et al., 2005). Additionally circulating
levels of apelin are decreased in patients with essential (Sonmez
et al., 2010) and pulmonary (Chandra et al., 2011) hypertension,
while there is a negative correlation between plasma apelin levels
and blood pressure (Zhu et al., 2013). This suggests a role for
decreased peripheral apelin signalling in the pathophysiology of
hypertension. Receptor trafficking is a key process for regulating
receptor signalling pathways and cellular functions, however in the
case of APJ the mechanisms and proteins involved in agonist-
induced trafficking are not well understood. To further under-
stand the signalling and regulation of APJ, and thus the efficacy of
ligands for potential therapeutic intervention, this study set out to
characterize the mechanisms underlying [Pyr1]apelin-13-induced
APJ desensitization and internalization, and to determine
whether agonist-induced APJ internalization contributes to its
functional desensitization. A stable HEK-293 cell line expressing N-
terminus HA-tagged mouse APJ (mAPJ) was generated, and a semi-
automated imaging protocol was used to quantitate ERK1/2 acti-
vation and APJ trafficking in this cell line following agonist activa-
tion with [Pyr1]apelin-13. The mechanisms of [Pyr1]apelin-13-
induced internalization were further explored using dominant-
negative mutant (DNM) cDNA constructs of GRK2 (GRKDNM), b-
arrestin1 (bARRDNM), EPS15 (EPSDNM) and dynamin (DYNDNM),
known effectors of CME.

2. Methods and materials

2.1. Materials and cell culture

DMEM, FCS, penicillin (P), streptomycin (S), normal goat serum
(NGS), Alexa Fluor 488 goat anti-mouse IgG (H þ L) and Alexa Fluor
546 goat anti-rabbit IgG (H þ L) were purchased from Life Tech-
nologies (Paisley, UK). cDNA encoding DNMs (provided by Professor
Eamonn Kelly, University of Bristol) included GRKDNM (K220R),
bARRDNM (319e418), EPSDNM (ED95/295) and DYNDNM (K44A).
Anti-HA antibody was from Cambridge Bioscience (Cambridge,
UK); rabbit anti-ERL1/2 antibody was from Cell Signalling Tech-
nology UK; Hercules II Fusion DNA polymerase was from Agilent
Technologies (Stockport, UK), Nanofectamin was purchased from
PAA Laboratories (Somerset, UK), and 40,6-diamidino-2-
phenyindole (DAPI), adrenaline, EGF and mouse anti-ppERK1/2
antibody were from Sigma-Aldrich (Dorset, UK). [Pyr1]apelin-13
was purchased from Bachem (Bubendorf, Switzerland). Pertussis
toxin (PTX), bisindolylmaleimide I (BIM) and 1,4-diamino-2,3-
dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126) were
from Merck Chemicals (Nottingham, UK).

HEK293 cells, unless otherwise stated, were cultured in 10% FCS-
supplemented DMEM containing glutamine (4 mM) and P/S
(500 units/ml; 0.5 mg/ml). Cultures were maintained at 37 �C in 5%
CO2. For imaging studies cells were seeded at 17,500 per well into
Costar black-walled 96-well plates (Corning, Arlington, UK).

2.2. Stable and transient transfection

Untagged and HA-tagged mouse (m)APJ cDNAs were generated
by PCR using 150 ng mouse 129SV genomic DNA (PCR conditions:
95 �C 2 min; 40 cycles of: 94 �C 45 s, 50 �C 1 min, 72 �C 1 min; and
final extension of 72 �C 10 min) using Hercules II Fusion DNA po-
lymerase. The integrity of the cDNA constructs was verified by DNA
sequencing. Primers for the untagged receptor were directed to 50

and 30-regions of mAPJ and corresponded to 8462e10,285 bp of the

G.R. Pope et al. / Molecular and Cellular Endocrinology 437 (2016) 108e119 109



mouse APJ gene (Genbank Accession number AC117228.2), gener-
ating a 1824 bp product. Primers for the tagged receptor were also
directed to 50 and 30 regions of the receptor, but the 50 primer
contained an additional 27 bp, which coded for the Influenza HA
epitope tag and generated a 1851 bp mouse product. The mAPJ
gene, in the pcDNA3.1(þ) vector (containing the neomycin resis-
tance gene), was transfected into HEK293 cells by a calcium
phosphate procedure (Chen and Okayama, 1988) and selected by
G418. Stable cell lines highly expressing APJ were selected by
Northern dot blot hybridization. Transient transfection of DNM
cDNAs (0.4 mg/well) was performed with Nanofectamin according
to the manufacturer's protocol, with DNM cDNA-containing me-
dium removed after 4 h and replaced with fresh DMEM (0.1% FCS).
Alongside each transfection, transfection efficiency was estimated
using a 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside (X-gal)
staining assay. Control cells were transfected with a mammalian
vector inserted with a LacZ gene (pSV-b-Galactosidase control
vector; Promega, UK), and subsequent beta-galactosidase (b-gal)
activity estimated from the percentage of blue cells. Approximately
40% transfection efficiency was observed with Nanofectamin with
HEK293 cells, that did not deviate significantly between
experiments.

2.3. Receptor imaging studies

The APJ of HA-mAPJ-HEK293 cells have exofacial HA tags
enabling cell surface receptor expression to be quantified with anti-
HA antibody added to non-permeabilized cells. Cells were incu-
bated in the presence or absence of [Pyr1]apelin-13 in DMEM (0.1%
FCS), washed with ice-cold PBS and incubated with mouse anti-HA
primary antibody (1:1000 dilution; 1 h). Whole cell APJ levels were
also measured by immunohistochemistry but in this case the cells
were permeabilized before addition of the primary antibody.

For quantification of HA-mAPJ recovery, HA-mAPJ-HEK293 cells
were incubated in the presence or absence of [Pyr1]apelin-13 for
2 h, washed, then incubated in fresh medium as indicated in figure
legends, before determination of either cell surface or whole cell
APJ levels using anti-HA antibody. This 2 h time point is consistent
with that used previously to promote APJ internalization (Masri
et al., 2006).

APJ internalization was measured by labelling cell surface HA-
mAPJ with primary antibody and then washing to remove un-
bound anti-HA antibody before stimulation with agonist. For one
series of experiments clathrin-mediated internalization was
blocked with hypertonic sucrose. In this case cells were incubated
in physiological salt solution (NaCl (127 nM), NaH2PO4H2O
(0.5 mM), CaCl22H2O (1.8 mM), MgCl2 (2 mM), KCl2 (5 mM),
NaHCO3 (5 mM), HEPES (10 mM), BSA (0.1%) glucose (10 mM), pH
7.4) with or without 0.4 M sucrose for 30 min prior to agonist
stimulation, and washing in ice-cold PBS.

To measure recycling of internalized APJ to the cell surface, HA-
mAPJ-HEK293 cells were incubated with primary antibody, washed
with PBS and incubated in the presence or absence of [Pyr1]apelin-
13 for 2 h. After aspiration of the agonist containing medium and
two washes with PBS, cells were incubated with fresh medium as
indicated in the figure legends.

For all the above experimental treatments, cells were subse-
quently fixed (2% paraformaldehyde/PBS, 30 min), permeabilized
(pre-chilled methanol at �20 �C, 5 min) and washed (3�) with PBS.
Following washing cells were blocked (5% NGS in PBS, 2 h), and
incubated with secondary antibody (Alexa Fluor 488-conjugated
goat anti-mouse IgG at 1:500 dilution in PBS with 1% NGS,
90 min). Cells were then washed (3�) with PBS, incubated with
300 nM DAPI for 15 min, and washed (2�) in PBS.

2.4. ERK phosphorylation assay

Cell expression of total (tERK) and di-phosphorylated ERK
(ppERK) was visualized in stably transfected HEK293 cells with an
immunocytochemistry protocol employing anti-tERK and -ppERK
antibodies. Quantification of ERK phosphorylation was performed
by incubating mAPJ-HEK293 cells at 37 �C with [Pyr1]apelin-13
(100 nM) in DMEM (0.1% FCS) for 5 min. To explore homologous
and heterologous desensitization mAPJ-HEK293 cells were pre-
incubated for 2 h with medium in the presence or absence of [Pyr1]
apelin-13. This time point has been used in previous studies on
desensitization of APJ (Masri et al., 2006). Cells were then washed
(�2) with PBS and exposed either to a second application of [Pyr1]
apelin-13 (100 nM, 5 min) or to other ERK inducers, (adrenaline
(1 mM), EGF (100 ng/ml), 5 min). Resensitization was monitored by
varying the period between primary and secondary agonist incu-
bation. For assays with DNM cDNAs, mAPJ-HEK293 cells were
transiently transfected with DNM cDNAs before incubation with
[Pyr1]apelin-13.

After experimental treatment cells were immunostained with
primary antibody (mouse anti-ppERK1/2 (1:1600 dilution) or
rabbit anti-ERK1/2 (1:800 dilution) in 1% NGS in PBS, 4 �C,
overnight). Cells were then washed (3�) with PBS, and incubated
with secondary antibody (Alexa Fluor 488 goat anti-mouse IgG
(H þ L) or Alexa Fluor 546 goat anti-rabbit IgG (H þ L) (1:500
dilution, 90 min)). Cells were washed (3�) with PBS, stained with
DAPI, and washed (2�) with PBS as above, before imaging. Re-
sponses for desensitization experiments are expressed as a per-
centage of maximal response, where the maximal response is
defined as cells pre-treated with vehicle and then stimulated
with [Pyr1]apelin-13.

2.5. Semi-automated image acquisition and analysis

Assays were quantified by semi-automated acquisition of digital
fluorescence images using a high content imaging platform (IN Cell
Analyzer 1000, GE Healthcare UK) and validated algorithms for
image segmentation and quantification (IN Cell Analyzer version
1.0 software) as described (Finch et al., 2008). Digital images were
taken with a 10� objective (Plan Apochromat, numerical aperture
0.45), with excitation and emission filters for each channel as fol-
lows, blue (360 ± 40 nm; 460 ± 40 nm), green (475 ± 20 nm;
535 ± 50 nm), and red (535 ± 50 nm; 620 ± 60 nm) using a 61002
trichroic mirror. Four fields were acquired per well (each field
capturing a 0.602 mm2 area with a 10� objective), obtaining on
average of 1000 cells per well.

For most experiments (cell surface or whole cell HA-mAPJ
measures, and whole cell ppERK measures) image analysis soft-
ware (In Cell 1000 Multi-target Analysis) was used to define the
perimeter of the nucleus (from the DAPI stain) and the perimeter of
the cell (from the HA or ppERK stain). Average fluorescence in-
tensity over the entire cell area was calculated for each cell and
background values (obtained with no primary antibody) were also
determined. The figures show background subtracted and popu-
lation averaged data in arbitrary fluorescence units (AFU). In most
cases these are expressed as percentage of a vehicle control and for
some experiments proportional cell surface expression was also
calculated (PCSE; (cell surface expression ÷ whole cell
expression) � 100). In receptor internalization assays, agonist
exposure caused the internalized receptors to redistribute into
punctate regions (presumably endosomes) in the cytoplasm and
these “inclusions” were quantified using a Dual Area Analysis Al-
gorithm (In Cell Analyzer version 1.0). The nuclear perimeter was
determined from the DAPI stain and this was expanded with a 2 mm
collar. The image analysis gave the number of inclusion over the
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collar and nucleus for each cell and figures show population aver-
aged inclusion counts. The agonist-induced appearance of the
antibody in puncta is consistent with the wealth of data showing
agonist-induced internalization of these and other GPCRs. We have
previously used this methodology to investigate agonist-induced
internalization of gonadotropin-releasing hormone receptors
(Finch et al., 2009).

2.6. Statistical analysis

IN Cell Analyser 1000 experiments were performed in 3 repli-
cate wells with triplicate fields within each well, and experiments
were performed at least 3 times. Data are expressed in figures as
mean ± SEM. Statistical analysis was with a one-way ANOVA and
post hoc Dunnett's test with GraphPad Prism software (version

4.0b) (as detailed in figure legends). p < 0.05 was considered as
statistically significant.

3. Results

3.1. Imaging of HA-mAPJ in HEK293 cells and the ppERK response to
[Pyr1]apelin-13

To facilitate functional characterization of APJ, a stable HA-mAPJ
expressing cell linewas generated. In the first experiments receptor
expression was confirmed by immunohistochemical detection of
the HA tags using automated image acquisition and analysis. As
anticipated, essentially all cells expressed HA-mAPJ, that could be
detected in permeabilized cells and also when the primary anti-
body was added to bind the exofacial HA-tag in intact cells (Fig. 1A).

Fig. 1. (A) Thumbnail images from individual wells stained for HA-mAPJ cell surface and whole cell expression, after stimulation with [Pyr1]apelin-13. Representative regions of cell
images are shown for DAPI (top panels A and C), and HA-mAPJ (bottom panels B and D) in HA-mAPJ-HEK293 cells with either non-permeabilized (left panels, cell surface) or
permeabilized (right panels, whole cell) membranes, higher magnification inset. (B) Thumbnail images from individual wells stained for ppERK1/2 expression after stimulationwith
[Pyr1]apelin-13. Representative regions of cell images are shown for DAPI (top panels A and C), and ppERK1/2 (bottom panels B and D) in mAPJ-HEK293 cells stimulated with either
vehicle control (left panels) or 100 nM [Pyr1]apelin-13 (right panels), higher magnification inset. Scale bars, 100 mm. mAPJ-HEK293 cells were pre-treated with or without (C) PTX
(200 ng/ml, 16 h), (D) BIM (10 mM, 1 h) or (E) UO126 (10 mM, 30 min) and stimulated in the presence or absence of [Pyr1]apelin-13 (100 nM) for 5 min. (F) Tagging of mAPJ with the
HA epitope did not interfere with receptor signalling. Non tagged mAPJ-HEK293 cells and HA-tagged mAPJ-HEK293 cells were stimulated with [Pyr1]apelin-13 (100 nM) for 5 min
and compared with control cells treated with 1� PBS. For (CeF) cells were fixed, stained, and imaged for determination of whole-cell ppERK1/2 intensity using anti ppERK1/2
antibody. The value determined with no primary antibody present was designated as background and was subtracted from raw data to give arbitrary fluorescence units (AFU) and
then normalized to a percentage of vehicle control. Data shown are mean ± SEM, of at least three separate experiments, each with triplicate wells and triplicate fields within wells.
*p < 0.05, **p < 0.01, and ***p < 0.001 comparing stimulations to basal conditions, analysed by one-way ANOVA and Dunnett's multiple comparison post hoc tests. ns ¼ no statistical
significant difference.
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We used the pyroglutamyl form of apelin-13, [Pyr1]apelin-13, the
most potent and abundant form in the brain (De Mota et al., 2004)
and cardiovascular system (Maguire et al., 2009), to test for
expression of functional receptors and found that 5min stimulation
with 100 nM [Pyr1]apelin-13 caused a marked increase in ppERK
staining over the cytoplasm and nucleus of mAPJ-HEK293 cells
(Fig. 1B). This effect was prevented by pre-treatment with PTX to
prevent Gi activation; with BIM to prevent PKC activation; or with
U0126 to inhibit MEK (Fig. 1CeE). The effects of [Pyr1]apelin-13 on

ppERK levels in HEK-293 cells expressing non-tagged mAPJ and
HA-tagged mAPJ were also compared and were found to be indis-
tinguishable (Fig. 1F).

mAPJ-HEK293 cells were then treated for varied times with
[Pyr1]apelin-13. The ppERK response was rapid (maximal at
5 min) and transient, reducing to near basal values by 10 min
(Fig. 2A). We also varied [Pyr1]apelin-13 concentration and this
revealed a concentration-dependent effect with an EC50 value of
~3 nM at 5 min (Fig. 2B). No significant variations were seen in
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Fig. 3. Desensitization of [Pyr1]apelin-13-induced ERK1/2 activation in mAPJ-HEK293. mAPJ-HEK293 cells were pre-incubated with PBS or [Pyr1]apelin-13 (100 nM, 2 h), washed,
and immediately stimulated in the presence of (A) adrenaline (1 mM) (B) EGF (100 ng/ml) or (C) [Pyr1]apelin-13 (100 nM) for 5 min. Cells were fixed, stained and imaged for
determination of whole cell ppERK1/2 intensity using anti-ppERK1/2 antibody. The value determined with no primary antibody present was designated as background and was
subtracted from raw data to give ppERK1/2 intensity in arbitrary fluorescence units (AFU) and then normalized to a percentage of vehicle control. Data shown are mean ± SEM, of at
least three separate experiments, each with triplicate wells and triplicate fields within wells. ***p < 0.001, analysed by one-way ANOVA and Dunnett’s multiple comparison post hoc
tests. ns ¼ no statistical significant difference.
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total ERK1/2 levels in the mAPJ cell line stimulated with [Pyr1]
apelin-13 in either time or dose response curves, consequently
further experiments were conducted without measurement of
total ERK levels.

3.2. Homologous and heterologous desensitization of the ppERK
response to [Pyr1]apelin-13

The desensitization of the response to [Pyr1]apelin-13 was then
investigated using a pretreatment protocol to test for homologous
and heterologous desensitization. mAPJ-HEK293 cells were pre-
treated for 2 h with 0 or 100 nM [Pyr1]apelin-13, washed and then
immediately stimulated for 5 min with control medium or with
medium containing 1 mM adrenaline, 100 ng/ml EGF or 100 nM
[Pyr1]apelin-13. Adrenaline, EGF and apelin caused robust in-
creases in ppERK in mAPJ-HEK293 control (PBS pre-incubated)
cells (Fig. 3A, B and C). As shown (Fig. 3C), 2 h pre-incubation
with [Pyr1]apelin-13 completely prevented the response to a
subsequent 5 min stimulation with [Pyr1]apelin-13, but did not

measurably alter the responses to adrenaline (Fig. 3A) or EGF
(Fig. 3B).

3.3. Trafficking of HA-mAPJ

Following the lack of heterologous desensitization described
above, that implies that the desensitization of the response to
[Pyr1]apelin-13 may be due to upstream APJ-specific (rather than
down-stream ERK-specific) adaptive mechanisms, we explored
possible changes in the amount and compartmentalization of APJ
by stimulating HA-mAPJ-HEK293 cells for varied periods (up to 6 h)
with 0 or 100 nM [Pyr1]apelin-13 before determining cell surface
and whole cell HA-mAPJ levels with the intact cell and per-
meabilized cell staining assays used for Fig. 1. As shown (Fig. 4A),
[Pyr1]apelin-13 caused a reduction in cell surface HA-mAPJ, which
reduced by >50% with a half-time of ~30min. It also reduced whole
cell HA-mAPJ (Fig. 4B) but the effect was less marked (reduction to
~60% of control) and slower (no measurable reduction until 1 h).
We also used the cell surface and whole cell HA-mAPJ expression

Fig. 4. Time course of [Pyr1]apelin-13-induced HA-mAPJ localization and expression levels. HA-mAPJ-HEK293 cells were incubated in the presence or absence of [Pyr1]apelin-13
(100 nM) for 0e6 h. Cells were fixed, stained and imaged for determination of either (A) cell surface or (B) whole cell HA-mAPJ intensity using anti-HA antibody. The value
determined with no primary antibody present was designated as background and was subtracted from raw data to give HA-mAPJ intensity in arbitrary fluorescence units (AFU) and
then normalized to a percentage of vehicle control. Cell surface and whole cell AFU values were used to determine the PCSE (C). Data shown are mean ± SEM, of at least three
separate experiments, each with triplicate wells and triplicate fields within wells. * ¼ p < 0.05 and ** ¼ p < 0.01, comparing stimulations to basal conditions, analysed by one-way
ANOVA and Dunnett's multiple comparison post hoc tests.

Fig. 5. (A) Representative regions of cell images shown for DAPI, HA-mAPJ and an illustration of the automated image segmentation used to define perimeters of nuclei (blue) and
cells (green or red) and inclusions (yellow) in cells stimulated with control or [Pyr1]apelin-13, as indicated. (B) Time course of [Pyr1]apelin-13einduced HA-mAPJ internalization.
HA-mAPJ-HEK293 cells were pre-treated with anti-HA antibody (1:1000; 1 h 37 �C/5% CO2), washed, then incubated in the presence or absence of [Pyr1]apelin-13 (100 nM) for
0e6 h. Data shown are mean ± SEM, of at least three separate experiments, each with triplicate wells and triplicate fields within wells. **p < 0.01, comparing stimulations to basal
conditions, analysed by one-way ANOVA and Dunnett's multiple comparison post hoc tests. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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measures to calculate the proportional cell surface receptor
expression (PCSE; (cell surface expression ÷ whole cell
expression)� 100) and found that in control cells ~76% of HA-mAPJ
were at the cell surface and that this reduced to ~40% after 30 min
stimulation with [Pyr1]apelin-13 before recovering to near control
levels at 6 h (Fig. 4C).

3.4. HA-mAPJ internalization and desensitization of APJ-mediated
ERK activation

To follow internalization more directly cell surface HA-mAPJ
were preloaded with anti-HA antibody in the absence of agonist,
and cells were then incubated for varied periods with 0 or 100 nM
[Pyr1]apelin-13 before determining the number of anti-HA-
containing inclusions (presumptive endosomes) by automated

image analysis. As shown (Fig. 5A and B), [Pyr1]apelin-13 caused a
rapid increase with the inclusion count being maximal after 30 min
and remaining significantly elevated for 6 h.

This assay was also used to explore APJ internalization mecha-
nisms using a 2 h [Pyr1]apelin-13 stimulation period. This revealed
that pretreatment with hypertonic sucrose to block clathrin-
mediated endocytosis completely blocked the [Pyr1]apelin-13 ef-
fect on inclusion counts (Fig. 6A). The dose-dependent effects of
GRK, EPS, DYN and bARR DNMs on HA-mAPJ-HEK293 cells was
then assessed. Co-transfection with the individual expression vec-
tors for GRKDNM, EPSDNM and DYNDNM inhibited [Pyr1]apelin-13-
induced HA-mAPJ internalization in a dose-dependent manner,
with an optimal concentration of 0.4 mg/well, however the [Pyr1]
apelin-13-stimulated increase in inclusion count was not blocked
by bARRDNM (Fig. 6B). The effects of GRKDNM, EPSDNM, DYNDNM and

Fig. 6. Mechanisms of [Pyr1]apelin-13-induced HA-mAPJ internalization and mAPJ desensitization. (A) HA-mAPJ-HEK293 cells were pre-treated with anti-HA antibody (1:100; 1 h,
37 �C/5% CO2), washed, then incubated in the presence or absence of sucrose (0.4 M) for 45 min, followed by incubation with [Pyr1]apelin-13 (100 nM) for 2 h. (B, C) HA-mAPJ-
HEK293 cells were transfected with DNM cDNAs of various CME-related factors or an empty plasmid vector (V). After 48 h, cells were pre-treated with anti-HA antibody (1:100; 1 h,
37 �C/5% CO2), washed, incubated in the presence or absence of [Pyr1]apelin-13 (100 nM), for 2 h. Cells were fixed, stained and imaged for determination of whole cell inclusion
counts, normalized to a percentage of vehicle control. (B) shows [Pyr1]apelin-13-induced HA-mAPJ internalization after co-transfection with increasing concentrations of GRKDNM,
EPSDNM, DYNDNM and bARRDNM. (C) shows the effects of GRKDNM, EPSDNM, DYNDNM and bARRDNM on [Pyr1]apelin-13-induced HA-mAPJ internalization. In (D) mAPJ-HEK293 cells
were transfected with DNM cDNAs of various CME-related factors or an empty plasmid vector (V). After 48 h, cells were washed, incubated in the presence or absence of [Pyr1]
apelin-13 (100 nM), for 2 h, stimulated with 100 nM [Pyr1]apelin-13 for 5 min, fixed, stained and imaged for determination of whole cell ppERK1/2 intensity using anti-ppERK1/2
antibody, expressed as arbitrary fluorescent units (AFU). Data shown are mean ± SEM, of at least three separate experiments, each with triplicate wells and triplicate fields within
wells. *p < 0.05, **p < 0.01, ***p < 0.001 analysed by two-way ANOVA and Dunnett's multiple comparison post hoc tests.
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bARRDNM on [Pyr1]apelin-13-induced HA-mAPJ internalization are
shown in Fig. 6C.

We also tested for effects of GRKDNM and DYNDNM cDNAs, both of
which prevented HA-mAPJ internalization into inclusions (Fig. 6C),
on the desensitization of APJ-mediated ERK activation. Acute
(5 min) stimulation of mAPJ-HEK293 cells with [Pyr1]apelin-13
caused robust increases in ppERK, that did not alter in cells trans-
fected with GRKDNM or DYNDNM cDNAs (Fig. 6D). Pre-treatment for
2 h with 100 nM [Pyr1]apelin-13 caused the expected reduction of
subsequent responses to 5 min stimulation with 100 nM [Pyr1]
apelin-13 in control cells (Fig. 6D, see also Fig. 3) and this reduction
was also observed in cells transfected with GRKDNM or DYNDNM

cDNAs (Fig. 6D).

3.5. Recovery of APJ levels after agonist removal

To explore recovery of APJ expression levels following pre-
treatmentwith agonist, HA-mAPJ-HEK293 cells were treated for 2 h
with 0 or 100 nM [Pyr1]apelin-13, washed and allowed to recover
for varied periods (0e6 h) before quantification of cell surface HA-
mAPJ and whole cell HA-mAPJ levels. As expected, the [Pyr1]apelin-
13 pre-treatment reduced cell surface and whole cell HA-mAPJ
levels by 40e50% (Fig. 7A and B; see also Fig. 4). Cell surface HA-
mAPJ levels recovered slowly returning to control levels at 4e6 h
after the pre-treatment (Fig. 7A), whereas whole cell HA-mAPJ
levels remained low and were essentially unaltered during the
0e6 h recovery period (Fig. 7B). These data were used to calculate
PCSE and this was reduced (from an initial ~76% to ~60%) by [Pyr1]
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Fig. 7. Recovery of APJ levels after agonist removal. HA-mAPJ-HEK293 cells were incubated in the presence or absence of [Pyr1]apelin-13 (100 nM) for 2 h, washed, then incubated in
fresh medium for 0e6 h. Cells were fixed, stained and imaged for determination of either (A) cell surface or (B) whole cell HA-mAPJ intensity using anti-HA antibody. The value
determined with no primary antibody present was designated as background and was subtracted from raw data to give HA-mAPJ intensity in arbitrary fluorescence units (AFU) and
then normalized to a percentage of vehicle control. Cell surface and whole cell AFU values were used to determine the PCSE (C). (D) shows recovery from the effect of [Pyr1]apelin-
13 on HA-mAPJ inclusion count. HA-mAPJ-HEK293 cells were pre-treated with anti-HA antibody (1:100; 1 h, 37 �C/5% CO2), washed, incubated in the presence or absence of [Pyr1]
apelin-13 (100 nM) for 2 h to internalize APJ, washed, then incubated in fresh medium for 0e6 h. Data shown are mean ± SEM, of three separate experiments, each with triplicate
wells and triplicate fields within wells. *p < 0.05 and **p < 0.01, comparing stimulations to basal conditions, analysed by one-way ANOVA and Dunnett's multiple comparison post
hoc tests.
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apelin-13 pre-treatment and recovered to almost 100% at 2e6 h
after pre-treatment (Fig. 7C). A similar protocol was used to assess
recovery from the effect of [Pyr1]apelin-13 on HA-mAPJ inclusion
count. As expected, pre-treatment for 2 h with [Pyr1]apelin-13
increased the number of inclusions by ~75% and this effect was
rapidly reversed so that there was no measurable increase in in-
clusions after 30 min of recovery (Fig. 7D).

3.6. Resensitization of APJ-mediated ERK activation

We then followed recovery from desensitization (of [Pyr1]ape-
lin-13-stimulated ERK activation) in control cells and in cells
transfected with GRKDNM or DYNDNM cDNAs, both of which pre-
vented HA-mAPJ internalization into inclusions (see Fig. 6), or
bARRDNM cDNA. mAPJ-HEK293 cells initially exposed to vehicle
control (1� PBS; 2 h) showed significant activation of ERK1/2 after a
5 min exposure to [Pyr1]apelin-13. However 2 h pre-treatment of
mAPJ-HEK293 cells with 100 nM [Pyr1]apelin-13 caused the

expected reduction in response to a subsequent 5 min stimulation
with 100 nM [Pyr1]apelin-13 (Fig. 8A). When cells were allowed to
recover for varied periods (0e1 h) before the second stimulus, rapid
recovery was observed, with maximal recovery and no measurable
desensitization after just 15 min of recovery (Fig. 8A). Recovery was
slower in the presence of GRKDNM (Fig. 8B) or DYNDNM cDNAs
(Fig. 8C), as for both there was no measurable recovery at 15 min
and recovery was near maximal at 1 h. The presence of bARRDNM

did not alter the pattern of normal resensitization of [Pyr1]apelin-
13-induced ERK1/2 activation.

4. Discussion

GPCR regulation in response to agonist stimulation is common
to nearly all GPCRs and is essential in physiological systems to limit
persistent signalling. In this study we have investigated the [Pyr1]
apelin-13-induced trafficking and desensitization of mAPJ in mAPJ-
HEK293 cells using a semi-automated imaging protocol and clearly
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Fig. 8. (A) mAPJ-HEK293 cells were pre-incubated in the presence or absence of [Pyr1]apelin-13 (100 nM, 2 h), washed, incubated in fresh medium for 0e1 h and then stimulated in
the presence or absence of [Pyr1]apelin-13 (100 nM) for 5 min. Cells were fixed, stained and imaged for determination of whole cell ppERK1/2 intensity using anti-ppERK1/2
antibody. The value determined with no primary antibody present was designated as background and was subtracted from raw data to give ppERK1/2 intensity in arbitrary
fluorescence units (AFU) and then normalized to a percentage of vehicle control ([Pyr1]apelin-13-induced ERK1/2 signalling in cells initially exposed to vehicle control and
designated as “max”). In (BeD) mAPJ HEK293 cell lines were transfected with GRKDNM, DYNDNM or bARRDNM cDNAs respectively before preincubation with or without [Pyr1]apelin-
13. Data shown are mean ± SEM, of at least three separate experiments, each with triplicate wells and triplicate fields within wells. ***p < 0.001, comparing stimulations to max
conditions, analysed by one-way ANOVA and Dunnett's multiple comparison post hoc tests.
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show that HA-mAPJ internalization is a GRK2-, dynamin- and
EPS15-mediated event.

A stable HA-mAPJ expressing cell line was generated and was
used to quantify the proportion of APJ at the cell surface and within
whole cells using semi-automated acquisition and analysis of dig-
ital fluorescence images. While the majority of epitope-tagged
mAPJ was localized to the cell surface in these cells, a proportion
of tagged APJ was distributed within the cell. This is in contrast to
earlier studies that reported enhanced green fluorescent protein
(eGFP)-APJ localization, under basal conditions, to be confined to
the plasma membrane (El Messari et al., 2004). APJ acts primarily
via Gi to inhibit adenylyl cyclase but has also been reported to
activate other effectors including PKC, PI3K and ERK (Masri et al.,
2002, 2004). As positioning of differing tags into the native re-
ceptor may have implications for receptor trafficking, we verified
that the functional integrity of the receptor in our cell line
remained intact and that these HA-mAPJ-HEK293 cells, like their
non-tagged counterparts, mediate ERK activation. Significant and
similar [Pyr1]apelin-13-induced stimulation of ERK1/2 was seen in
both HA-tagged and untagged mAPJ transfected HEK293 cells.

Many GPCRs show ligand bias (where different agonists bias
signalling toward different effectors) and there is evidence that this
may occur for APJ (Masri et al., 2006; Brame et al., 2015). It has been
shown recently that the cyclic apelin analogue MM07 displays bias
towards stimulation of a beneficial G-protein-dependent pathway,
stimulating vasodilation and inotropic actions, over a more
damaging G-protein-independent b-arrestin-dependent pathway
that results in cardiac hypertrophy (Brame et al., 2015). In this re-
gard, it is also of interest that APJ is most closely related to angio-
tensin 1 receptors (AT1), for which ligand bias has been extensively
explored. AT1A receptors are Gq/11 coupled GPCRs that also activate
ERK. They undergo a process of rapid homologous receptor
desensitization in which arrestins bind to the activated receptors
preventing them from activating their cognate G proteins and tar-
geting them for internalization via CCVs. The arrestins can also act
as scaffolds for MAPK cascade components and mediate signalling
to ERK. Activation of AT1A receptors can cause an initial phase of G
protein-mediated ERK activation followed by a switch to a second
phase of arrestin-mediated ERK activation and ligand bias is seen
when angiotensin II activates both pathways whereas analogues
(such as [Sar(1),Ile(4),Ile(8)]AngII (SII)) engage only the latter
(Lefkowitz and Shenoy, 2005; Ahn et al., 2004; Shenoy et al., 2006).
We were interested in the possibility that APJ might also mediate
such a biphasic response. We established however that when
mAPJ-HEK293 cells were treated for varied timeswith [Pyr1]apelin-
13, the ppERK response instead was rapid and transient, with an
EC50 value of ~3 nM at 5 min, showing no indication of arrestin-
mediated activation of ERK1/2.

Having established that the ppERK response to [Pyr1]apelin-13
desensitizes rapidly during sustained stimulation in this model, we
explored possible mechanisms. Numerous adaptive mechanisms
shape ERK responses and these include inhibitory phosphorylation
of Ras by ERK (Dumaz and Marais, 2005) or ERK-driven expression
of nuclear-inducible dual specificity phosphatases (DUSP) (Caunt
et al., 2008). However, neither of these down-stream mechanisms
seems likely here as APJ-mediated ERK activation is Ras-
independent in CHO cells (Masri et al., 2002) and the desensitiza-
tion is too fast to be mediated by DUSP neosynthesis (Caunt et al.,
2008). We therefore suspected that this rapid desensitization of
the response to [Pyr1]apelin-13 was due to upstream APJ-specific
(rather than down-stream ERK-specific) adaptive mechanisms
and explored this by looking at homologous and heterologous
desensitization of this response. Desensitization can be homolo-
gous or heterologous in nature; homologous desensitization occurs
when there is a loss of response solely to an agonist that is acting at

one particular GPCR subtype, whereas heterologous desensitization
is agonist-non-specific and involves a broad pattern of unrespon-
siveness at multiple GPCR subtypes. Homologous desensitization is
thought to involve adaptive changes at the level of the GPCR itself,
whereas heterologous desensitization may also involve altering the
efficiency of downstream signalling components. Adrenaline and
EGF are known activators of ERK in HEK293 cells, likely acting via
the a1b adrenergic (Schonbrunn and Steffen, 2012) and EGF re-
ceptors (Kramer et al., 2002) respectively, and as expected, both
caused robust increases in ppERK in PBS pre-incubated mAPJ-
HEK293 cells, that were not different to the increases seen after
pre-incubation with [Pyr1]apelin-13. The ppERK response to a
subsequent [Pyr1]apelin-13 stimulation was however completely
abrogated by pre-incubation with [Pyr1]apelin-13. These data
suggest that the desensitization of [Pyr1]apelin-13-induced ERK1/2
phosphorylation was not due to a requirement to reset the intra-
cellular signalling pathway or other post-receptor modifications,
but to upstream APJ-specific adaptive changes. These could include
receptor internalization, as APJ undergoes agonist-induced inter-
nalization via CCVs (Reaux et al., 2001; El Messari et al., 2004), and/
or rapid homologous receptor desensitization, as APJ has been
shown to cause translocation of b-arrestin to the cell surface in
other systems (Lee et al., 2010). We undertook therefore to monitor
APJ compartmentalization, and found that incubation of HA-mAPJ-
HEK293 cells with [Pyr1]apelin-13 decreased both cell surface and
whole cell expression of APJ in a time-dependent manner. These
data are consistent with agonist-induced receptor internalization
followed by degradation of a proportion of the internalized re-
ceptors, such that down-regulation follows the reduction in cell
surface expression.

As the experimental procedure used could reflect agonist-
stimulation of both anterograde and retrograde APJ trafficking, as
has been described for the d-opioid peptide receptor (Zhang et al.,
2006a,b), receptor internalization was more directly monitored by
loading cell surface HA-mAPJ with anti-HA antibody before
washing and incubation with agonist. We found a rapid increase in
[Pyr1]apelin-13-induced HA-mAPJ internalization that is consistent
with previous confocal microscopy studies showing rapid agonist-
induced internalization of eGFP-APJ from the plasma membrane
(Lee et al., 2010; El Messari et al., 2004). [Pyr1]apelin-13-induced-
HA-mAPJ internalization was inhibited in the presence of sucrose,
which prevents formation of clathrin-coated pits (Heuser and
Anderson, 1989), and by the expression of DNM cDNAs of GRK2,
dynamin and EPS15, known effectors of CME, but not by expression
of bARRDNM. We have used these DNMs successfully to assess
GRK2-, b-arrestin1-, dynamin- and EPS-dependent internalization
of several GPCRs (e.g. oxytocin receptor (Smith et al., 2006);
gonadotropin-releasing hormone receptor (Hislop et al., 2001,
2005)). The GRK2DNM construct (K220A) reduces agonist-induced
GPCR phosphorylation (Mundell et al., 1997); bARRDNM (319e418)
competes with wild-type arrestin for clathrin and AP2 binding, and
impairs receptor-binding ability (Krupnick et al., 1997); EPSDNM

(ED95/295) lacks domains recognising EPS15 itself and is required
for coated pit formation; and DYNDNM (K44A) inhibits dynamin-
mediated scission of CCVs from the plasma membrane (Damke
et al., 1994). Together these data suggest that [Pyr1]apelin-13 cau-
ses internalization of mAPJ via CCVs, and thereby reduces cell
surface mAPJ levels. In accord with many other GPCRs, we suggest
that GRK2-mediated phosphorylation targets the receptors to CCVs
that are internalized from the cell surface in an EPS15- and
dynamin-dependent manner. Interestingly, apelin-13-internalized
APJ has been reported to dissociate from b-arrestin1 prior to re-
ceptor internalization (Lee et al., 2010), andwe have shown that the
[Pyr1]apelin-13 effect on inclusion count was not prevented by
transfection with the bARRDNM cDNA. Although not tested, it is
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likely that both b�arrestin1- and b�arrestin2-mediated endocy-
tosis would be inhibited by transfection of the bARRDNM construct
(J.L. Benovic, personal communication). Further work such as using
siRNAs specifically against each arrestin will determine whether
either is necessary for APJ-mediated internalization. Therefore the
means by which these receptors are targeted to CCVs for internal-
ization remains unclear. A similar dynamin-dependent, b-arrestin
independent internalization has been reported in the 5-
hydroxytryptamine 2A (5-HT2A) receptor (Bhatnagar et al., 2001).

Desensitization of APJ has been shown not to occur in C-
terminally truncated receptors that lack the majority of the serine
and threonine residues that are liable to phosphorylation (Masri
et al., 2006). Phosphorylation of GPCRs following ligand activa-
tion is the first step in receptor desensitization, occurring rapidly
upon exposure to the agonist, and is conducted by second
messenger kinases (e.g. protein kinase C (Benovic et al., 1985)) and
a family of kinases termed GRKs (Benovic et al., 1986). Transfection
of GRK2DNM or DYNDNM cDNA constructs into mAPJ-HEK293 cells
pretreated with [Pyr1]apelin-13 for 2 h, both of which constructs
had prevented HA-mAPJ internalization, did not affect the abro-
gation of subsequent responses to stimulationwith [Pyr1]apelin-13.
This data suggests that internalization is not a major factor in the
desensitization of APJ-mediated ERK activation in these cells, and
that desensitization of APJ is not dependent upon phosphorylation
of APJ by GRK-2, but likely by kinases other than GRK-2.

Focusing on recovery after agonist removal, pre-incubation of
HA-mAPJ-HEK293 cells with [Pyr1]apelin-13 and subsequent re-
covery in agonist-free medium for varied periods revealed that cell
surface APJ levels recovered to near control levels at 4e6 h, while
APJ levels in the whole cell remained low following up to 6 h of
recovery. Similarly, recovery in agonist-free medium rapidly
reversed the number of inclusions seen after pre-incubation with
[Pyr1]apelin-13 for 2 h. These data are generally consistent with
agonist-induced internalization and reduction in cell surface HA-
mAPJ occurring relatively rapidly during agonist exposure and
recovering more slowly after agonist removal. They also reveal two
unexpected features. First, the proportion of HA-mAPJ at the cell
surface 2 h after removal of the [Pyr1]apelin-13 pre-treatment is
significantly higher than in control cells prior to [Pyr1]apelin-13
pre-treatment (~98% versus ~76%), suggesting that all available APJ
are specifically compartmentalized at the cell surface upon agonist
removal. Second, the rate of loss of inclusions during the recovery
period (half-time ~15 min) was much higher than the rate of re-
covery of cell surface HA-mAPJ (half-time ~2 h). This may suggest
that inclusions are lost as the anti-HA shifts from early endosomes
to a sorting compartment. If so, their loss would be expected to
precede recovery of cell surface receptor expression. In following
recovery from desensitization we transfected GRK2DNM, DYNDNM

and bARRDNM cDNAs into mAPJ-HEK293 cells and found delayed
resensitization of [Pyr1]apelin-13-induced ERK1/2 responses after
transfection with GRK2DNM and DYNDNM cDNAs, but not with the
bARRDNM cDNA. This indicates that GRK2- and dynamin-dependent
receptor internalization may have a role to play in the resensiti-
zation of [Pyr1]apelin-13-induced ERK phosphorylation, however
b�arrestin-dependent internalization is not required for this pro-
cess. Thus regulation of receptor number may determine respon-
siveness of mAPJ to repeated [Pyr1]apelin-13 stimulation in
HEK293 cells.

In summary, these data show that agonist exposure induces
internalization and reduction in cell surface HA-mAPJ expression
that occurs relatively rapidly during agonist exposure and recovers
more slowly after agonist removal. Moreover the ppERK response
of mAPJ-HEK293 cells to [Pyr1]apelin-13 desensitizes rapidly dur-
ing sustained stimulation and this desensitization is due to up-
stream APJ-specific, rather than down-stream ERK-specific,

adaptive changes. We show that GRK2-mediated phosphorylation
targets mAPJ to CCVs that are internalized from the cell surface in a
b�arrestin-independent, EPS15- and dynamin-dependent manner.
Our data indicates that receptor internalization is not required for
mAPJ desensitization of ppERK responses in the mAPJ-HEK293 cell
line. This multifaceted system may be indicative of a complex
mechanism in controlling the physiological functions of endoge-
nous apelin and may be important in conditions where there are
elevated circulating or tissue levels of APJ. Further study of the
signalling and regulation of APJ will help develop ligands for use in
potential therapeutic intervention for dysfunctions of physiological
homeostasis such as hypertensive disease.
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