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Abstract
Nonlinear Normal Modes (NNMs) have a clear conceptual relation to the clas-

sical linear normal modes (LNMs), yet they offer a solid theoretical framework for
interpreting a wide class of non-linear dynamical phenomena with no linear coun-
terpart. The main difficulty associated with NNMs is that their calculation for large-
scale models is expensive, particularly for distributed nonlinearities. Repeated direct
time integrations need to be carried out together with extensive sensitivity analysis
to reproduce the frequency-energy dependence of the modes of interest.

In the present paper, NNMs are computed from a reduced model obtained us-
ing a quadratic transformation comprising LNMs and Modal Derivatives (MDs).
Previous studies have shown that MDs can capture the essential dynamics of ge-
ometrically nonlinear structures and can greatly reduce the computational cost of
time integration.

A direct comparison with the NNMs computed from another standard reduction
technique highlights the capability of the proposed reduction method to capture the
essential nonlinear phenomena. The methodology is demonstrated using simple ex-
amples with 2 and 4 degrees of freedom.

1 Introduction

The manifestation of nonlinear phenomena during the vibration testing of aerospace
structures is frequently reported in the technical literature (e.g., for the Airbus
A400M [1] and for the F-16 aircraft [2]). A common source of nonlinearity is
the junction between structural components where freeplay and complex damping
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mechanisms can be present. The stringent constraints on weight also lead to more
flexible structures where geometrical nonlinear effects are present due to large dis-
placements and rotations.

Though frequently ignored in practice, the presence of nonlinearity poses impor-
tant challenges as novel dynamical phenomena with no linear counterpart may be
observed. Modal interactions, for instance, couple the vibration modes of a structure
and can lead to energy transfers that can in turn jeopardize the structural integrity
(cf. [3]). Addressing nonlinearity as early as in the design becomes therefore impor-
tant.

In this context, the concept of nonlinear normal modes (NNMs) proved useful.
First introduced in the 1960s by Rosenberg, NNMs were defined as families of syn-
chronous periodic oscillations [4, 5]. An extended definition considering NNMs as
(non-necessarily synchronous) periodic motions was then proposed in [6] to account
for modal interactions during which the periodic motion contains the frequencies of
at least two interacting modes. Considered as the direct extension of linear vibration
modes (VMs) to nonlinear systems, NNMs allow to rigorously interpret nonlinear
dynamical phenomena such as mode localization, internal resonances and mode bi-
furcations [7].

With the advances in computing power and in computer methods, recent years
witnessed the development of computational methods for NNMs. In Ref. [8], shoot-
ing and pseudo-arclength continuation methods are combined to calculate NNMs.
Alternatively, the harmonic balance and asymptotic numerical methods are used
in Ref. [9]. The main difficulty associated with NNMs is that their calculation for
large-scale models is expensive. If the aforementioned techniques were applied to
real-life structures [10, 3], the systems mainly consisted in large linear structures
with localized nonlinearities. In this case, classical linear reduction methods, such
as the Craig-Bampton or the Rubin techniques, can be used to accurately and ef-
fectively reduce the dimensionality of the linear system. However, for systems with
nonlinear geometrical effects, nonlinearities are distributed between all DOFs and
such linear approach proved ineffective.

In previous contributions [11, 12, 13], an effective model reduction of geomet-
rically nonlinear problems was achieved by combining VMs and modal derivatives
(MDs) in a single basis. Time simulations showed that the essential dynamics of the
structures was captured while computational efforts were effectively reduced. Sim-
ple, this approach has however the drawback of largely increasing the size of the
reduced-order model as the number of MDs grows quadratically with the number of
degrees of freedom (DOF).

In this paper, we present and investigate an alternative approach where VMs and
MDs are combined in a quadratic coordinate transformation. The proposed method
fully exploits the second-order Taylor-series expansion of the displacement vector
with respect to a reduced set of vibration modes. This differs from previous works
where a linear basis with additional coordinates for each MDs was built.

The paper is organized as follows. Section 2 introduces the governing equations
of motion and Section 3 presents the underlying theory behind classical Galerkin
model reduction techniques and introduces the concept of modal derivatives. In
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Section 4, the new quadratic transformation is derived. The method used for com-
puting NNMs is briefly introduced in Section 5. The quadratic manifold approach
is exploited in Section 6 using examples with 2 and 4 DOFs. A direct comparison
with the NNMs computed from the full system and from systems reduced with the
Galerkin method are used to discuss the performance of the proposed method.

2 Governing Equations

We seek the solution of the space discretized equation of motion of a generic system:Mÿ(t)+Ky(t)+ fnl(y(t)) = p(t)
y(0) = y0
ẏ(0) = ẏ0,

(1)

where y(t) ∈ Rn s the generalized displacement vector, M ∈ Rn×n and K ∈ Rn×n

are the mass and linear stiffness matrices, respectively, fnl(y(t)) : Rn 7→ Rn is the
nonlinear force vector and p(t) ∈ Rn is the time dependent applied load vector.
Note that we explicitly separate the linear and the nonlinear internal forces. The
initial conditions for the displacement and the velocity vector are indicated with y0
and ẏ0, respectively. From this point on, the time dependency is omitted for clarity.

3 Galerkin Projection

In practical applications, the size n of Eq. (1) is usually large. The number of un-
knowns can be reduced to k, with k� n, by projecting the displacement field y on a
suitable reduced order basis (ROB) Ψ ∈ Rn×k of time-independent vectors, as:

y≈Ψq, (2)

where q(t) ∈ Rk is the vector of modal amplitudes. The governing equations can
then be projected on the chosen basis Ψ in order to make the equilibrium resid-
ual orthogonal to the subspace in which the solution q is sought. This results in a
reduced system of k nonlinear equations:

Ψ
T MΨ q̈(t)+Ψ

T KΨq+Ψ
T fnl(Ψq) =Ψ

T p, (3)

or, equivalently,

M̂q̈+ K̂q+ f̂nl(Φq) = p̂. (4)

The reduced mass matrix M̂ and stiffness matrix K̂ do not depend on q and can be
calculated offline. We refer to the numerical solution y of Eq. (1) as the full solution,
while u =Ψ q̃ is called reduced solution, q̃ being the solution of Eq. (4). The key of
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a good reduction method is to find a suitable ROB Ψ that is able to reproduce the
full solution with a good, hopefully controlled, accuracy. Note here that Galerkin
projection is not strictly the only possible choice, since also the Petrov-Galerkin
method can be applied. In this method, the ROB for the left projection is different
than the ROB for the primary variable. Usually, the Galerkin method is preferred in
structural dynamics applications because of the symmetry and positive definiteness
of the tangential operators.

3.1 Vibration modes

Let us consider a static equilibrium position yeq when the applied load is constant
and given by peq. We can then linearize the system of equations (1) around such
configuration assuming that the motion u around yeq is small, i.e. y = yeq+u, ÿ = ü.
The linearized dynamic equilibrium equations become:

Mü+Ku = s (5)

where s is a small load variation from peq. The eigenvalue problem associated to
equation (5) writes: (

K−ω
2
i M
)

φi = 0, i = 1,2, . . . ,N (6)

and its solution provides n vibration modes (VMs) φi and associated natural fre-
quencies ω2

i . In linear modal analysis, the displacement vector u can be expressed
as a linear combination of m < n VMs as:

u =
m

∑
i=1

φi(yeq)qi = Φq (7)

where Φ = [φ1 . . . ,φm] ∈ Rn×m. In linear analysis, the VMs φi are costant, i.e. they
form a ROB that spans the small motion u around yeq. We discuss the implication
of large displacements on the ROB in the next section.

3.2 Modal Derivatives

The projection of the governing equations on a reduction basis formed by a reduced
set of VMs is a well-known technique for linear structural dynamics. The main ad-
vantage of this technique is that the resulting reduced model consists of a system of
uncoupled equations that can therefore be solved separately. As discussed in the in-
troduction, several attempts has been made to extend the vibration modes projection
for nonlinear analysis. The main limitation of such approach lies in the fact that the
vibration basis changes as the configuration of the system changes. It is therefore
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required to upgrade the basis during the numerical time integration to account for
the effect of the nonlinearity.

When the displacements can not be considered as small, the VMs change with
respect to the configuration. We can therefore express the displacement vector u as

u =
M

∑
i=1

φ i(yeq +u)qi (8)

where the dependence of the VMs on the displacement is highlighted. If Eq. (8) is
expanded in Taylor series around the equilibrium configuration yeq:

u =
M

∑
i=1

φ i(y)qi =
∂u
∂qi

∣∣∣
u=0

qi +
1
2

∂ 2u
∂qi∂q j

∣∣∣
u=0

qiq j + . . . (9)

The derivatives of the displacement vector with respect to the modal amplitudes qi
can be computed from equation (8), and are:

∂u
∂qi

= φi +
∂φ j

∂qi
q j (10)

and
∂ 2u

∂qi∂q j
=

∂φi

∂q j
+

∂φ j

∂qi
+

∂ 2φ k
∂qi∂q j

qk (11)

.
When evaluated at y = yeq, they become:

∂u
∂qi

∣∣∣
u=0

= φi (12)

and
∂ 2u

∂qi∂q j

∣∣∣
u=0

=
∂φi

∂q j
+

∂φ j

∂qi
(13)

The term (12) is the VM, while ∂φi
∂q j

is the MD: it represents how the VM φi

changes when the system is perturbed in the shape of VM φ i.
A way to compute ∂φi

∂q j
is to differentiate the eigenvalue problem (6) with respect

to the modal amplitudes:

[
Keq−ω

2
i M
] ∂Φi

∂q j
+

[
∂Keq

∂q j
− ∂ω2

i
∂q j

M
]

Φi = 0, (14)

together with orthogonality condition

Φ
T
i M

∂Φ j

∂qk
= 0, ∀, i, j,k = 1, . . . ,m, (15)

that must be added to in order to 14 to make the expansion 9 unique. Essentially,
Eq. (14) yields the sensitivity of the VMs with respect to the modal amplitudes.
In previous contributions [11, 12, 13], it has been shown that an effective ROB for
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geometrically nonlinear problems of the type governed by Eq. (1) can be formed by
combining dominant VMs with some MDs, as:

Ψ = [Φ1, . . . ,Φm, . . . ,
∂Φi

∂q j
, . . . ], (16)

While simple and effective, this approach bears the drawback of largely increasing
the size of the ROB, as the number of MDs grows quadratically with m. We present
in Section 4 an alternative approach that fully exploits the structure of Eq. (9).

4 Reduction with quadratic manifold

The expansion (9) essentially provides a quadratic mapping U(q) : Rm 7→ Rn be-
tween the modal coordinates q and the physical displacements u. Compactly, we
can write:

u = U(q) = Φq+
1
2

Θ(q,q) (17)

where the third order tensor Θ ∈ Rn×n×n writes componentwise:

ΘIi j =
∂φi

∂q j
+

∂φ j

∂qi
(18)

and ΘIi j =ΘI ji
The velocity and acceleration are then expressed as functions of the modal coor-

dinates qI as

u̇ = Φ q̇+Θ(q̇,q) (19)

and
ü = Φ q̈+Θ(q̈,q)+Θ(q̇, q̇), (20)

respectively. The tangent space V(q) ∈ Rn×m is computed as:

V =
∂U
∂q

= Φ +Θ(q, ·) (21)

The notation Θ(q, ·) is to be intended, componentwise, as ΘIi jqi =ΘIi jq j. When in-
serting the quadratic manifold approximation (17) in the governing equation (1) and
projecting on the tangent subspace (21) we obtain the reduced governing equations:

q̈+M3(q, q̈,q)+M3(q, q̇, q̇)+VT fint(U(q)) = VT p (22)

where M3Ii jk = ΘiIJMi jΘ jKL and orthogonality and mass-normalization has been
employed. As compared to the Galerkin projected equations 4 when VMs and MDs
are used to form the ROB, the reduced system 22 is much more compact (size m as
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compared to size m+m2). This approach is analogous to [14], where the nonlinear
manifold is constructed via a static condensation procedure.

5 Nonlinear Normal Modes

In the conservative case, NNMs can be sought numerically as periodic solutions
of the governing nonlinear equations of motion, i.e., Eqs. (1,4,22) for the full sys-
tem, the system reduced using a Galerkin-type projection, and the QM approach,
respectively. To this end, the two-step algorithm presented in Ref. [8] is exploited in
the present study. This section provides a succinct description of the shooting and
pseudo-arclength techniques used in the algorithm.

Shooting is a popular numerical technique for solving the two-point boundary-
value problem associated with the periodicity condition

H(T,zp0) = zp(T,zp0)− zp0 = 0 (23)

where H(T,zp0) is called the shooting function, and z is the state vector of the
system. H expresses the difference between the final state at time T of the system
zp(T,zp0) and the initial state of the system zp0 . A solution zp(t,zp0) is periodic if
zp(t,zp0) = zp(t +T,zp0) where T is the minimal period. In a shooting algorithm,
the period T and the initial conditions zp0 realizing a periodic motion are found
iteratively. More specifically, direct numerical integration is carried out to obtain
an initial guess of the periodic solution, which is corrected by means of a Newton-
Raphson procedure to converge to the actual solution. In this work, time integration
is performed using a fifth-order Runge-Kutta scheme with an automatic selection of
the time step.

Another important remark in the resolution of the boundary-value problem for-
mulated in Eq. (23) is that the phase of the periodic solutions is not unique. If zp(t)
is solution of the equations of motion, then zp(t +∆ t) is geometrically the same so-
lution in state space for any ∆ t. Hence, an additional condition h(zp0) = 0, termed
phase condition, is specified to remove the arbitrariness of the initial conditions.
Following the approach in Ref. [8], the modal velocities are set equal to zero. In
summary, an isolated NNM motion is computed by solving the augmented two-
point boundary-value problem defined by the two relations

H(T,zp0) = 0, (24)
h(zp0) = 0. (25)

To obtain the family of periodic solutions that describe the considered NNM,
shooting is combined with a pseudo-arclength continuation technique. Starting from
a known periodic solution, continuation proceeds in two steps, namely a prediction
and a correction, as illustrated in Fig. 1. In the prediction step, a guess of the next
periodic solution along the NNM branch is generated in the direction of the tangent
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vector to the branch at the current solution. Next, the prediction is corrected using a
shooting procedure, forcing the variations of the period and the initial conditions to
be orthogonal to the prediction direction.

Fig. 1 Schematic representation of the prediction and correction steps of the pseudo-arclength
continuation scheme.

6 Numerical Examples

We intend here to present simple tests to compare the exact NNMs obtained via
continuation method to the NNMs calculated with the MDs based reduced order
models (4) and (22). This is done using two examples containing 2 DOFs and 4
DOFs respectively.

6.1 2DOF Example

First a two DOFs system is examined with geometrical nonlinearities (quadratic and
cubic) arising from second order terms in the strain tensor. The configuration of the
system is shown in Figure(2). The equations of motion for the system write:{

mẍ1 + k1x1 + k2x1x2 +
3k1x2

1
2 +

k1x2
2

2 + (k1+k2)x1
2

(
x2

1 + x2
2
)
= 0

mẍ2 + k2x2 + k1x1x2 +
3k2x2

2
2 +

k2x2
1

2 + (k1+k2)x2
2

(
x2

1 + x2
2
)
= 0

(26)

where the parameters are set to be k1 = k2 = 1 N/m and m = 1 kg such that the
eigenfrequencies of the system become ω1 = 1 rad/s and ω2 =

√
3 rad/s.
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Fig. 2 Schematic representation of the 2 DOF system

To validate the proposed quadratic manifold formulation, the NNMs are com-
puted in physical space, and with the proposed quadratic manifold Eq.(17) with two
modal coordinates, so no reduction. NNM1 and NMM2 are presented in Figures (3,
4) using a frequency energy plot (FEP) (as suggested by [8]). From these figures, it
is confirmed that considering two modes provides a full system transformation that
results in the same exact FEP.

Fig. 3 FEP of first nonlinear normal mode

Next the reduction methods are used to compute NNM motion in a reduced sense.
For the Galerkin projection two ROB are formed containing [φi] and

[
φi,

∂φi
∂q j

]
re-

spectively. Note that in the latter situation the system is actually not reduced, and
therefore must produce the exact NNM. The quadratic manifold computation was
carried out with a single modal coordinate q.
From the FEPs, shown in Figure(5) and Figure(6), it is clear that the Galerkin projec-
tion with the modal derivative enhanced ROB produces the exact NNM. Regarding
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Fig. 4 FEP of second nonlinear normal mode

the results with actual reduction, the QM captures correctly the global trend of the
FEP whereas the GP is qualitatively correct for the second NNM and wrong for the
first one. One can also note that, for the first NNM, the branch computed with the
QM deviates earlier from the true solution than the branch obtained with GP.

Fig. 5 Comparison of the reduction methods in the FEP of NNM1
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Fig. 6 Comparison of the reduction methods in the FEP of NNM2

6.2 4DOF Example

The second example contains 4 DOF, and the nonlinearities are again of geometrical
nature. The configuration is presented in Figure(7). The equations of motions are
given by:



m1ẍ1−
k2(l0−x1+x2)((y1−y2)

2+(l0−x1+x2)
2−L2

0)
2L2

0
+

k1(l0+x1)((l0+x1)
2−L2

0+y2
1)

2L2
0

= 0

m1ÿ1 +
k1y1((l0+x1)

2−L2
0+y2

1)
2L2

0
+

k2(y1−y2)((y1−y2)
2+(l0−x1+x2)

2−L2
0)

2L2
0

= 0

m2ÿ1−
k3(l0−x2)((l0−x2)

2−L2
0+y2

2)
2L2

0
+

k2(l0−x1+x2)((y1−y2)
2+(l0−x1+x2)

2−L2
0)

2L2
0

= 0

m2ÿ2−
k2(y1−y2)((y1−y2)

2+(l0−x1+x2)
2−L2

0)
2L2

0
+

k3y2((l0−x2)
2−L2

0+y2
2)

2L2
0

= 0

(27)
where the parameters are set to be k1 = k2 = k3 = 1 N/m, m1 =m2 = 1 kg and the

original lengths of the springs are L0 = 0.4 m. A pretension is applied by suspending
the masses at a distance l0 = 0.5 m from the hinges and each other. The pretension
is applied to separate the eigenfrequencies of the in plane and out of plane mo-
tion, these frequencies are ω1 = 0.53 rad/s, ω2 = 0.92 rad/s, ω3 = 1.36 rad/s and
ω4 = 2.35 rad/s.

The first nonlinear normal modes obtained with the full system and both reduc-
tion methods is presented in Figure(8) accompanied by a close up for very small en-
ergy (Figure 9). The results in both figures indicate that the QM is less accurate com-
pared to a classical GP. However, if we look at the results in a frequency-amplitude
plot (see Figures (10) and (11)), the QM is able to approximate the motion in both in
and out of plane motion up to approximately 30% of the suspended spring lengths,
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Fig. 7 Schematic representation of the 4 DOF system

whilst the GP can only approximate the result in one direction (not not along x1).
From this point of view, the QM improved the results with respect to a simple GP.

Fig. 8 NNM1 FEP, reduction methods compared with exact physical NNM

The results for the second NNM are presented in Figures (12, 13) and confirm
our initial observations. More precisely, the QM is here more accurate than the GP
throughout the energy range considered.
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Fig. 9 Close up of NNM1 FEP, reduction methods compared with exact physical NNM

Fig. 10 NNM1 Frequency amplitude plot for x1
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Fig. 11 NNM1 Frequency amplitude plot for y1

Fig. 12 NNM2 FEP, reduction methods compared with exact physical NNM
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Fig. 13 Close up of NNM2 FEP, reduction methods compared with exact physical NNM
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7 Conclusions

In this paper, a quadratic coordinate transformation combining linear VMs and their
corresponding MDs was presented. In comparison with classical Galerkin reduction
methods where each MD is associated with an independent DOF in the reduced sys-
tem, the proposed method allows to further reduce the size of the dynamical system
while accounting for the change of the VMs due to nonlinearities. The QM reduc-
tion was applied to two examples with 2 and 4 DOFs, respectively. For reduced-
order models of same dimensions, the QM reduction showed to improve the results
obtained with the simple Galerkin projection.

We however stress that the presented results are only preliminary and further
investigations should be conducted. In particular, the improvements brought by the
QM were only present for very low energies (or amplitudes).

References

1. J. R. Ahlquist, J. M. Carreño, H. Climent, R. de Diego, and J. de Alba. Assessment of nonlinear
structural response in A400M GVT. In Proceedings of the International Modal Analysis
Conference, Jacksonville, FL, USA, 2010.
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scale aircraft. Journal of Aircraft, 50(5):1409–1419, 2013.

11. Sergio R. Idelsohn and Alberto Cardona. A reduction method for nonlinear structural dynamic
analysis. Computer Methods in Applied Mechanics and Engineering, 49(3):253–279, 6 1985.

12. Paolo Tiso. Optimal second order reduction basis selection for nonlinear transient analysis. In
Modal Analysis Topics, Volume 3, pages 27–39. Springer, 2011.

13. Frits Wenneker and Paolo Tiso. A substructuring method for geometrically nonlinear struc-
tures. In Dynamics of Coupled Structures, Volume 1. Springer.



Bridging the gap between Nonlinear Normal Modes and Modal Derivatives 17

14. J.B. Rutzmoser, D.J. Rixen, and P. Tiso. Model order reduction using an adaptive basis for
geometrically nonlinear structural dynamics. In Conference on Noise and Vibration Engineer-
ing, Leuven, Belgium, 20-25 September 2014.


