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Duncan and Humphreys (1989) identified two key factors
that affected performance in a visual search task for a
target among distractors. The first was the similarity of
the target to distractors (TD), and the second was the
similarity of distractors to each other (DD). Here we
investigate if it is the perceived similarity in foveal or
peripheral vision that determines performance. We
studied search using stimuli made from patches cut from
colored images of natural objects; differences between
targets and their modified distractors were estimated
using a ratings task peripherally and foveally. We used
search conditions in which the targets and distractors
were easy to distinguish both foveally and peripherally
(‘‘high’’ stimuli), in which they were difficult to
distinguish both foveally and peripherally (‘‘low’’), and in
which they were easy to distinguish foveally but difficult
to distinguish peripherally (‘‘metamers’’). In the critical
metameric condition, search slopes (change of search
time with number of distractors) were similar to the
‘‘low’’ condition, indicating a key role for peripheral
information in visual search as both conditions have low
perceived similarity peripherally. Furthermore, in all
conditions, search slope was well described
quantitatively from peripheral TD and DD but not foveal.

However, some features of search, such as error rates,
do indicate roles for foveal vision too.

Introduction

Finding a target among distractor stimuli is an
important skill in many everyday tasks. Laboratory
studies of visual search have traditionally used arrays
of simple, geometrical objects on a plain background,
for example, Roman capital letters or Gabor patches
(Treisman & Gormican, 1988; Wolfe & Horowitz,
2004). In such studies, the target might be a particular
letter or color with the distractors differing from the
target in one or more ways. Alternatively, the target
might be a Gabor patch of one orientation and spatial
frequency presented in a field of Gabors with different
parameters (Gilchrist, Heywood, & Findlay, 1999;
Joseph, Chun, & Nakayama, 1997; Rosenholtz, Huang,
Raj, Balas, & Ilie, 2012). Other researchers have used
arrays composed of images based on natural objects
(Alexander & Zelinsky, 2011, 2012).

One seminal framework for understanding search
difficulty is given by Duncan and Humphreys (1989).
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Within this framework, search time depends on three
factors. First, search time increases as the target is
made more similar to the distractors, i.e., as the target–
distractor difference (TD) decreases. Second, search
time increases as the distractors are made more
different from one another, i.e., as the distractor–
distractor difference (DD) increases. In fact, these two
factors interact: Heterogeneity among the distractors
becomes less important when the TD becomes greater
(i.e., the importance of DD decreases as TD increases).
Finally, the third factor determining search time is the
number of items in the search array. Search time
increases proportionately with set size so that it is
customary to summarize search efficiency as the search
slope, i.e., the rate at which search time increases with
set size. This powerful framework for understanding
search times or search efficiency has been replicated
many times and with many kinds of stimuli (Alexander
& Zelinsky, 2012; Bauer, Jolicoeur, & Cowan, 1996;
D’Zmura, 1991; Foster & Ward, 1991; Macquistan,
1994; Nagy & Sanchez, 1990; Phillips, Takeda, &
Kumada, 2006; Treisman & Gelade, 1980; Wolfe,
Friedman-Hill, Stewart, & O’Connell, 1992). One key
issue in the application of this framework is defining
how the differences between items in the display should
be independently measured. After all, a measurement
of these differences lies at the heart of the predictive
power of the model.

Our own particular interest is to study search stimuli
when the targets and distractors are naturalistic (rather
than letters or Gabor patches) with the stimuli being
colored photographs of natural scenes or objects
(Asher, Tolhurst, Troscianko, & Gilchrist, 2013;
Lovell, Gilchrist, Tolhurst, & Troscianko, 2009) in
order to see how far the straightforward rules for
search among discrete geometrical items can be
extended to search in more natural scenes. In this
context, it is potentially even more challenging to
extract a single measure of the difference between two
stimuli (Tolhurst et al., 2010).

The focus of Duncan and Humphreys’ (1989) work
was in describing the factors that determined search
time rather than in formally quantifying the key
predictive parameters (TD and DD) and in showing
precisely how search time depends upon their magni-
tudes. However, such a quantification would provide a
strong test of the framework. To understand how we
might quantify differences between items in search, we
need to consider the search process in more detail.

At the start of the search task, the subject is
presumably holding a ‘‘template’’ of the target’s
appearance in his or her memory. In almost all
situations, this template will have the detail consistent
with foveating the target. At this point, the search array
is presented. The first task for the visual system is to
identify an item in the display that is a good candidate

to be the target. This judgment, by definition, will be
carried out using peripheral vision. This is our first
candidate for how similarity has an impact on search: It
is the similarity between the stored template and the
peripheral information in vision that drives search
performance. Following this process, the subject then
allocates attention to that location and will often move
his or her eyes to foveate it. This candidate item is now
compared to the stored template using foveal vision.
This comparison process will take time and depends on
the foveal similarity between the fixated item and the
stored template; this is our second candidate for how
similarity has an impact on search performance. If the
currently foveated item does not match the target, then
other items in the search array need to be investigated,
and the next item will again be selected using peripheral
vision. If the target is different enough from the
distractors, it might be possible to identify it even with
peripheral vision. In the extreme case, the target will be
easily detectable in peripheral vision, resulting in the
‘‘pop out’’ effect (Treisman & Gelade, 1980). However,
in many search tasks, the target does not immediately
pop out; then, if the presently foveated item is rejected,
the subject must make eye movements (saccades)
during search to foveate on further items that might
potentially be the target. Those items that appear to be
most similar to the target as perceived with peripheral
vision are likely to be foveated next (Zelinsky, 2008).

Thus, both pop out and any decisions about where
to make the next saccade are based on a comparatively
degraded signal from the peripheral parts of the visual
field, and peripheral information has indeed been
shown to play an important role in visual search in a
number of paradigms. In experiments using gaze-
contingent displays, it has been shown that reducing
the peripheral information available to the observer
increases the length of search times and the number of
fixations seen (Geisler, Perry, & Najemnik, 2006;
Loschky & McConkie, 2002). In addition, the detect-
ability of a sine wave grating in noise at different
peripheral locations predicts the number and pattern of
eye movements in a search task (Najemnik & Geisler,
2005, 2008, 2009). There is also evidence that set size
effects become greater with increased eccentricity
(Carrasco, Evert, Chang, & Katz, 1995; Carrasco &
Yeshurun, 1998), further suggesting that peripheral
vision acts as a constraint on the difficulty of visual
search. Despite these findings, relatively few models of
visual search consider the importance of peripheral
vision (Zelinsky, 2008). In addition, there has been little
consideration of whether the type of peripheral
information available to the viewer affects search.

Perhaps if the perception of all kinds of stimuli were
equally degraded by peripheral vision compared to
foveal vision, it would not matter whether search times
depended upon peripheral or on foveal vision. How-
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ever, the fall-off in performance with eccentricity is not
uniform for different tasks (Levi, Klein, & Aitsebaomo,
1985; Hess & Field, 1993), and therefore, the degree to
which peripheral vision informs search may depend on
the particular task. For example, color discrimination
with naturalistic stimuli is fairly well preserved
peripherally whereas changes in shape become much
more difficult to discern (To, Gilchrist, Troscianko, &
Tolhurst, 2011). The cortical representation of the
periphery is not just a low-scale copy of the fovea
(Tolhurst & Ling, 1988), and the peripheral degrada-
tion of visual information is more complex than just a
simple ‘‘blurring’’ of the retinal inputs. Recent research
has suggested that the loss of information at increasing
eccentricities may be due to the representation of the
visual input as a set of summary statistics (Balas,
Nakano, & Rosenholtz, 2009; Freeman & Simoncelli,
2011; Levi, 2008; Parkes, Lund, Angelucci, Solomon, &
Morgan, 2001; Pelli & Tillman, 2008; Rosenholtz et al.,
2012). These peripheral summary statistics may list
what features are present but not necessarily where they
are exactly or how they relate to each other; they might
thus stay the same if an object’s shape is changed but
not if the color is changed. The same idea may explain
the phenomenon of ‘‘crowding’’ whereby peripheral
identification performance is reduced when there are
other items nearby (Bouma, 1970; Levi, 2008; Pelli &
Tillman, 2008).

That visual performance is degraded differently for
different stimulus dimensions allows us to address the
extent to which visual search times are determined by
foveal or peripheral processes. Specifically, we can ask
whether it is foveally or peripherally measured per-
ceived differences among the targets and distractors
that predict behavior (Zelinsky, 2008). It is possible to
construct targets and distractors from natural images
that are ‘‘metamers’’ (Freeman & Simoncelli, 2011).
These are stimuli that are physically different (e.g., in
shape) as can be seen foveally but that are perceived
peripherally as being identical. In this way, targets and
distractors could be constructed for a search task that
might be easy to distinguish foveally but that might be
difficult (or even impossible) to distinguish peripheral-
ly. Rosenholtz and colleagues have quantified this
process using computer graphics techniques that allow
them to synthesize stimuli with approximately the same
image statistics as the original stimulus, creating images
that they call ‘‘mongrels’’ (Balas et al., 2009; Ro-
senholtz et al., 2012). A key question therefore is how
visual search is affected when using targets and
distractors that are metamers or mongrels of each other
(Rosenholtz et al., 2012)

In this paper, we study search with target and
distractor stimuli constructed from digitized photo-
graphs of everyday objects, i.e., ‘‘natural scenes.’’ We
have previously shown (To et al., 2011) that changes in

the color of such stimuli can be identified as well
peripherally as foveally, but changes in the spatial
structure (‘‘shape’’) within the test stimuli are hard to
identify peripherally even when they are easy foveally;
the latter, therefore, form a convenient opportunity to
make ‘‘metamer’’ distractors. Thus, we have the basis
for constructing homogeneous and heterogeneous
search arrays that, in some instances, will be made of
stimulus components that are near ‘‘metamers.’’ Such
search stimuli yield two clearly different predictions of
search performance, depending on whether it is foveal
or peripheral difference that is the predictor of search
performance. If a search array uses distractors that are
metamers of the target, then the TD will be high
foveally and low peripherally. Search for such a target
should be fast if foveal image difference is more
important but slow if peripheral difference is more
important. Rosenholtz et al. (2012) showed indirectly
that it is peripheral discriminability that determines
search slope for arrays of simple geometric items with
homogeneous ‘‘mongrel’’ distractors.

When search is among simple stimuli, there are clear
metrics available for measuring the difference among
target and distractors, such as line length. Duncan and
Humphreys’ (1989) rules are successful in predicting
search efficiency given these intrinsic measures of
stimulus difference. However, for more complex
stimuli, such as images of natural objects, such
straightforward metrics of difference are often not
available. There are countless dimensions along which
images of real-world objects might differ perceptually,
and these differences may not be directly relatable to
any physical scale (Tolhurst et al., 2010). Importantly,
any measure based simply on a physical scale is unlikely
to highlight the differential effects of foveal and
peripheral vision. In order to begin to apply Duncan
and Humphreys’ framework to search scenes involving
naturalistic stimuli, we need a single measure of the
perceived differences among these complex target and
distractor items. In fact, we have already developed just
such a direct measure of perceptual difference: We ask
observers to give numerical ratings to represent the
perceived magnitude of the difference between pairs of
images as compared to a reference pair. Although the
changes in the stimulus may be multidimensional, the
numerical rating gives a single-valued measure of
‘‘visual difference’’ (To, Gilchrist, Troscianko, Kho, &
Tolhurst, 2009; To et al., 2011; To, Lovell, Troscianko,
& Tolhurst, 2010).

Thus, in this paper, we study search in arrays in
which the targets and distractors are constructed from
colored images of natural objects. The distractors are
formed by manipulating the color or spatial form of the
original targets, and we use a ratings methodology to
estimate perceived differences between these distractors
and the respective targets (TD) both foveally and
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peripherally. We also estimate the perceived differences
between different distractor variants (DD) foveally and
peripherally. For those search arrays that dissociate the
foveal and peripheral measures of perceived difference
(‘‘metamers’’), we show that search is slow despite the
large foveal perceived differences among the search
items. The slow search for such arrays is quantitatively
compatible with the small peripherally perceived
differences among the items. We therefore provide the
first direct evidence that peripheral information is
critical in determining search slopes. However, we show
a different pattern of results for search intercepts and
error rates with these appearing to depend more upon
foveal information, highlighting the need for both
peripheral and foveal information in successful visual
search.

Methods

The stimuli were presented on a 40 3 30 cm Sony
CRT with a pixel resolution of 800 3 600. The CRT
was viewed binocularly by the observers in a dimly lit
room from a distance of 80 cm so that the display
subtended 28.58 3 21.48 and each square pixel was 2.14

min. Stimuli were displayed under the control of a
ViSaGe system (Cambridge Research Systems, Roch-
ester, UK), which allowed precise control of stimulus
timing and, crucially, of observers’ reaction times
during search (see below). The display was primarily a
uniform mid-gray (60 cd.m�2) except for a fixation spot
and grid lines when appropriate and the actual rating
or search stimuli. The stimuli were constructed from
separate circular patches derived from colored photo-
graphs of natural scenes. The patches had a diameter of
68 pixels (2.48), and their edges were blended into the
gray of the background with a Gaussian window
(Figures 1B and 3). For the rating experiments, only
one such patch would be displayed at any one time; for
the search experiment, there could be five, 10, or 15
nontouching patches presented concurrently in a search
array.

Stimulus patch construction

Stimulus patches were constructed from square-
cropped photographs of natural objects. In the
preliminary ratings experiment (Supplementary
Materials, section 1), we used five photographs, but for
the main search and ratings experiments, we used only
the cat and flower photographs depicted in Figure 1A.

Figure 1. (A) Bitmap images of the two objects that were used

to construct variant images. In a preliminary rating experiment,

there were five such objects (Supplementary Figure 1A). (B)

Some examples of variant image patches made from the ‘‘cat’’
parent image. The patches had a circular outline gradually

blending into the gray background. ‘‘Color’’ changes: c1 is a

change in hue, c2 is a change in chroma/saturation, and c3 is a

change in overall brightness. ‘‘Shape’’ changes: s1 is blurred; s2

has the center of the image rotated and then blended into the

image rim; in s3, the whole patch is rotated; and in s4, the

central part of the image was broken up into nine squares,

which were then shuffled and blended into each other.

Figure 2. The results of a preliminary difference ratings

experiment. The graphs plot the averages of nine observers’

ratings for 286 image pairs. A peripherally viewed rating (7.58

eccentricity) is given on the ordinate plotted against the rating

for the same pair seen foveally; the ratings are averaged across

observers. The large colored circles show the kinds of foveal/

peripheral perceived differences that we would ideally use to

make the distractor patches in search arrays: Red have ‘‘high’’
perceived differences both foveally and peripherally, green have

‘‘low’’ perceived differences both foveally and peripherally, and

blue have ‘‘metamer’’ perceived differences (high foveally, but

low peripherally).
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From an original photograph, a number of variants
could be made (e.g., Figure 1B). For color changes, the
RGB values of the whole or the central part of the
photograph were converted approximately into L*c*h
space (via L*a*b) using built-in routines in MATLAB
(The MathWorks, Inc.), in which the hue (Figure 1B
c1), chroma (saturation, c2), or luminance (c3) could be
changed by varying amounts either alone or in
combination. The modified L*c*h matrices were
transformed back to RGB. Shape changes were
intended to spatially reorganize the photograph with-
out any changes in overall color. Figure 1B shows some
examples. The photograph could be blurred (Figure 1B
s1) by convolution with a 2-D Gaussian of varied size.

Alternatively, the whole or the central part of the image
could be rotated to varying degrees (s2, s3). Finally, the
whole or the central part of the image could be broken
up into a number of squares (33 3 up to 103 10), and
these squares could be randomly shuffled to generate a
new image; the squares were blended with Gaussian
edges to conceal the segment boundaries (s4). The aim
was to produce a number of color or shape changes
from each photograph that could range perceptually in
magnitude from near-undetectable to extremely obvi-
ous.

The square originals and their variants were then
resized (shrunk) to be 68 pixels square, and a flat-
topped circular mask with Gaussian edges was applied.

Figure 3. Four examples of search arrays, representing four of the 36 stimulus classes. The gridlines were to aid the observer in

deciding in which quadrant the target was presented. The patches were arranged so as to keep the numbers in each quadrant as

similar as possible. For stimulus construction (see Supplementary Material), each of the delineated major quadrants was considered

to consist of four subquadrants. For each of the 36 stimulus classes, 10 different arrays were produced with the same constituent

patches scattered in different quadrants or subquadrants. (A) Cat, five items, high TD and DD discriminability, heterogeneous

distractors; the target patch is in the top right quadrant. (B) Flower, 15 items, metamer discriminability, heterogeneous; the target

patch is in the top left quadrant. (C) Flower, five items, low discriminability, homogeneous; the target patch is in the lower right

quadrant. (D) Cat, 10 items, metamer discriminability, homogeneous; the target patch is in the top right quadrant.
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This blended the edges of the circular image patches
into the uniform mid-gray of the rest of the display
without any visible hard edges (Figure 1B).

Participants

Different groups of observers participated in the
various experiments (see details below). All observers
were naı̈ve to the purpose of the experiments and gave
their informed consent to take part. The research was
carried out in accordance with the Declaration of
Helsinki.

Preliminary rating experiment

For each of the five original images (Supplementary
Figure 1A), five color and five shape variants were
constructed. The perceived difference between an
original and each of its variants both peripherally and
foveally was determined in a ratings experiment (To et
al., 2011) whose details are given in the Supplementary
Materials, section 1. Figure 2 plots the average of the
ratings obtained by nine observers for each stimulus
pair peripherally (ordinate) against the average rating
for the same pair viewed foveally (abscissa). As found
by To et al. (2011) and as discussed in the
Supplementary Materials (Supplementary Figure 3A),
the perceived magnitude ratings were generally lower
peripherally than foveally with the shape changes being
more affected by peripheral vision than the color
changes.

The colored rings in Figure 2 identify three areas of
interest on the graph. The red ring (‘‘high’’) shows the
kinds of stimulus pairings that evoked a large perceived
difference rating both foveally and peripherally. The
green ring (‘‘low’’) shows stimuli that were hard to
discern both foveally and peripherally. The blue ring
shows ‘‘metamers’’ or ‘‘mongrels’’ (Freeman & Simon-
celli, 2011; Rosenholtz et al., 2012). These pairs are
perceptually clearly different when viewed foveally but
are perceived as near-identical when viewed peripher-
ally; these are key for the search experiment. It turned
out that most of the successful metamer pairs in this
preliminary experiment had come from the cat and
flower families of image pairs, and so the experiments
described below were carried out only with stimuli in
those two families. In order to make search arrays, we
required seven variants each of the cat and the flower in
each of the three areas (‘‘high,’’ ‘‘low,’’ and ‘‘meta-
mer’’). As there were cases in which we did not have
seven variants for a condition, we had to construct
additional variants judging the types and magnitudes of
change from the stimuli that had been appropriately
located in this preliminary experiment.

Search experiment

In each trial of the search experiment, the initial
presentation was the target for the next search array
(either the untransformed cat or flower image patch),
presented in the center of the display. When observers
indicated that they were ready by pushing a button on a
CB6 response box (Cambridge Research Systems), this
image was removed and was replaced briefly for 500 ms
by a fixation spot in the center of the mid-gray display.
The spot disappeared, and a search array was
presented, at which point a timer was started on the
ViSaGe system. Observers were instructed to fixate the
central spot until the search array was presented; then
they were free to move their gaze if they wished. The
array consisted of five, 10, or 15 nonoverlapping
patches, all drawn from the same family as the target
that had just been displayed. One of the patches was the
original untransformed image of the cat or flower (the
target), and the other patches (the distractors) were all
variants of the target (e.g., Figure 3 and Supplementary
Figure 5). As well as the stimulus patches, the display
included faint lines to split the screen into four obvious
quadrants. The observer’s task was to identify the
quadrant in which the target was located and to
respond quickly but accurately. Observers responded
by pushing one of four buttons on the CB6 response
box to indicate their choice of quadrant, and we
recorded whether that choice was correct. The button
push also halted the ViSaGe timer, and the observer’s
reaction time (search time) was recorded to a precision
of 1 ms.

We generated 36 families of search array, comprising
18 families based on the cat image and 18 based on the
flower image. For each of the 18 families based on one
image, six were made with distractors drawn from
image variants with ‘‘high’’ foveal and peripheral
perceived difference; six with ‘‘low’’ perceived differ-
ence distractors; and six with ‘‘metamer’’ distractors.
Within a group of six families, three were ‘‘homoge-
neous’’ distractor arrays (all the distractor patches were
identical to each other) and three were ‘‘heterogeneous’’
in which the distractors were drawn nonrandomly from
a pool of seven variants (see Supplementary Materials,
section 2). Finally, each of the heterogeneous or
homogeneous categories was constructed with three
different set sizes (five, 10, and 15, i.e., with four, nine,
and 14 distractor patches). See Supplementary
Materials (section 2) for details of how homogeneous
and heterogeneous distractors were selected and how
the patches were placed pseudorandomly on the
display.

For each of the 36 families, 10 different arrays were
constructed. The locations of the target and distractor
patches were chosen differently for each, and the
particular distractor patches were chosen pseudoran-
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domly from the appropriate pool of seven. Five
observers viewed and responded to each of the 360
search arrays, and the order of presentation was
different for each observer.

Correlation coefficients (n¼ 360 search arrays) were
calculated between the search times of each observer
and those of each other observer for the same stimuli.
The correlation coefficients were positive but not high
(range 0.32 to 0.58, M¼ 0.42). Low values may not be
surprising. In the easiest searches, the target may
visually ‘‘pop out’’ in peripheral vision and may be
spotted immediately. However, for the harder search
arrays, a wide range of search times is to be expected.
In the absence of sufficient peripheral information to
guide the gaze straight to the target, the first saccade
might chance upon the correct target location but, in a
more ‘‘unlucky’’ trial, a series of saccades over all of the
rest of the visual field might have to be made before the
target is finally found. The 360 arrays presented to each
observer consisted of 10 different instances of each of
36 conditions. After discarding the trials in which the
observer chose the wrong quadrant (see Results), we
looked at the distributions of search time for the
remaining (up to 10) instances of each condition and
found that they were typically non-Gaussian but
skewed to longer search times (cf. Reddi, Asrress, &
Carpenter, 2003). As a measure of central tendency, we
therefore took the median (rather than the mean) after
discarding the times for those trials that resulted in a
quadrant error. Now, the correlation coefficients (n ¼
36) between each observer’s median search times and
those of each other observer were much increased
(range 0.70 to 0.90, M ¼ 0.83).

Full rating experiment

We are interested in whether the measured search
times and calculated search slopes (see Results) can be
explained quantitatively as implied by Duncan and
Humphreys (1989) from knowledge of the perceived
TD and the perceived DD. The key issue of the present
paper is whether TD and DD should be based on
measures of differences in foveal or in peripheral vision.
Because some new image patches had been generated to
bring the total number of images in each family up to
seven, not all TD and DD ratings were known from the
preliminary ratings experiment. We therefore measured
TD and DD for the actual stimulus patches used in
constructing the search arrays, using a perceived
magnitude ratings protocol (To et al., 2009; To et al.,
2011; To et al., 2010) similar to that used in the
preliminary ratings experiment and described in detail
in the Supplementary Materials, section 1. We made
measurements of TD and DD foveally and at two
eccentricities: 58 and 128. In the search arrays, the

nearest neighbor distances between patches was com-
monly about 58, and the average distance between any
two patches was about 128.

We chose 128 pairs of stimulus patches for
measurement. For both the cat and flower families, we
compared the original (target) patch with all seven
distractor patches in each of the ‘‘high,’’ ‘‘low,’’ and
‘‘metamer’’ classes, giving 42 pairs contributing to
measures of TD. Given seven distractor patches in each
family and class, we could potentially have measured
six times 21 distractor–distractor pairings for the
heterogeneous search arrays; however, we made mea-
surements for only half of them (63). We also included
23 pairs in which a distractor patch was actually paired
against itself, i.e., there was no change in the stimulus.
The observers were told that there would be such
‘‘identity’’ pairs. They were included in order to
formally measure the perceived differences between
distractor patches in the homogeneous arrays. In
addition, we hoped this would encourage observers to
give rating magnitudes of zero if they perceived no
difference in a pair of patches (even when there might
actually be a difference). The rating values given to the
identity pairs are shown in Figure 6.

Observers viewed the 128 image pairs at each of the
three eccentricities. In a given trial, one of the pair was
chosen randomly and was presented for 833 ms. After
an interval of 83 ms while the fixation spot alone was
visible, the other patch was presented (833 ms). Finally,
after another brief interval, the first patch was
presented a second time. The reasons for having three
presentation intervals in a trial are given in To et al.
(2010). Unlike in our previous experiments (To et al.,
2009; To et al., 2011), the foveal and peripheral ratings
were not collected in separate blocks, but foveal and
peripheral presentations were randomly interleaved.
The random interleaving of trials at different eccen-
tricities was intended to ensure that the observers
maintained a single rating scale for all stimuli
irrespective of eccentricity. The observer fixated a spot
to the left of screen center, and in any trial, the stimulus
patches might appear at the spot or 58 or 128 to the
right of the spot but slightly above the horizontal. For
foveal stimulus presentations, the fixation spot was
removed while the stimulus patches were actually
present. The standard pair (Supplementary Figure 2)
was presented foveally every 12 trials, i.e., at the
fixation spot. At the end of the trial, the observer gave a
numerical rating of perceived difference in proportion
to the perceived difference of the foveally viewed
standard pair, which was deemed to have a magnitude
of ‘‘20.’’ This approach was taken to provide partici-
pants with a single ‘‘anchor’’ for their all their ratings,
foveal or peripheral. The 384 image pairs were
presented in four blocks of 96 in a different random
order for each of 11 observers.
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The ratings given by the 11 observers to each
stimulus pair were averaged. Standard errors of the
means increased with increasing mean, being 15.8% of
the averaged rating foveally (on average) and 21.4% at
128 peripherally. Comparing each observer’s ratings for
the 128 foveal stimuli with those of the other 10
observers gave correlation coefficients in the range
0.55–0.87 (M ¼ 0.76); the correlations for peripheral
viewing were slightly lower (e.g., at 128, mean r¼ 0.67).

Results

Search in arrays of naturalistic image patches

Five observers each responded to 360 search arrays
comprising five, 10, or 15 patches constructed from
photographs of either a cat or a flower. Half the arrays
were homogeneous (all distractor patches identical),
and half were heterogeneous (distractors drawn from a
pool of seven different variants of the target). There
were three conditions of array, distinguished by the TD
and, for the heterogeneous arrays, the DD. TD and
DD could be ‘‘high’’ both for foveal and for peripheral
vision, they could be ‘‘low’’ both foveally and
peripherally, or they could be ‘‘metamers’’ (high
perceived difference foveally but low difference pe-
ripherally).

We recorded search time (time between array onset
and the observer’s button push) and whether the
observer had correctly identified the screen quadrant
containing the target. In the 1,800 total trials, there
were 77 errors (4.3%) in which the observers had
chosen the wrong quadrant (see section 3A in
Supplementary Materials for details). Most (69) of the
errors were evoked by arrays in the ‘‘low’’ discrimina-
bility condition, especially for the heterogeneous
arrays. The feature of the ‘‘low’’ condition distin-
guishing it from the other two conditions is in having
low TD and DD discriminability foveally.

Figure 4 shows the median search times for the
various kinds of search array. Each point shows the
average and standard errors of 10 values: the averaged
values for five observers for both the cat and flower
versions of the particular kind of search array.
Consider first the results for the ‘‘high’’ TD and DD
(red) and ‘‘low’’ TD and DD conditions (green). These
conform well to the Duncan and Humphreys (1989)
model stated in the Introduction. Search time is longer
when DD is greater, i.e., search time is greater for
heterogeneous arrays (Figure 4B) than for homoge-
neous ones (Figure 4A), and it is longer when TD is low
(green) compared to when it is high (red). Search time
generally increases with set size, giving positive search
slopes, although for the fastest searches (high TD, but

zero DD, red symbols in Figure 4A), set size seems to
have little influence, consistent with fast ‘‘parallel’’
search (Treisman & Gelade, 1980). The key array
conditions for our study are those with ‘‘metamer’’
distractors (Figure 4, blue). It is quite clear from the
figure that the search times for ‘‘metamer’’ arrays are
slow and are much more similar to those for ‘‘low’’
discriminability distractors than for ‘‘high,’’ particu-
larly for the heterogeneous condition. Although search
times for ‘‘metamer’’ arrays may be similar to those for
‘‘low’’ arrays, the error rates (Supplementary Table 1)
for ‘‘metamer’’ arrays are actually similar to those for
‘‘high’’ arrays. In addition, in the homogeneous
condition, the search slope for the ‘‘metamer’’ condi-
tion appears to actually be steeper than that for the
‘‘low’’ condition.

Figure 4B suggests that the pattern of search times is
very similar for the ‘‘low’’ and ‘‘metamer’’ heteroge-
neous arrays, consistent with the hypothesis that search
time is dominated by peripheral perception of TD and
DD differences. However, closer inspection of the
results shows that this is an oversimplification and that
it may not be possible to generalize all aspects of the
response to all naturalistic image stimuli. Figure 5
replots the search time medians from Figure 4 and
separates the results for the cat and flower target
families. The pattern of results still looks the same for
the homogeneous arrays (Figure 5A, B), but the pattern
differs for heterogeneous distractor arrays. In the cat
arrays (Figure 5C), the search times for ‘‘metamer’’
arrays are longer than for ‘‘low’’ whereas for the flower

Figure 4. A summary of the search times for homogeneous (A)

and heterogeneous (B) distractor arrays. Each graph shows

search times as a function of set size for arrays of given

distractor difficulty. Low discriminability among constituent

patches (green); high discriminability (red); metamer discrim-

inability (blue). There were 10 different arrays within each class.

We took each observer’s median search time from each class of

10 after discarding the time for any trials where the wrong

quadrant was chosen; then we averaged those medians across

five observers and across the cat and flower arrays. Averages of

10 items with standard errors are shown.
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arrays (Figure 5D) the ‘‘metamer’’ search times are
shorter than for ‘‘low.’’ We will consider this difference
again below (Figure 7).

Search slopes

Above, we have summarized our results on search time,
but search efficiency is generally summarized as search
slope (Duncan & Humphreys, 1989): the rate at which
search time increases as the set size increases. To obtain a
search slope for each observer, we fitted simple least-
squares regressions to their median search times plotted
against the three set sizes. The average search slopes
across all observers are shown in Table 1A; the intercepts
of the regressions (extrapolated ‘‘search time’’ for zero
items) are also shown in Table 1B. The search times for
‘‘low’’ and ‘‘high’’ discriminability arrays are consistent
with the Duncan and Humphreys (1989) rules: Slope is
lower for homogeneous arrays than for heterogeneous,
and it is higher for the ‘‘low’’ arrays (with low TD). For
‘‘high’’ discriminability homogeneous arrays, the search
slope is near zero. The ‘‘metamer’’ arrays generally have

the highest search slopes of all. We ran a linear mixed
model on the data (using 60 data points with 12 slopes for
each participant) with the lme4 package (version 1.11-11;
Bates, Mächler, Bolker, & Walker, 2014) and the
lmerTest package (version 2.0-30; Kuznetsova, Brockh-
off, & Christensen, 2014) in R (version 3.2.3; Ihaka &
Gentleman, 1996). The model contained picture family
(cat vs. flower), distractor category (homogeneous vs.
heterogeneous), and array type (‘‘low,’’ ‘‘metamer,’’ or
‘‘high’’) as fixed factors and subject as a random factor.
Overall main effects were generated using the car package
(version 2.1-1; Fox & Weisberg, 2011). There was no
effect of cat versus flower family, v2(1)¼ 0.151, p . 0.05.
There were effects on slope of whether distractors were
homogeneous or heterogeneous, v2(1)¼ 21.700, p ,
0.001, and on discriminability class, v2(2)¼ 36.245, p ,
0.001; post hoc comparisons using Tukey tests in package
multcomp (version 1.4-3; Hothorn, Bretz, & Westfall,
2008) showed that the ‘‘metamer’’ arrays had significantly
higher slopes than the ‘‘high’’ arrays (Z¼ 6.020, p ,
0.001) and the ‘‘low’’ arrays (Z¼ 2.976, p¼ 0.008). The
‘‘low’’ arrays also had significantly higher slopes than the
‘‘high’’ arrays (Z¼ 3.044, p¼ 0.007). The ‘‘metamer’’
arrays therefore had the steepest slopes, followed by the
‘‘low’’ arrays, with the ‘‘high’’ arrays having the flattest
slopes. It was not possible to examine all the interactions
between the three factors because of the relatively small
number of data points in each condition.

Table 1B shows the intercepts of the search time
regressions. A linear mixed model of the data (set up in
exactly the same way as described for the slope model
above) showed that there was no effect of cat versus
flower family, v2(1)¼ 1.205, p . 0.05. Nor was there an
effect on intercept of whether distractors were homoge-
neous or heterogeneous, v2(1)¼ 3.350, p . 0.05.
However, there was a significant effect of target–
distractor class, v2(2)¼21.741, p , 0.001; post hoc testing
using Tukey tests showed the ‘‘low’’ category had
significantly higher intercepts (1215 ms) than the ‘‘meta-
mer’’ (Z¼ 4.147, p , 0.001) or ‘‘high’’ (Z¼ 3.919, p ,
0.001) categories (which were nearly the same, 550–590
ms on average; Z¼ 0.228, p¼ 0.972).

Overall, these results suggest that there are differences
between all target types in both search slopes and search
intercepts. ‘‘High’’ stimuli had flat search slopes and low
intercepts, and ‘‘low’’ stimuli had steeper search slopes and
relatively high intercepts. Like ‘‘low’’ stimuli, ‘‘metamer’’
stimuli showed a steep search slope but also showed a low
search intercept more similar to ‘‘high’’ stimuli.

Discriminability among target and distractor
patches

In order to explain the search times or search slopes
quantitatively in terms of Duncan and Humphreys’

Figure 5. As with Figure 4, the search times for homogeneous

distractor arrays (A and B) and heterogeneous arrays (C and D)

are shown, but the results for cat (A and C) and flower arrays (B

and D) are shown separately. Low discriminability among

constituent patches (green); high discriminability (red); meta-

mer discriminability (blue). Each point is the average of five

observer medians, and 61 SE is shown.
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(1989) rules, one must measure the perceived differ-
ences among the targets and distractors actually used in
constructing the search arrays. We obtained direct
measures of perceived difference using a ratings
magnitude protocol (see Methods and Supplementary
Materials, section 1, for details). Figure 6 plots the
difference ratings obtained with peripheral viewing of
image pairs (ordinate) against foveal viewing (abscissa)
of the same pairs (Figure 6A, 58 peripheral; Figure 6B,
128). As in our previous studies (To et al., 2009; To et
al., 2011), we found the perceived differences of most

image pairs to be reduced in peripheral vision
compared to foveal, especially so for image pairs that
differed in shape rather than color. However, Figure 6
(especially panel B) shows that many image pairs
evoked higher perceived difference ratings peripherally
(the line of equality is shown). We discuss this finding
further in Supplementary Materials, section 3B. The
color coding of the symbols follows Figures 2, 4, and 5,
showing the discriminability between target and dis-
tractors and among distractors for the three classes of
search array. As planned, the ‘‘high’’ patch pairs (red,
mostly color changes) had high perceived differences
both foveally and peripherally, and the ‘‘low’’ pairs
(green, mostly shape changes) had low perceived
differences foveally and peripherally. The blue symbols
show that the ‘‘metamer’’ pairs had low perceived
differences peripherally and moderately high perceived
differences foveally. The split into three distinct classes
is more obvious at the greater eccentricity (128). This
figure confirms that our design of the ‘‘metamer’’ search
arrays used patches that were as discriminable foveally
as the ‘‘high’’ stimuli but were as poorly discriminable
peripherally as the ‘‘low’’ stimuli.

The black symbols in Figure 6 show the ratings given
for those image pairs for which there was, in fact, no
difference; ideally, the observers should have given a
rating of zero to these stimuli. However, it can be seen
that the averaged ratings of the 11 observers for these
23 image pairs are not zero, but more interestingly, they
tend to be greater peripherally than foveally, particu-
larly at 128. These results are analyzed and discussed
further in Supplementary Materials, section 3C.

Modeling search slopes and search times

The ratings experiment (Figure 6) determined the
perceived difference foveally and at two eccentricities
for all possible target–distractor combinations in the
search arrays (TD) and also for many of the possible
DDs. Table 2A shows averaged TD values for the
different kinds of search arrays, both foveally and at
128 peripherally. Each of the TD estimates for
homogenous search arrays is the average of the 11
observers’ ratings for the two different distractor
image patches used to make the search arrays. Each
of the TD distances for the heterogeneous search
arrays is the average of the 11 observers’ ratings for
seven stimuli. The bold text shows an example in
which the ‘‘metamer’’ foveal and peripheral distances
are very similar to the ‘‘high’’ foveal and the ‘‘low’’
peripheral distances, respectively, as planned; the
italicized text shows a flower family example. The
equivalent pairings for the heterogeneous arrays are
not so close.

Figure 6. The graphs plot the averages of 11 observers’ ratings

for 128 image pairs. A peripherally viewed rating is given on the

ordinate plotted against the rating for the same pair seen

foveally; the ratings are averaged across observers. (A) Ratings

for 58 eccentricity are plotted against foveal rating. Circles are

‘‘cat’’; triangles are ‘‘flower.’’ The line of identity is shown. As in

Figures 4 and 5, low discriminability among constituent patches

is green; high discriminability is red; metamer discriminability is

blue. Black symbols are for 23 image pairs in which there was

actually no change. (B) As with part A, but for ratings for 128

eccentricity plotted against foveal rating.
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Table 2B shows averaged DD estimates. The
estimates for homogeneous arrays are based on the
particular patches used in those arrays (but see
‘‘Notes’’ to Table 2B); the estimates for heterogeneous
arrays are simply averages across the pairs we tested,
irrespective that different instances of an array will
have sampled differently from the pool of seven
distractor patches. For the homogeneous distractor
arrays, the DD should, in theory, have been zero.
However, in practice, observers did sometimes give
nonzero ratings to image pairs when there was, in fact,
no change (Figure 6). Not shown are the TD and DD
estimates at 58 eccentricity.

We used these averaged estimates of TD and DD to
model the search slopes pooled across observers (n ¼
12, Table 1A) and the averaged median search times (n
¼ 36, Figure 5) for the various classes of search array.
‘‘Search slope’’ is the rate at which search time increases
with set size. Duncan and Humphreys (1989) give us
the intuition that search time should increase with the
number of elements in the array (size). The slope should
depend inversely on the perceived magnitude of the
difference between the target patch and the distractor
patches (TD distance) but should have a positive
relationship with the perceived differences among the
distractor patches (DD).

Rosenholtz et al. (2012) used a simple formulation to
model their experiments: Search slope was inversely
proportional to peripheral TD when plotted on log–log
axes.

log10ðsearch slopeÞ ¼ kþ b1log10ðTDÞ ð1Þ
Figure 7A plots the search slopes (Table 1A) from our
experiments against the TD distance measured exper-
imentally at 128 eccentricity, averaged over all observ-
ers and all TD instances appropriate to a given search
array condition (Table 2A). The plot is log–log,
following Rosenholtz et al. (2012), and our data have
an inverse relationship as in their experiments (r¼
�0.735, black line). For the foveal measures of TD (not
plotted), the correlation is only �0.258, and for 58
eccentricity measures, it is �0.525. As stated before,
search time increases as the perceived differences
among the distractor patches increases (DD). Ro-
senholtz et al. studied only arrays with homogeneous
distractors (DD would be zero in theory), but analysis
of our experiment must also account for differences in
DD between heterogeneous conditions (Table 2B).
Simple regressions of log search slope against log DD
(not plotted) gave correlation coefficients of 0.418

Figure 7. (A) Following Rosenholtz et al. (2012), search slope (n

¼ 12) is plotted against the discriminability of the target from

the distractors. TD discriminability is the averaged TD rating

value for the array at 128 eccentricity. Red symbols for

homogeneous distractor arrays; blue for heterogeneous. Circles

for cat stimuli; triangles for flower stimuli. The black line is the

regression through all 12 data. (B) The experimentally measured

search slope (n¼ 12) is plotted against the slope predicted by a

multilinear regression on TD and DD at 128, Equation 2. Symbols

as in part A; the black line is the line of equality. (C) The actual

search time (n¼ 36) is plotted against the time predicted by the

�

 
nonlinear fit to Equation 4. Symbols as in part A. This figure is

reproduced in the Supplementary Materials (section 3) with

different symbols to highlight the ‘‘high,’’ ‘‘low,’’ and ‘‘meta-

mer’’ classes of array.
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(foveal), 0.441 (58), and 0.627 (128). We performed
multilinear fits on TD and DD together, of the form

log10ðsearch slopeÞ ¼ kþ b1log10ðTDÞ
þ b2log10ðDDÞ ð2Þ

For the homogeneous arrays, DD was physically zero,
but observers did sometimes report perceived differ-
ences especially with peripheral viewing (see
Supplementary Figure 7). We used the experimental
(nonzero) measures of DD (Table 2B). For foveal
measures of TD and DD, the multilinear fit improved
the correlation coefficient r to 0.522. However, the fit
with measures at 128 eccentricity improved to 0.955
(with 58 measures, r¼ 0.721). This correlation with 128

rating measures is significantly better than that with
foveal measures (r¼0.522 vs. 0.955, n¼12, z¼2.77, p¼
0.0056). Figure 7B plots the measured search slope
from our experiments against the value predicted by the
multilinear regression on the 128 eccentricity rating
data. It is interesting that the fits to the search slopes
for heterogeneous cat (blue circles) and heterogeneous
flower arrays (blue triangles) are not systematically
different even though the pattern of search times was
different (Figure 5).

The multilinear regression on TD and DD at 128

eccentricity was given by

log10ðsearch slopeÞ ¼ 3:809� 2:256log10ðTDÞ
þ 0:882log10ðDDÞ

ð2AÞ
Removing the logarithms, we might suppose that
search time would be given by

search time ¼ kkþ 6442 � DD0:882

TD2:256

� �
� size ms ð3Þ

However, this is not the overall best fit because the
initial fitting of search slopes (Table 1A, Figure 7B) will
have ignored the considerable divergence among the
intercepts (Table 1B). We therefore used a nonlinear
iterative fit of a four–parameter formulation:

search time ¼ kkþ k � DDb1

TDb2

� �
� size ms ð4Þ

Using the TD and DD values at 128, the best-fitting
values (r ¼ 0.904, n¼ 36) were given by

search time ¼ 533þ 2222 � DD0:267

TD1:222

� �
� size ms

ð4AÞ
The best fit of Equation 4A with foveal values of TD
and DD only gave r¼ 0.639; with 58 eccentricity values,
the fit gave r ¼ 0.823. Figure 7C plots the measured
search times from our experiments against the value
predicted by the fit at 128. The predictions for the
heterogeneous flower arrays seem to be systematically
too high (some blue triangles lie well below the line of
equality) reflecting the difference in pattern of search
times for the two families shown in Figure 5. The fit of
Equation 4A should be improvable if we could model
the single parameter kk as varying with the type of
search array, making it some nonlinear function of
foveal TD to account for the finding that ‘‘low’’ arrays
have greater intercept (kk) than ‘‘high’’ or ‘‘metamer’’
arrays. However, we do not have enough data to allow
extra fit parameters. Overall, the fits in Figure 7
quantitatively confirm the conclusion of Figure 4 that
search slopes and search times are largely dependent on
peripheral perceptions of the differences among the
array elements: The correlation coefficients are sub-
stantially better when using the 128 peripheral ratings
than when using the foveal ratings.

Search array

condition

(A) Search slope (B) Intercept

Cat family, slope

(ms/item)

Flower family, slope

(ms/item)

Cat family, intercept

(ms)

Flower family, intercept

(ms)

Value SE Value SE Value SE Value SE

Homogeneous

Low 34.8 37.9 37.7 30.8 1347 409 1147 333

Metamer 150.2 31.6 147.6 33.0 915 341 722 357

High 5.6 9.3 0.5 7.6 676 100 628 82

Heterogeneous

Low 143.4 72.4 257.2 128.6 1443 782 924 1389

Metamer 327.4 57.8 191.4 34.5 243 624 338 372

High 71.8 29.5 43.8 15.7 525 319 534 170

Table 1. Slopes (A) and intercepts (B) of the regressions of search time on set size. Notes: For each of the 12 types of search array (cat/
flower, homogeneous/heterogenous, low/high/metamer), there were three set sizes (five, 10, 15). Each regression is based on 15
data: three set sizes and the median search times of each of the five observers. The estimated standard errors of the regression
parameters are shown.
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Discussion

Search time has been hypothesized to depend upon
TD and DD (Duncan & Humphreys, 1989). In this
study, we have attempted to quantify these differences
using ratings of natural image stimuli (To et al., 2011;
To et al., 2010) in both peripheral and foveal vision. We
show that it is possible to create ‘‘metamer’’ images that
are easily distinguishable in foveal vision but difficult to
distinguish in peripheral vision, supporting previous
work that has shown that certain types of stimulus
changes are difficult to detect peripherally (To et al.,
2011). We then showed that peripheral ratings of TD
and DD can be used to quantitatively predict search
slopes, highlighting the important role of peripheral
vision in search tasks.

Using a search experiment, we found relatively slow
reaction times and steep search slopes for search
displays with low discriminability between target and
distractors both peripherally and foveally as predicted
by Duncan and Humphreys (1989). Similarly, search
displays with high discriminability between target and
distractors both peripherally and foveally had faster
search times and shallower search slopes. However, the

key condition in our study was the ‘‘metamer’’
condition, in which the distractors were easy to
discriminate from the target foveally but more difficult
peripherally. We have found that the ‘‘metamer’’
condition had similar search times to the ‘‘low’’
condition and in fact even steeper slopes than the ‘‘low’’
condition, implying that the peripheral TD is more
important than the foveal discriminability in deter-
mining overall search efficacy. Modeling using previ-
ously established formulations of the role of TD and
DD in search (Duncan & Humphreys, 1989; Ro-
senholtz et al., 2012) also showed that peripheral TD
and DD are better predictors of search times and slopes
than foveal TD and DD. Although there have been
previous studies highlighting the importance of pe-
ripheral information in search (Geisler et al., 2006;
Loschky & McConkie, 2002; Rosenholtz et al., 2012),
our results are the first to show this pattern for visual
search using naturalistic images.

Our results suggest that the discriminability of
targets and distractors in the periphery is critical in
understanding search time. The fastest search times
(‘‘pop out’’) are seen when the TDs are high and the
DDs are low (i.e., the distractors in search arrays are
homogeneous). In this case, the information required to

Search array condition

Cat family Flower family

Foveal Peripheral Foveal Peripheral

(A) Target–distractor distance (TD)

Homogeneous

Low 7.7 6 5.5 20.1 6 9.5 11.2 6 8.0 13.9 6 12.1

Metamer 35.9 6 18.9 18.5 6 15.2 31.5 6 19.7 10.8 6 12.3

High 44.2 6 19.9 39.9 6 20.7 37.3 6 14.3 40.7 6 11.6

Heterogeneous

Low 10.0 6 8.6 17.4 6 11.0 14.2 6 10.5 14.0 6 14.0

Metamer 23.1 6 19.3 10.1 6 10.9 30.6 6 20.5 9.0 6 10.5

High 32.3 6 14.8 35.6 6 15.5 41.3 6 20.6 39.3 616.8

(B) Distractor–distractor distance (DD)

Homogeneous

Low 0.0 6 0.0 4.3 6 6.0 1.2 6 3.1 3.5 6 6.2

Metamer 0.4 6 1.3 6.1 6 9.7 (1.7) (2.1)

High 0.3 6 0.9 2.8 6 5.1 2.1 6 6.0 0.7 6 1.7

Heterogeneous

Low 19.9 6 8.0 25.8 6 13.2 17.4 6 11.2 18.1 6 14.2

Metamer 27.1 6 18.9 13.6 6 13.7 35.9 6 20.6 12.3 6 12.0

High 42.0 6 19.5 44.8 6 18.6 48.8 6 23.5 43.7 6 19.6

Table 2. Estimated average target–distractor distances (TD, A) and distractor–distractor distances (DD, B) for foveal viewing and at 128
eccentricity. Notes: Eleven observers participated. (A) Based on the ratings of the difference between the target and a distractor. Each
of the TD estimates for homogenous search arrays is the average of the 11 observers’ ratings for two different distractor images (n¼
22). Each of the TD distances for the heterogeneous search arrays is the average of the 11 observers’ ratings for seven stimuli (n¼77);
these include the two stimuli counted for the homogeneous arrays. Standard deviations are shown. The highlighting is discussed in
the text. (B) Here the ratings were measured for the perceived difference between pairs of distractor stimuli. For the heterogeneous
DD distance, the values in the table are the averages for 11 observers’ ratings to only 11 of the possible pairs. The homogeneous DD
values in the table are based on 11 observers’ ratings for one or two image pairs except for the homogeneous ‘‘metamer’’ cat family
in which no pairs were examined; these values in brackets are the averages of the appropriate ‘‘high’’ and ‘‘low’’ ratings.
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make the discrimination does not need to be highly
detailed; for example, an observer may simply need to
pick out the target that matches the color of the
remembered template, and this is easy to do using just
peripheral information, leading to fast search times.
However, for slower search times (such as when TDs
are low and DDs are high), more detailed information
is needed to make a judgment, which is not available
with peripheral vision. This may be because the
differences are too small to be distinguished (such as in
the ‘‘low’’ condition) or because they are of the wrong
type to be easily discriminated in the periphery (such as
in the ‘‘metamer’’ condition). Observers therefore must
move their eyes to each target in turn to foveate them
and allow discrimination, increasing search times.

The increased search slope in the ‘‘low’’ and
‘‘metamer’’ conditions compared to the ‘‘high’’ condi-
tion reflects the increased difficulty of the search task
for the former conditions as the set size increases. This
could indicate that participants need to foveate a
greater number of images to be sure of finding the
correct target. Interestingly, we found that the search
slope of the ‘‘metamer’’ condition was actually even
higher than that for the ‘‘low’’ condition. This can
perhaps be explained by the results of the ratings
experiment, which showed that the rated TD periph-
erally was in fact slightly smaller for the ‘‘metamer’’
condition compared to the ‘‘low’’ condition (Figure
6B), suggesting that even more targets would need to be
foveated and checked on average for the ‘‘metamer’’
stimuli in the larger set sizes, leading to increased
search slopes. However, an alternative explanation for
the increased search slopes for both ‘‘metamer’’ and
‘‘low’’ conditions is that, with a greater number of
options, participants need to spend longer foveating
individual images to be sure of whether it is the target
or not. This is perhaps particularly plausible in the
‘‘low’’ condition, in which the distractors are all
perceived as being similar to the target even when
viewed foveally but may offer a less convincing
explanation for the ‘‘metamer’’ condition, in which it
should be easy to distinguish the target from the
distractors once they have been foveated.

Recent work using eye-tracking methodology has
considered these two possibilities in experiments using
naturalistic search stimuli with which the distractors
could differ from the target in zero, one, two, or three
features (Alexander & Zelinsky, 2012). They found that
increasing TD similarity changed both search guidance
(leading to an increase in time taken to fixate the target,
for example) and also led to longer foveal search
decisions (e.g., giving longer target verification times),
suggesting that both factors may be in play for the
differences between the ‘‘low’’ and ‘‘high’’ conditions in
our experiment. Similar results have also been found in
studies using simple patterns as search stimuli (Becker,

Ansorge, & Horstmann, 2009). It would be interesting
to extend the current study to consider whether
‘‘metamer’’ stimuli show different patterns with the
prediction being that search guidance might be strongly
slowed (and thus more similar to the ‘‘low’’ condition)
and search decisions would be unaffected (being more
similar to the ‘‘high’’ condition).

Although search in our ‘‘metamer’’ and ‘‘low’’
conditions share many similarities overall, it does not
seem that they are treated identically by the visual
system. The rating experiment, of course, shows that
‘‘metamer’’ stimuli are much more recognizable when
they are viewed foveally compared with peripherally
unlike the ‘‘low’’ stimuli; any differences in detail may
reflect the role of foveal vision in search. For instance,
observers were asked to indicate where in the display
they thought the target was, and by far, the most errors
were made with the ‘‘low’’ stimuli. In addition, we
found that search intercepts are generally higher for
‘‘low’’ arrays. Intercepts are not generally considered
when considering search efficiency (Zelinsky & Shein-
berg, 1997), but our results imply that they may offer
important insights in addition to search slopes into the
different types of search strategy that may be used for
different conditions. A higher intercept for the ‘‘low’’
arrays may again reflect the increased difficulty in
foveal discrimination for these stimuli as they imply
that even when the set size is zero (i.e., the target is on
its own) it takes longer to make a judgment.

One interesting finding in our current results is that
there were differences between the two types of
metameric stimuli used in the experiment with the
search times for the cat ‘‘metamer’’ array in the
heterogeneous condition being longer than the ‘‘low’’
array, which contrasts with the flower ‘‘metamer’’
array, for which the search times were shorter than the
corresponding ‘‘low’’ array. It is probably not surpris-
ing that different naturalistic images give different
results in detail although the differences here are not
easily explicable in terms of TD and DD in the ratings
experiment. It has been shown that high-level semantic
structure can affect search (Eckstein, Drescher, &
Shimozaki, 2006; Henderson, Weeks, & Hollingworth,
1999; Moores, Laiti, & Chelazzi, 2003; Neider &
Zelinsky, 2006), and therefore, the differences seen for
the different image families in this experiment may
reflect differences in how semantic information affects
search processes. For example, the cat target stimulus
in this experiment had an extremely clear, canonical
orientation whereas the flower target stimulus had a
much less obviously ‘‘correct’’ orientation due to its
many axes of approximate symmetry. This would allow
a subject to much more easily distinguish the target
from, say, any rotated distractors in the case of the cat
stimulus, making the ‘‘low’’ search condition relatively
easier than for the flower stimulus. This explanation
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would mean that the search results would not
necessarily be expected to match those found in the
ratings experiment; it is possible for participants to find
it easier to see that there are differences between two
flower stimuli than cat stimuli (leading to larger
difference ratings for the flower stimuli) while simul-
taneously finding it easier to identify the true cat as the
target (leading to slower search times for the flower
stimuli in the ‘‘low’’ condition). Of course, it is difficult
to generalize extensively from these results as only two
initial naturalistic images were tested. Future work
could use a wider range of images to test this
hypothesis.

Modeling our results using solely the 128 peripheral
measures of TD and DD produced good fits with r
values of over 0.8. We were able to model search slope
better than search time (which includes the extra high
intercept in the ‘‘low’’ condition). We can therefore
explain a great deal of the variation in the data using a
relatively simple formulation of how targets and
distractors are related to each other. However, it is
probable that this modeling could be improved by
adding further terms. We did not consider the
interaction between TD and DD suggested by Duncan
and Humphreys (1989) in which DD has less effect as
TD increases. We also did not add extra terms for the
foveal or 58 peripheral ratings. Given the high intercept
in the ‘‘low’’ condition, perhaps search time could be
better modeled by allowing kk (Equation 4) to depend
somehow upon foveal values. We conducted modeling
using only one peripheral eccentricity (128) as we found
that there was a high degree of correlation between the
data at the two peripheral eccentricities used in the
ratings experiment and even with the foveal ones. This
was especially true for the DD ratings because in
homogeneous arrays DD will be near zero whatever
eccentricity is used and in heterogeneous arrays the
ratings will all be higher (although to different extents
at different eccentricities). Last, we used averages of
TD and DD in each condition even though specific
distractors differed between arrays and the specific
differences between patches varied idiosyncratically.
Although it seems that a complete model should
include some of these aspects, a larger experimental
data set would be required to permit more complex
model fitting.

Although a strength of the results presented in this
paper is the use of naturalistic images, the current
visual search task differs from the natural situation in
a number of important ways. One limitation is that
search in real life may be less well constrained: For
example, people may not know exactly what they are
looking for or may be searching for a target that is not
in fact contained within a scene. The current approach
could be easily extended to include target-absent
conditions or tasks in which participants are required

to spot the ‘‘odd one out’’ target rather than a
specified target. However, a more fundamental limi-
tation may be that, when searching in a natural scene,
it may be difficult to accurately estimate pairwise
differences between target and distractor items due to
the difficulty of partitioning the background into
discrete distractors. However, recent research has
shown that some clutter metrics may provide an
alternative to set size as a determinant for visual
search tasks with natural scenes (Asher et al., 2013). It
may also be possible to generate contexts with
different levels of peripheral similarity to a target,
perhaps by using a model such as the texture tiling
model (Rosenholtz et al., 2012). Future work could
therefore use different levels of clutter as a way to tap
into the importance of peripheral information in
visual search in natural visually continuous scenes.

Conclusion

In conclusion, our results provide evidence that for
visual search tasks using discrete patches of natural-
istic stimuli, search times and search slopes are
primarily determined by peripheral visual measures of
perceived differences between targets and distractors
and not by foveal difference measures. However, we
also found that some aspects of search, such as
intercepts and errors, may be influenced by foveal
information, highlighting the interplay between pe-
ripheral and foveal vision in search tasks. Our results
support previous work using simpler, geometric
targets (Rosenholtz et al., 2012) and extend it to
stimuli that may be more similar to those used in real-
world search tasks.

Keywords: visual search, peripheral vision, natural
images, search slope
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