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Abstract

The identification of the critical load cases, aircraft configuration and flight conditions
is a vital step in the aircraft design process; in particular the loads correlated at
individual measurement stations, and between different stations, are of great interest.
Typically, the correlation of various ‘Interesting Quantities’, such as bending moment
and torque, is described using the so called ‘potato plot’, which is obtained by plotting
Interesting Quantities time histories against each others. It is of interest to predict the
effects of uncertainty in the structural and aerodynamic parameters on the correlated
quantities in an efficient way. A geometrically based method is described enabling
identification of probabilistic bounds for the correlated loads whilst still capturing
all the information related to the critical cases. The method is demonstrated using
gust loads acting on a representative civil jet aeroelastic numerical model, and very
accurate yet efficient results are found in comparison to a Monte Carlo Simulation.

1. Introduction

A key part of the aircraft design process is the identification of the critical loads
which can be used to determine maximum stress levels, and hence structural
sizing, across the structure [23]. A wide range of load cases must be consid-
ered, including gusts, flight manoeuvres, landings, braking and taxiing, etc, as
the critical cases are not known a-priori. Therefore, simulated loads cases are
applied to detailed aeroelastic models [5][13] [23] in order to determine the crit-
ical cases and the corresponding aircraft configuration and flight conditions for
a range of different Interesting Quantities (IQs), e.g. bending moments, shear
forces and torque. The certification of large commercial aircraft is defined by the
EASA CS-25 (Certification Specifications) or FAR-25 airworthiness regulations
to assure structural integrity over the operating environment of the aircraft;
they also define the range of load cases that has to be accounted for and the
structural design is based upon the worst load cases. Typically, several thou-
sand values of IQs must be considered, and a simplistic estimate of the number
of analyses required to cover all possible conditions (e.g. mass distribution, con-
trol laws, flight condition, gust gradient, etc.) gives 10 million [11]. Even with
simplistic aircraft models being used, this is an infeasible number of separate
simulations [11]. Furthermore, these analyses have to be repeated (known as
a loads cycle) every time that there is an update in the aircraft structure [8],
and within the modern civil aircraft industry each of these loads cycles takes
a considerable time. Aircraft loads are a ‘living’ database which is regularly
updated during the course of the whole aircraft life.

The importance in considering the presence of uncertainty in loads computa-
tions has recently become recognised, and it significantly increases the number
of required analyses. However, most work in uncertainty analysis applied to
aeroelastic systems has concentrated upon the effect of uncertainties on critical
phenomena such as flutter and divergence [4] [14] [1] [15] [18] [17] rather than
loads.

1 2 3 4 University of Bristol, Dept. of Aerospace Engineering

Queens Building, University Walk, Bristol, BS8 1TR, United Kingdom
5 Siemens

Interleuvenlaan 68, 3001 Leuven, Belgium



Previous work in the FFAST FP7 project [11] [10] [8] [9] has investigated the
use of several surrogate modeling and optimization methods for fast and efficient
prediction of the worst case gust loads for each IQ independently. Figure 2 shows
typical responses of wing root bending moment to different length ‘1 - Cosine’
(1MC) vertical gusts. Previous work determined the largest maximum and
minimum loads resulting from the gusts across the design and operating space.
However, it is essential to take into account the effect of correlations between
IQs (e.g. bending moment and torque) as the principal stresses depend upon
2D or even 3D loads. By plotting the time histories of each IQ against each
other, as seen in Figure 3, the worst cases are defined by the outlying points
of the correlated loads plot, known as a convex hull or ‘potato plot’. A very
preliminary investigation relating to the uncertainty quantification of correlated
gust envelopes was undertaken [9] using a simple 2 DOF aeroelastic model and
exploiting the Polynomial Chaos Expansion (PCE)[2] [24] [3].

An initial investigation related to the uncertainty quantification of corre-
lated gust envelopes was undertaken by the authors [19] using a Singular Value
Decomposition (SVD) based method combined with surrogate modelling tech-
niques. This approach enables very efficient calculation of all the IQ time histo-
ries at any possible point in the design space without losing accuracy compared
to Monte Carlo Simulations (MCS) [19] [21]. Two approaches were considered
to propagate the uncertainty in the computations, namely an interval method
and a probabilistic approach. These two approaches can be adopted to deal with
uncertainty for each IQ independently. Regarding the uncertainty in terms of
correlated loads, the interval approach can be adopted to exactly identify the
extreme worst case scenario without paying attention to the actual probabilistic
occurrence of the loads. The probabilistic approach presented in [19] is based
on the use of quantiles in terms of time-history quantities and could lead to
imprecise results.

In this work, a method is developed that enables a probabilistic uncertainty
propagation of the quantile-outer bounds for the loads ‘potato’ plots and exact
identification of quantile-bounds and the critical cases using a geometric ap-
proach. This geometrical based method exploits the previously developed SVD
based method [19] and an investigation is also undertaken into the possible
benefits of using the Higher Order Singular Value Decomposition (HOSVD) [6].
The developed method retrieves information for loads correlated in time and in
space associated with a desired confidence level; it relates the identified critical
cases back to the corresponding configurations (e.g. structural parameters), load
cases/manoeuvres and flight conditions. The method has been validated and
the accuracy demonstrated using a representative civil jet aeroelastic numerical
model and comparing with results from a MCS. Variable length 1MC vertical
gusts are considered as the load cases and the engine mass and pylon stiffness
are allowed to vary. The worst case wing root bending moment and torque are
determined under the presence of uncertainty on the structural parameters.

2. Motivation

During the design process and certification of an aircraft the analysis of a very
large number ( 10 M) of load cases and configurations is required. The tradi-
tional load case derivation and analysis process requires a significant time cost.
Also the accuracy of the results is not quantified in terms of the assumptions
made to try to simplify the analysis and the presence of uncertainties in the
system. To tackle these issues, the proposed method is developed in order to
cope with the presence of uncertainties in the system while correctly identifying
the probabilistic bounds for the loads ‘potato’ plots. Moreover, the process has
been devised in order to reduce the number of load cases to be considered during
the design process and certification. Once the uncertain bounds for the corre-
lated aircraft loads are determined, the critical load cases can be identified and
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Figure 1: Example in
which the assumption
adopted in the quantile
approach [19] can lead to
imprecise results.

related back to the configuration, input loads/manoeuvres and flight condition.
In a previous investigation by the authors to probabilistically describe the corre-
lated loads [19], a quantile approach was developed. However, such an approach
implies the assumption that all the correlated quantities are inside the quantile
interval; in other words if one IQ has its value inside the defined quantile-interval
then the same is assumed to happen for all the other IQs. However, this is not
always the case, as Figure 1 shows, and this assumption can lead to errors in
the prediction of the convex hull uncertainty bounds.

The developed geometrical based method does not rely on the above as-
sumption and allows the quantile-outer bounds for the loads ‘potato’ plots to
be correctly identified. It is also worth remarking that the method is totally
general with no limit on the type of loads and IQs that are considered.

3. Modelling, Loads and Uncertainty Considerations

The numerical model used to demonstrate and validate the method is the
FFAST model [11], a representative civil jet aeroelastic model whose nominal
weights and main dimensions are reported in [19]. The structural model of the
aircraft is a beam-stick representation with lumped masses (Figure 4 ) and the
aerodynamics was modelled using the Doublet-Lattice Method (DLM).

1MC vertical gusts were applied to the model using gust lengths defined in
the airworthiness regulations [23]. Figures 2 and 3 show examples of an IQ time
history and a typical correlated load ‘potato plot’ obtained in response to 1MC
gusts for different gust lengths (Lg). The resulting bending moment and torque
time histories from the gust loads at 10 different wing stations were considered
for the validation.

Uncertainty is introduced through some of the structural parameters, namely
the mass of engine and the pylon stiffness (Young’s Modulus). These have been
probabilistically modelled assuming Gaussian PDFs as shown in Table 1. The
statistical variation of the pylon Young Modulus and the mass of engine are
taken from results presented in [2] and [22], respectively.
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Table 1: Description
adopted for the uncertain
parameters.

Mean µ COV Standard Deviation Variation

Mass of Engine 8694.93 kg 0.039 339.1 kg ±10%
Pylon Young Modulus 69 · 109 Pa 0.1 69 · 108 Pa ±20%

Figure 2: Time Histories
of Bending Moment for
Different Gust Lengths.

Figure 3: ‘Potato Plot’
description of Correlated
Loads for Different Gust
Lengths.

Figure 4: Structural
model of the aircraft.
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Figure 5: Flow chart
of the Geometrical Based
Method.

4. Geometrical Based Method

A Geometrical method has been developed to predict the effect of uncertainties
on correlated aircraft loads and was implemented using MATLAB . It consists
of six steps which are shown in Figure 5. Initially, numerical simulations are
performed (step 1) at various points in the parameter space (e.g. gust length,
engine mass, pylon stiffness) in order to train the reduced order SVD/HOSVD
surrogate models (steps 2 and 3). The apexes of the convex hull (potato plots)
are then found relating to a central point and radii (step 4) from which the effect
of uncertainty along each radius is determined (step 5). Finally, the geometric
information generated from the previous step is transformed to define the critical
correlated loads and corresponding case information (step 6). In the following
sections each step of interest is described in detail.

Step 1: Data generation

Initially, the sampling plane to be considered for the generation of IQs,
is defined. A suitable sampling method (e.g. Latin Hypercube Sampling,
Hamilton or Sobol sequences) is selected and IQs are determined for three
types of sampling points, using the numerical model that best represents
the analysed problem. These sampling points are:

ASDJournal (2009) Vol. 1, Issue 1, pp. 1–14



Figure 6: Data matrix
adopted to apply the SVD
for the i

th interesting
quantity or ‘slice’ of the
data tensor in the 2D di-
mension (1,ith) used to
apply the HOSVD.

g

g

1. training points, which are used to train surrogate models adopted
to speed up the Uncertainty Quantification (UQ)

2. validation points for the surrogate models, which are needed to val-
idate the trained surrogate models

3. validation points for the results given by the UQ, which are used to
obtain an ‘actual’ but time consuming UQ. The ‘actual’ UQ is per-
formed using Monte Carlo Simulations analysis. There would be no
benefit in performing this last step in practice due to computational
limitations and it would also negate the reason for developing the
methodologies.

Step 2: Feature Extraction using Singular Value Decomposition
(SVD) / High Order Singular Value Decomposition (HOSVD)

Once the data of interest has been generated, a suitable data matrix or a
tensor is constructed from the time histories related to the training points
for each of the IQs or for all of the IQs, respectively. Then, the SVD
[19] or HOSVD [20] can be applied for feature extraction. Figure 6 shows
the data matrix or ‘slice’ of the data tensor in the 2D dimensions (1,ith)
adopted to deal with correlated time-histories of aircraft loads. Using the
bending moment and the torque at the 10 stations along each wing that
have been selected as IQs, the matrix defined for each IQ, or the ‘slice’ of
the tensor constructed for all the IQs, has as many rows as the number of
parameter variations (e.g. engine mass, pylon stiffness) (D) and as many
columns as the product of the number of time steps in each response (N),
the number of configurations/ environmental conditions (e.g. load cases
as gust lengths, altitudes) (M) and the number of stations of interest (S).
Thus, the dimensions of each matrix / ‘slice’ are (D)× (N ×M ×S). The
total dimensions of the tensor are (D)×(N×M×S)×2, the last dimension
is equal to the number of analysed IQs that in the present problem are
the bending moment and the torque. For the sake of clarity the tensor
considered is shown in Figure 7, from which the ‘slice’ shown in Figure 6
can be taken for one of the IQs.

The SVD based method [19] performs a SVD on the data matrix A using
the training data such that

A = UΣVT (1)

The rank of the data matrix A (and so of the model order) is reduced by
selecting the most significant singular values in Σ. The product of the re-
duced ‘singular values matrix’ Σk and the transpose of the ‘right singular
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Figure 7: Data ten-
sor used to apply the
HOSVD.

vector matrix’ VT
k is adopted as basis and kept constant over the consid-

ered range of parameter variation. A surrogate model is then constructed
for each column of the reduced ‘left singular vector matrix’ Uk. The sur-
rogates can then be used to perform the uncertainty quantification. For
any desired set of parameter values, a time history can be reconstructed
by multiplying the basis ΣkV

T
k by the surrogates of Uk evaluated at the

selected parameter values.

The HOSVD can be seen as a generalization of the SVD in higher dimen-
sion, so whereas the SVD is applied to matrices, the HOSVD is applied
to tensors.

Given a tensor A ∈ IRI1×I2...×ID the HOSVD can be expressed as [12] [6]:

A = S ×1 U
1 ×2 U2...×D UD (2)

where

– the vector Un
i is an ith n-mode singular vector; the superscript is

adopted to refer to the particular number of the considered mode
singular vector. There are as many mode singular vectors as the
dimension of the tensor

– Ii is used as the general size of the dimension i, for instance I1 is
the dimension of the 1-mode singular vector U1

– the symbol ×i is adopted for the n-mode product. In general the
n-mode product of a tensor A ∈ IRI1×I2...×ID by a matrix U ∈ IRJ×In

is denoted by A×n U and is an I1 × I2 × ...× In1 × J × In+1...× ID
tensor of which the entries are given by [12]

A×n U =
∑

in

ai1i2...in1in
i
in+1...iNujin (3)

– S is the core tensor, whose dimension are I1 × I2...× ID, dimUi =
Ii × Ii. Fixing the nth index to α the subtensors Sin=α is obtained,
which have the properties of:

i all-orthogonality: two subtensors Sin=α and Sin=β are orthog-
onal for all possible values of n and for α and β subject to
α 6= β:

〈Sin=α
, Sin=β

〉 = 0 when α = β, (4)
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ii ordering

‖Sin=1
‖ ≥ ‖Sin=2

‖ ≥ ... ≥ ‖Sin=In
‖ ≥ 0 (5)

for all possible values of n.

‖‖ is the Frobenius-norm and ‖Sin=i
‖ is the ith of the n-mode sin-

gular values of A, symbolized by σn
i .

As for the SVD, the HOSVD gives the possibility of reducing the dimen-
sions of the problem by suitably decreasing the rank of the tensor. When a
reduction is considered, one refers to the so called truncated SVD or mul-
tilinear singular value decomposition (mlsvd) for the SVD and HOSVD,
respectively. The rank reduction in the HOSVD is done here by looking at
the ‘matrices unfolding’ [12] [6], which is a matrix representation to which
the HOSVD can be related. Given a tensor A there are as many matrices
unfolding as the dimension of the tensor (here 3). The matrices unfolding
are defined using the tensor dimensions in a cyclic way, in our case the
dimensions are I1 = D, I2 = (N × M × S), I3 = 2. The mathematical
definition is [12]:

Assume an N th order tensor A ∈ IRI1×I2...×IN. The matrix unfolding
related to the nth dimension of the tensor (i.e. to the nth mode) An ∈
IRIn×(In+1In+2...INI1I2...In1 contains the element ai1i2...iN at the position with
row number in and column number equal to (in+11)In+2In+3...IN I1I2...In1+
(in+21)In+3In+4...IN I1I2...In1 + ... + (iN1)I1I2...In1 + (i11)I2I3...In1 +
(i21)I3I4...In1 + ...+ in1.

The introduced SVD can be applied to the matrix unfolding and this is
the reason for considering these matrices here for the rank reduction when
the HOSVD is adopted. It is possible to demonstrate that the unfolding
matrix related to the nth dimension of the tensor (i.e. to the nth mode)
can be decomposed as:

An = UnΣnVnT

(6)

whereUn is already introduced decomposing the tensor A and its columns
are the n-mode singular vectors, Σn is a diagonal matrix (exactly as in
the SVD) and the n-mode singular values of A, (σn

1 , σ
n
2 , ..., σ

n
In
), are on

the diagonal.

Using the HOSVD the rank reduction must be just in the dimension re-
lated to the parameter variations in order to have high accuracy in the
description and uncertainty quantification of the correlated IQs. Thus,
using the HOSVD, the matrix unfolding A1 is considered, since 1 is the
dimension of the defined data tensor related to the parameter variations,
and the reduction is just in the 1-mode set of singular vectors U1. For
the reduction, the Captured Energy criterion has been adopted [7]. This
method consists of selecting enough singular values of the matrix of inter-
est, A1 for the considered HOSVD, such that the sum of their squares is
a certain percentage T of the total sum of the squared values. The rea-
son for such a decision is that the resulting matrix ‘captures’ T% of the
Frobenius norm of the full matrix, which is correlated with the energy.

Step 3: Surrogate Modelling Surrogate models are then developed
for each column of the reduced matrix U1

k, modelling how they vary with
respect to the design parameters. Figure 8 clarifies how the HOSVD is
applied and then the surrogate models developed for the analysed problem;
the bending moment and the torque are the IQs and the variation in
terms of mass of engine (M) and pylon stiffness (E) are considered. It
is recommended to consider different surrogate models and to evaluate
the one that performs best using the responses obtained at the validation
points.
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Figure 8: Example
of Surrogate Modelling
Approach considering
the HOSVD as feature
extraction.
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Figure 9: Spider dia-
gram defined at the wing
root in order to ap-
ply the geometrical based
method and detect the
probability-bounds.

In the same way as when the SVD is used, the time histories of each IQ at
different stations, for different configurations / atmospheric conditions and
for a specific ith sampling point can be simply identified by multiplying
the respective row vector of coefficient (U1

k)i, determined by evaluating
the surrogate models at the specific ith sampling point in the parameter
space, by the basis Sk ×2 U2

k... ×D UD
k which is assumed not to change

throughout the design space.

A major advantage of the developed method is the possibility to com-
pletely identify the cases (e.g. gust length), configuration and time instant
which give the critical points of any part of the convex hull whatever the
decomposition adopted for feature extraction.

Step 4: Detection of angles of interest The Geometrical Based
Method developed here is aimed at predicting the effect of uncertainties on
the correlated aircraft loads described using the convex hull (or ‘potato’)
plots, whilst still keeping all the information about correlation. In order
to completely capture the correlation of loads, a point Pi, i = 1...S, and
a spider diagram, corresponding to each station, must be defined in the
correlated load plot as shown in Figure 9.

Using the SVD/HOSVD based method both the point Pi and the spi-
der diagram can be identified. The point Pi has to be selected such that
it is inside all the ‘potato’ plots obtained at a particular station for the
sampling points considered to perform the Uncertainty Quantification;
the time-responses are determined using the SVD/HOSVD based method
without running the numerical model and saving time. The spider dia-
gram is described by the set of angles αi, i = 1...S, needed to capture the
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Figure 10: Probabilistic
description of radii to de-
termine the bounds for
each desired quantile. Bending Moment (Nm) 10 6
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critical correlated loads at each station. The set of angles can be selected
exploiting the results obtained and presented in [19]. The significant di-
rections are assumed to be captured by the extreme worst case scenario
for the correlated loads, which is detected using the interval approach
[19]. Further directions can be considered, for example using the results
obtained with the quantile-approach [19]. The angles αi can be defined
as those formed by the x-axis and the segment that starts at the defined
point Pi and ends at the critical vertices of the determined extreme worst
outer bound. The point P and the spider diagram shown in red in Figure
9 are obtained at the wing root following such an approach.

Step 5: Probabilistic-bounds of convex hull An arbitrary high num-
ber N of sampling points across the entire parameter space can be con-
sidered to evaluate IQs using the SVD/HOSVD based method. Then, at
each station statistical quantities (PDF and CDF) can be detected for the
radii of the convex hull that start at the defined point Pi and end at the
critical vertices related to the angles αi. For the sake of clarity Figure 10
presents how the CDF of the radii is determined in a particular direction
of the spider diagram at the wing root. Different colours are considered
for different values of the CDF.

The last step to fully describe the critical cases is to find the correlated
loads belonging to the responses evaluated using the SVD/HOSVD based
method and nearest to the probabilistic bounds determined using the ge-
ometrical based method. In fact, the probabilistic bounds and relative
critical vertices, described so far, are obtained as intersections of the spi-
der diagrams with the lines defining the convex hulls obtained at the se-
lected high number N of sampling points. Thus, the points defining the
geometrical probabilistic bounds are not guaranteed to belong to any time
history.

The next step presents how to fulfill the stated identification.

Step 6: Critical cases detection

The geometric information needs to be related to the correlated loads
generated using the SVD/HOSVD based method.

First, the angular direction (clockwise or counter-clockwise) to be con-
sidered must be decided and a minimum and maximum absolute radial
distance dR from the segments whose endpoints are the geometrical crit-
ical vertices of the probability-bounds. Then, for each of the geometri-
cal probability-bounds, the critical cases in the correlated loads plot are
looked for in an iterative process starting from a segment whose endpoints
are two consecutive geometrical critical vertices. For the considered seg-
ment, the points belonging to one of the N evaluated time-responses are

Vol. 1, Issue 1, pp. 1–14 ASDJournal
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looked for in a particular rectangle. The vertices of this rectangle are
firstly set at plus and minus the minimum dR in the radial direction from
the two endpoints of the considered segment and towards the point Pi. dR
is iteratively increased if no points are found. If, eventually, the maximum
value of dR is reached, then, the second endpoint of the segment is set to
the the following critical vertex, according to the decided angular direc-
tion. Figures 11 and 12 show how the stated rectangles are constructed.
In particular, the rectangles shown in Figure 11 and 12 are those related
to the minimum and maximum values selected for dR (mindR, maxdR)
which are here defined as a percentage (Perc) of Ri, which is the length
of the radius connecting the point P with the geometrical critical vertex
i. Here, mindR and maxdR are fixed equal to 0.001 · Ri and 0.01 · Ri,
respectively.

Figure 13 shows an example of the results that can be obtained after having
applied the geometrical based method and used the rectangles to identify
the critical vertices that belong to one of the N evaluated time-responses
(obtained using the SVD/HOSVD method), which are represented with
blue dots in the picture. The red lines define all the considered rectangles
around the convex hull. For the sake of clarity, Figure 14 magnifies part of
Figure 13 to better show how the stated critical vertices can be identified
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Figure 13: Results
obtained after having
applied the geometrical
based method to identify
the 90% probabilistic
bound. The ‘rectangle-
technique’ has then been
used to identify the crit-
ical vertices that belong
to one of the N evaluated
time-responses (obtained
using the SVD/HOSVD
method), which are rep-
resented with blue dots in
the picture. The red lines
define all the considered
rectangles around the
convex hull.

−3 −2 −1 0 1 2 3 4

x 10
6

−4

−3

−2

−1

0

1

2
x 10

5

Bending Moment (Nm)
T

o
rq

u
e
 (

N
m

)

Figure 14:

Magnification of Fig-
ure 13 to show in detail
how the rectangles are
defined in order to de-
tect the critical vertices
related to correlated
quantities obtained with
the SVD/HOSVD based
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adopting the ‘rectangles-technique’; the geometrical critical vertices are
represented as red dots.

A final step that could be useful in the presence of an excessive number of
critical vertices, obtained applying the geometrical based method and the
‘rectangle-technique’ procedure, is to apply the convex hull to the detected
points. In such a way a reduction of critical cases is achieved. Figure 15 is
the result obtained applying the convex hull to the points shown in Figure
13.

4..1 Accuracy Discussion

The accuracy of the results given by the Uncertainty Quantification can be
discussed using a particular ‘radial error metric’ based on the spider diagram
description. The spider diagram is defined for each station and by the angles
αcri , which are formed by the x-axis and the radius that starts at the defined
point Pi and ends at the critical vertices, on the analysed probabilistic-bound,
whose coordinates are correlated quantities belonging to one of the N evaluated
time-responses (obtained using the SVD/HOSVD method). The difference with
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Figure 15: Reduction of
critical vertices shown as
blue dots in Figure 13
obtained simply applying
the convex hull to the
whole set of points.
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Figure 16: Comparison
of the spider diagrams de-
fined to perform UQ and
their validation.

the spider diagram adopted for the UQ is in the critical vertices adopted to define
the set of angles αcri , as shown in Figure 16.

The ‘radial error metric’ can be defined using the convex hull (and time-
responses) obtained for the last set of validation points (see first step of the
geometrical based method) at each station. For each station, the Mean Average
Percentage Error (MAPE) of the distance between the point Pi and the inter-
section between the ‘actual’/SVD or HOSVD convex hulls and the semi-straight
line that starts at Pi and has direction αcri , is considered. Mathematically, this
can be expressed as

MAPE =
1

Di,q

Di,q
∑

j=1

∣

∣

∣

∣

∣

R̂j −Rj

Rj

∣

∣

∣

∣

∣

i = 1...S q = 1...Q (7)

where Di,q is the dimension of αcri at the station i and for a probability fixed
equal to q, S is the total number of stations, Q is the number of considered
probability, Ri and R̂i are the radii obtained using the validation points and
the result of the geometrical based method.

For the sake of clarity, Figure 17 shows an example of two convex hulls
obtained at a validation point, using directly the numerical model (‘Actual’
convex hull) and the HOSVD based method, and the directions considered to
evaluate the ‘radial error metric’ as just stated. Figure 18 magnifies part of
Figure 16 and x marks are used to underline the intersections identifying the
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Figure 17: Spider di-
agram adopted for the
validation and compari-
son of an ‘actual’ convex
hulls and one obtained us-
ing the HOSVD method
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Figure 18:

Magnification of part
of Figure 17. The x mark
has been used here to un-
derline the intersections
that define the radius Ri

and R̂i adopted in the the
‘radial error metric’

sought length of interest Ri and R̂i.

5. Results and discussion

In this section the results of the developed geometrical based method applied
to data from the simulated civil aircraft model are presented. The discussion
is divided into two parts: the first one covers the steps related to the data
generation, application of the SVD/HOSVD approach and surrogate models;
the second presents results obtained using the geometrical based method.

5..1 Data generation, SVD/HOSVD and Surrogate Models

The Latin Hypercube Sampling method [16], was used to define the sampling
points for training, validation and best surrogate model selection due to its
characteristic in providing unbiased estimates for statistical variables and not
overlapping sampling points that can cover a large range without using a lot of
points. Sampling planes of 100, 30 and 1200 points respectively were used for the
training, validation of the surrogate models and the discussion of the accuracy
reached with the geometrical based method to propagate the uncertainty.

Once the data is generated, the data matrices/tensor have been constructed
and reduced using the Captured Energy criterion and fixing T equal to 99.9999
(see section 4. for further details). The HOSVD required 29 surrogate models
while the SVD required 27+37 models for the bending moment and torque
matrices, respectively. Just for the SVD, since it was already adopted in previous
work, [19] without applying the Energy criterion but looking at the variation of
the accuracy changing the number of singular values to be retained, the stated
criterion has not been considered. The same reduction done in [19] using the
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Figure 19: Convex hull
obtained exploiting the
HOSVD based method for
fixed desired probabilities.

SVD has been adopted, namely 1 and 30 surrogate models for the bending
moment and torque matrices.

The Blind Kriging Surrogate has been adopted both for the SVD and HOSVD
based methods as its accuracy for such an application has already been demon-
strated [19]. Both the validation of the surrogate models trained for the SVD
and the HOSVD based method show the same level of accuracy, with a MAPE
always less than 1% for the bending moment and 8% for the torque.

5..2 Geometrical based method

The angles αi needed to define the spider diagram (section 4., step 4) have
been selected as those characterizing the outer bounds obtained using the in-
terval and quantile approaches described in [19]. Using this spider diagram, the
probabilistic-bounds were determined using the approach explained in section
4. step 5. It is worth emphasizing that the number of considered varying pa-
rameters does not directly influence a change in the convex hull; rather, it is
the particular parameter that is varied that can affect the extent to which the
shape of the convex hull changes. However, thanks to the adopted geometrical
based method, the determined spider diagram is all that is needed to capture
the behaviour of the IQs given the range of the uncertain parameters.
Figure 19 shows the probabilistic-bounds obtained considering 1200 convex hulls
that were created using the HOSVD based method. The use of ether the HOSVD
or SVD based method speeds up the analysis because the surrogate models
are used to obtain the time-responses instead of running the numerical model.
Moreover, in the present application the HOSVD required a lower number of
surrogate models to be trained if compared to the SVD method, but keeping
the same accuracy; thus a further speeding up of the analysis has been achieved.
The reduction using the ROM method is about 100% compared to the monte-
carlo approach. A similar difference in computation time was observed in tests
where five uncertain parameters were considered. [19].

After having obtained the probabilistic-bounds, this information can be
mapped onto the correlated loads plots using the approach described in sec-
tion 4., step 6.

Figure 20 shows a comparison of the actual 90% probabilistic-bounds with
the one obtained using the SVD and HOSVD based methods at the wing root.
The actual bounds are determined using the time-histories related to the last val-
idation sampling plane (section 4., step 1). The ‘radial error metric’, described
in subsection 4..1, has been considered to assess the accuracy of the performed
Uncertainty Quantification and the results are very encouraging. For the sake of
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Figure 20: Comparison
of the actual convex hull
with those obtained hav-
ing fixed the desired prob-
ability to 90% and using
the SVD and the HOSVD
based methods.
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Table 2: MAPE ob-
tained comparing the
actual convex hull and
those obtained applying
the SVD/HOSVD based
method for different
selected probability.

Probability (%) MAPE
SVD (%) HOSVD (%)

10 3.24 2.68
20 2.17 1.82
30 1.47 1.22
40 1.75 1.32
50 1.38 1.12
60 1.23 0.97
70 1.20 0.96
80 1.44 1.22
90 1.29 1.14
100 1.28 1.31

completeness, Table 2 shows the MAPE calculated for 10 different probabilities,
always for the wing root, and the high accuracy is apparent.

Finally, Figure 21 and Table 3 are presented in order to show that the
developed method enables information about the critical cases to be retained.
Figure 21 shows the critical vertices on the correlated loads plots and for different
gust lengths. Table 3 provides information about design parameters (mass of
engine and pylon Young Modulus) and load cases (gust lengths) related to some
of the critical cases shown in Figure 21.

With respect to the correlation between the different stations along the wing,
Figures 22 and 23 shows the values of the IQs (bending moment and torque)
at different stations and at the critical cases obtained for the loads at the wing
root.

The geometrical based method gives the exact uncertainty bounds of the

Table 3: load cases (gust
lengths Lg) and values of
design parameters (mass
of engine me and py-
lon Young modulus E) at
some of the critical cases
shown in Figure 21 iden-
tified using the geometri-
cal based method and us-
ing the HOSVD.

Angle Lg(m) mE(kg) E(Pa)

1.31 62 8133.78 7.44E+10
7.92 62 8503.93 6.15E+10
12.05 62 8314.93 7.02E+10
154.04 62 8666.23 7.17E+10
172.59 83 8800.87 6.55E+10
174.83 214 8643.28 6.48E+10
178.34 105 8478.61 6.89E+10
185.94 62 9109.39 7.34E+10
353.12 105 8490.47 6.36E+10
354.68 127 8831.00 7.48E+10
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for the 90% probabilistic-
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convex hull for any level of desired probability. The critical points on the convex
hull can be obtained using the mapping procedure described in section 4.. The
method is more time consuming (160%) than the approach exploiting the use of
quantiles in terms of ’time-histories’ [19]. However, it maintains the correlation
of loads during the uncertainty management and there are no assumptions that
can influence the obtained outer bounds as happens if the quantile approach is
applied (see section 2. ).

6. Conclusions

A geometrically based method has been developed to efficiently predict the
probabilistic bounds of correlated aircraft loads and to relate the critical cases
back to the corresponding configuration, flight conditions and load cases. The
strength of the developed method is also in the inherent generalization of the
kind of input loads among which the critical loads can be searched. The case
study has shown that it is possible to accurately determine the geometrical
probabilistic bounds on correlated loads plots due to variations in the aircraft
structural parameters. The accuracy has been critically discussed, defining a
suitable ‘radial error metric’. The method is shown to address the possible inac-
curacies that could occur with a previous time history quantile bound method.
Both SVD and higher order SVD approaches have been used to identify the un-
derlying reduced order model and it has been found that the HOSVD approach
requires a substantially reduced order surrogate model if the Energy Criterion
is considered. The methodology developed in this paper has the potential to
significantly reduce the amount of computational required to not only determine
the worst case 1D and correlated loads for airworthiness certification, but also
to quantify the effects of uncertainty on the process. The approach is totally
general and could be extended to include all types of loads that have to be
considered eg. manoeuvres and ground loads.
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