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ON THE PHASE-SPACE DISTRIBUTION OF BLOCH EIGENMODES FOR
PERIODIC POINT SCATTERERS

JORY GRIFFIN

Abstract. Consider the 3-dimensional Laplacian with a potential described by point
scatterers placed on the integer lattice. We prove that for Floquet-Bloch modes with
fixed quasi-momentum satisfying a certain Diophantine condition, there is a subse-
quence of eigenvalues of positive density whose eigenfunctions exhibit equidistri-
bution in position space and localisation in momentum space. This result comple-
ments the result of Ueberschär and Kurlberg [17] who show momentum localisation
for zero quasi-momentum in 2-dimensions and is the first result in this direction in
3-dimensions.

1. Introduction

The phase space distribution of quantum eigenfunctions for large energies re-
mains in general an unsolved problem - specifically, one would like to know whether
the eigenfunctions of a given system exhibit equidistribution or some degree of lo-
calisation (or indeed both). We are motivated by the physical problem concern-
ing propagation through a cubic crystal lattice of scatterers. It is well known that
when considering a scattering problem in which the wavelength is much larger
than the radius of the scatterer, we can replace the scattering potential with a Dirac
δ point potential. This approach is perhaps most famously used in the Kronig-
Penney model [6] which considers the one dimensional Schrödinger equation with
a Dirac comb potential. A thorough treatment of models of this type, as well as
higher dimensional analogs can be found in [1]. Periodic problems of this sort can
be tackled with Floquet-Bloch theory which allows us to reduce a periodic prob-
lem in Rd to a family of quasiperiodic problems on Td parametrised by their Bloch
vector or quasimomentum k ∈ Td.

For zero quasimomentum the problem of limiting phase space distributions has
been studied in two dimensions by Rudnick and Ueberschär [11], and Ueberschär
and Kurlberg [17, 8], who showed that almost all eigenfunctions equidistribute in
position space for all tori, and that in momentum space almost all eigenfunctions
either equidistribute for square tori, or localise for tori with a diophantine ratio
of side lengths. These results were partially generalised to three dimensions by
Yesha [18, 19] who showed that for the cubic torus, all eigenfunctions equidistribute
in position space, and that almost all eigenfunctions equidistribute in phase space.
These results are further complimented by Kurlberg and Rosenzweig [7] who show
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2 JORY GRIFFIN

the existence of localisation in position representation in 2 dimensions and mo-
mentum representation in both 2 and 3 dimensions. In this paper we generalise
the results on the cubic torus to include nonzero quasimomentum, which destroys
the high eigenvalue multiplicity and consequently, the equidistribution observed
by Yesha. The proof follows a similar blueprint, but relies heavily on a result con-
cerning the convergence of the two-point correlation function for inhomogeneous
quadratic forms [9].

(a) λ100 ≈ 100.03 (b) λ101 ≈ 100.04

(c) λ102 ≈ 100.06 (d) λ103 ≈ 100.09

(e) λ104 ≈ 100.11 (f) λ105 ≈ 100.13

Figure 1. Six consecutive eigenfunction density plots on the plane
(θ, φ) showing the distribution of momentum directions. We use fixed
quasimomentum k = ( 1√

2
, 1√

3
, 1√

5
).

Problems of this type have been studied extensively in the Quantum Chaos liter-
ature since Šeba [16] who considered a rectangular billiard with a point scatterer at
some given point. The Šeba billiard was constructed as an example of an intermedi-
ate system, meaning one that is classically integrable (the point scatterer affects only
a zero measure set of trajectories) yet exhibits properties typical of chaotic systems
[4, 12, 13, 14]. This is interesting in view of Shnirelman’s theorem [3, 15, 20] which
states that for classically ergodic systems, a density one subsequence of eigenfunc-
tions equidistributes in phase space, yet when the classical dynamics is integrable
eigenfunctions tend to localise or scar. We are interested in the Schrödinger equa-
tion on R3 with potential described by point scatterers placed on 2πZ3 which is
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described by the formal operator

−∆ + c ∑
j∈2πZ3

δj+x0 .(1)

This operator is unitarily equivalent via a gauge transformation to a direct inte-
gral over quasimomenta k. That is, we can instead consider a related quasiperiodic
problem on the torus which is then realised via Von Neumann self-adjoint exten-
sion theory [2]. We first show that almost all of the eigenfunctions of this operator
equidistribute in position space. We then prove that there is a positive density se-
quence of eigenfunctions which do not equidistribute in momentum space, specifi-
cally we can find a subsequence that partially localises in a given direction.

(a) λ14322 ≈ 203.630 (b) λ23985 ≈ 292.147

(c) λ45414 ≈ 454.925 (d) λ65109 ≈ 583.445

Figure 2. A collection of non-consecutive eigenfunctions in momen-
tum space with eigenvalue λ showing partial localisation in the
fixed direction (1,−1, 0). We again use fixed quasimomentum k =
( 1√

2
, 1√

3
, 1√

5
).
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2. Setup

Consider the positive operator −∆k on T3 = R3/(2πZ3) defined by

∆k =

(
∂

∂x
+ ik1

)2

+

(
∂

∂y
+ ik2

)2

+

(
∂

∂z
+ ik3

)2

.(2)

The eigenfunctions of this operator are the complex exponentials

1
(2π)3/2 ei〈ξ, x〉(3)

with eigenvalue |ξ + k|2, ξ ∈ Z3. Note here that when the components of k are
irrational and linearly independent, then all such eigenvalues are distinct. This will
be of major importance in the subsequent proofs. We will write N = {nj | j ∈N} to
denote the ordered sequence of these eigenvalues. Equivalently, we could consider
the standard Laplacian on T3 on functions that satisfy the quasiperiodic boundary
conditions ψ(x + γ) = ei〈γ,k〉ψ(x) for γ in 2πZ3. In this case the eigenfunctions are
proportional to the exponentials ei〈ξ+k,x〉 and again have corresponding eigenvalue
|ξ + k|2 - it turns out that the first formulation is more convenient in our case. It
is worth noting that this operator occurs naturally when considering the Laplacian
on R3 with some periodic potential. It is known that provided V(x + γ) = V(x)
for all γ ∈ 2πZ3 then the operator on R3 given by −∆ + V(x) has a direct integral
decomposition into operators on T3 of the form −∆k + V(x). Full details of this
procedure for a general operator can be found in [10]. We consider the perturbation
of the operator −∆k by a δ potential at a given point x0 ∈ T3. We realise the
perturbed operator

Hk = −∆k + δx0(4)

via self-adjoint extension theory. Details of this calculation can be found in e.g. [2].
The idea is that if we restrict our operator to functions vanishing at the point x0, it
should act like −∆k. This operator is then positive symmetric but not self-adjoint, so
we extend the domain of functions in such a way that self-adjointness is regained.
If we define the restricted Laplacian, −∆0 := −∆ |D0 with

D0 := C∞(T3/{x0}),(5)

then the deficiency indices are (1, 1) and the deficiency elements are the Green’s
functions, G±i(x, x0), where we define Gλ by

Gλ(x, x0) := (∆k + λ)−1δ(x− x0)
L2
= − 1

8π3 ∑
ξ∈Z3

ei〈ξ, x−x0〉

|ξ + k|2 − λ
.(6)

Throughout the paper we will also use gλ = Gλ/‖Gλ‖ to denote the normalised
Green’s functions. There therefore exists a 1-parameter family of self-adjoint exten-
sions parametrised by φ which we denote by ∆k,φ. The domains of these operators
consist of functions f such that

f (x) = C
(

cos(φ/2)
1

4π|x− x0|
+ sin(φ/2)

)
+ o(1)(7)
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as x → x0. The domain of ∆k,φ can be written

Dφ =
{

h + cGi(·, x0) + ceiφG−i(·, x0) | h ∈ D0, c ∈ C, φ ∈ (−π, π)
}

,(8)

and the action of ∆k,φ is given by

−∆k,φ f = −∆k h + ciGi(·, x0)− ceiφiG−i(·, x0).(9)

The new perturbed eigenvalues are given by solutions of the equation

∑
ξ∈Z3

(
1

|ξ + k|2 − λ
− |ξ + k|2
|ξ + k|4 + 1

)
= c0 tan(φ/2),(10)

where

c0 = ∑
ξ∈Z3

1
|ξ + k|4 + 1

.(11)

The set of perturbed eigenvalues will be denoted by Λ.

3. Statement of Results

We state the main results as two separate theorems, the first concerning pure
position observables, the second concerning full phase space observables. To deal
with phase space we first need to define quantisation. We follow the approach used
in [19]. Consider a classical symbol a ∈ C∞(S∗T3), where S∗T3 ' T3 × S2. We
define the quantisation Op(a) by

(Op(a) f )(x) = ∑
ξ∈Z3

ei〈ξ,x〉a(x, ξ + k) f̂ (ξ),(12)

where we use the notation ξ = ξ
|ξ| and |ξ + k| is assumed to be nonzero for all ξ.

We can then expand a in functions eζ,l,m(x, ξ) = Yl,m(ξ)ei〈ζ,x〉, where Yl,m(ξ) is the
(normalised) spherical harmonic of degree l and order m. Specifically we consider
some finite polynomial P defined by

P(x, ξ) = ∑
|ζ|≤N1

∑
l≤N2

∑
|m|≤l

cζ,l,meζ,l,m(x, ξ),(13)

and claim that for all a ∈ C∞(S∗T3) there exist N1 and N2 such that for all (x, ξ) ∈
S∗T3 and multi-indices α with |α| < 2 we have

|∂α
x(a(x, ξ)− P(x, ξ))| < ε.(14)

In light of this it suffices to prove our theorem only for these finite polynomials - the
extension to a wider class of functions can be performed by expanding the function
in a basis of these polynomials, truncating at some finite order, and controlling the
error term (see [19] for details). We are now able to state the main results. Let Λ
denote the sequence of perturbed eigenvalues.

Definition 3.1. A vector k ∈ Rd is said to be Diophantine of type κ if there exists a
constant C such that for all m ∈ Rd, q ∈N we have

max
j

∣∣∣∣k j −
mj

q

∣∣∣∣ > C
qκ

.(15)
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The smallest possible value of κ is κ = 1 + 1
d . In this case k is called badly approx-

imable. We now consider exclusively 3 dimensions, where κ ≥ 4/3.

The first theorem concerns position space equidistribution and is proved in Sec-
tion 5.

Theorem 3.1. Fix φ ∈ (−π, π). Assume the components of (1, k) are linearly independent
over Q. Then, there is a density one subset Λ′ ⊂ Λ such that for all observables a ∈ C∞(T3)
we have

lim
λ→∞
〈a(x)gλ(x), gλ(x)〉 = 1

8π3

∫
T3

a(x) dx(16)

with λ ∈ Λ′.

The second theorem concerns simultaneous equidistribution in position space and
partial localisation in momentum space and is proved in Section 6.

Theorem 3.2. Fix φ ∈ (−π, π). Let k be diophantine of type κ ∈ [4/3, 2) and assume the
components of (1, k) are linearly independent over Q. Then, for all ε > 0 there is a subset
Mε ⊂ N of density at least 1− ε such that for all subsequences (λn)n∈Mε , there exists a
further subsequence (λnj)j∈N such that for all observables a ∈ C∞(S∗T3) we have

lim
j→∞
〈Op(a(x, ξ))gλnj

(x), gλnj
(x)〉 = 1

vol(S∗T3)

∫
S∗T3

a(x, ξ) dx dµ(ξ̄)(17)

where µ has a positive proportion of its mass supported on a finite number of points.

4. Truncation

In order to consider only finite sums we define a truncated Green’s function.
Define A(λ, L) by

A(λ, L) = {ξ ∈ Z3 : ||ξ + k|2 − λ| < L},(18)

we then define the truncated Green’s function by

Gλ,L(x, x0) = −
1

8π3 ∑
ξ∈A(λ,L)

ei〈ξ, x−x0〉

|ξ + k|2 − λ
,(19)

and as before we denote by gλ,L = Gλ,L/‖Gλ,L‖ the corresponding normalised trun-
cated Green’s function. We want to show that for L = λ−δ for some δ this truncation
is a good approximation for large λ. We first need a lower bound on the full Green’s
function. Define

N (x) = {n ∈ N | n ≤ x}.(20)

If the components of (1, k) are linearly independent over Q then we know the as-
ymptotic behaviour of N (x) to be

N(x) = #N (x) =
4
3

πx3/2 + O(xθ).(21)

It is conjectured that θ = 1
2 + ε for all ε, and for k = 0, when counting with mul-

tiplicities, the current best explicit bound due to Heath-Brown [5] gives θ = 21
32 + ε

for all ε > 0. For our purposes it is required that θ < 1, in fact we will show in the
Appendix that we have θ < 3

4 + ε independent of k.
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Lemma 4.1. Let the components of (1, k) be linearly independent over Q. Then, there is a
density one subset of eigenvalues Λ′ ⊂ Λ such that for λ ∈ Λ′

‖Gλ‖ � λ1/2−ε.(22)

Proof. We have from (21) that

1
N(x) ∑

nk≤x
(nk − nk−1) �

x
N(x)

� x−1/2.(23)

Thus, since nk − nk−1 > 0 we must have that for a subsequence of density one that

nk+1 − nk � n−1/2+ε
k+1 .(24)

Let nk+1 > λ > nk and we see

‖Gλ‖2 � ∑
n∈N

1
(n− λ)2 >

1
(nk+1 − λ)2 >

1
(nk+1 − nk)2 � n1−ε

k+1 > λ1−ε.(25)

�

Lemma 4.2. Let L = λ−δ, then ‖gλ,L − gλ‖ → 0 as λ→ ∞ with λ ∈ Λ′.

Proof. First we see that

‖gλ,L − gλ‖ =
∥∥∥∥ Gλ

‖Gλ‖
− Gλ,L

‖Gλ,L‖

∥∥∥∥(26)

=

∥∥∥∥ Gλ

‖Gλ‖
− Gλ,L

‖Gλ‖
+

Gλ,L

‖Gλ‖
− Gλ,L

‖Gλ,L‖

∥∥∥∥(27)

≤ ‖Gλ − Gλ,L‖
‖Gλ‖

+ ‖Gλ,L‖
∣∣∣∣ 1
‖Gλ‖

− 1
‖Gλ,L‖

∣∣∣∣(28)

≤ 2
‖Gλ − Gλ,L‖
‖Gλ‖

.(29)

Then we have

‖Gλ − Gλ,L‖2 � ∑
||ξ+k|2−λ|>L

1
(|ξ + k|2 − λ)2 .(30)

We evaluate the lattice sum via Abel summation, which tells us that for a smooth
function f we have

∑
nA<|ξ+k|2<nB

f (|ξ + k|2) = N(nB) f (nB)− N(nA) f (nA+1)−
∫ nB

nA+1

f ′(t)N(t) dt.(31)

Integrating by parts we see

∑
nA<|ξ+k|2<nB

f (|ξ + k|2) = 2π
∫ nB

nA+1

f (t)t1/2 dt(32)

+ O(nθ
B f (nB)− nθ

A f (nA+1)) + O(
∫ nB

nA+1

| f ′(t)|tθ dt).(33)
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Applying this to f (n) = 1
(n−λ)2 with nA = n0 and nB < λ− L < nB+1 we see

∑
n<λ−L

1
(n− λ)2 = 2π

∫ nB

n1

n1/2

(n− λ)2 dn + O

(
nθ

B
(nB − λ)2

)
+ O

(∫ nB

n1

nθ

(λ− n)3 dn
)

.

(34)

We can bound the integral by∫ nB

n1

n1/2

(n− λ)2 dn ≤ λ1/2
∫ nB

n1

1
(n− λ)2 dn(35)

≤ λ1/2

L
≤ λθ

L2 .(36)

Similarly we see

nθ
B

(nB − λ)2 ≤
λθ

L2 ,(37)

and also ∫ nB

n1

nθ

(λ− n)3 �
λθ

L2 .(38)

Now repeating this procedure with nA < λ + L < nA+1 and nB = ∞ we obtain

∑
n>λ−L

1
(n− λ)2 = 2π

∫ ∞

nA+1

n1/2

(n− λ)2 dn + O

(
nθ

A
(nA − λ)2

)
+ O

(∫ ∞

nA

nθ

(λ− n)3 dn
)

.

(39)

For the first integral we write∫ ∞

nA+1

n1/2

(n− λ)2 dn =
∫ ∞

nA+1−λ

(s + λ)1/2

s2 ds

≤
∫ λ

L

(s + λ)1/2

s2 ds +
∫ ∞

λ

(s + λ)1/2

s2 ds

� λ1/2

L
� λθ

L2 .(40)

For the second term we have immediately

nθ
A

(nA − λ)2 �
λθ

L2 .(41)

For the third term we see∫ ∞

nA

nθ

(λ− n)3 dn =
∫ ∞

nA+1−λ

(s + λ)θ

s3 ds

�
∫ ∞

nA+1−λ

s + λ

s3 ds� 1
λ

.(42)

Putting all of this together we see

‖Gλ − Gλ,L‖2 � λθ

L2 ,(43)
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and hence, using Lemma 4.1, that for the normalised Green’s functions

‖gλ,L − gλ‖ �
λ−

1−θ
2

L
= λ−(1−θ)/2+ε+δ(44)

which tends to 0 for all δ < 1−θ
2 − ε. �

Corollary 4.1. Define gλ,L as above with L = λ−δ and 0 < δ < 1−θ
2 − ε then

|〈Op(eζ,l,m)gλ,L, gλ,L〉 − 〈Op(eζ,l,m)gλ, gλ〉| → 0.(45)

Proof. We have

|〈Op(eζ,l,m)gλ,L, gλ,L〉 − 〈Op(eζ,l,m)gλ, gλ〉|(46)

≤ |〈Op(eζ,l,m)gλ,L, gλ,L − gλ〉|+ |〈Op(eζ,l,m)(gλ − gλ,L), gλ〉|.(47)

Taking each term and using Cauchy-Schwarz gives

|〈Op(eζ,l,m)gλ,L, gλ,L〉 − 〈Op(eζ,l,m)gλ, gλ〉| ≤ ‖Op(eζ,l,m)‖‖gλ − gλ,L‖ → 0.(48)

�

5. Equidistribution in Position Space

The following proposition is key to the proof.

Proposition 5.1. Fix ζ 6= 0, l ∈ N and |m| ≤ l. Let L = λ−δ for some δ > 0. Let the
components of (1, k) be linearly independent over Q. Then, for λ sufficiently large we have

〈Op(eζ,l,m)gλ,L, gλ,L〉 = 0.(49)

In order to prove this we first need a lemma.

Lemma 5.1. Let the components of (k, 1) be linearly independent over Q and fix ζ ∈ Z3

nonzero. Then, there exists some ε > 0 such that for all ξ ∈ Z3 we have

|2〈ξ + k, ζ〉+ |ζ|2| > ε.(50)

Proof. We have that

|2〈ξ + k, ζ〉+ |ζ|2| > ‖2〈k, ζ〉‖

where ‖ · ‖ represents the distance to the nearest integer. Since we assumed the
components of (k, 1) were linearly independent, this is bounded away from zero.
Now choose ε = ‖〈k, ζ〉‖. �



10 JORY GRIFFIN

Proof of Proposition 5.1. First write

|〈Op(eζ,l,m)Gλ,L, Gλ,L〉|

=
1

64π6‖Gλ‖2

∣∣∣〈 ∑
ξ∈A(λ,L)

ei〈ξ,x−x0〉

|ξ + k|2 − λ
ei〈ζ,x〉Yl,m(ξ + k), ∑

η∈A(λ,L)

ei〈η,x−x0〉

|η + k|2 − λ
〉
∣∣∣

(51)

=
1

64π6‖Gλ‖2

∣∣∣ ∫
T3

∑
ξ,η∈A(λ,L)

ei〈η−ξ,x−x0〉

(|ξ + k|2 − λ)(|η + k|2 − λ)
e−i〈ζ,x〉Y∗l,m(ξ + k) dx

∣∣∣.
(52)

Integrating over x leaves only the terms where η = ξ + ζ. However, note that by
Lemma 5.1, for ξ ∈ A(λ, L),

||ξ + ζ + k|2 − λ| = ||ξ + k|2 − λ + 2〈ξ + k, ζ〉+ |ζ|2| � ε(53)

so ξ + ζ /∈ A(λ, L) for λ sufficiently large. Thus the integral in (52) vanishes. �

We are now able to show equidistribution for position space observables.

Proof of Theorem 3.1. Let λ ∈ Λ′, and let a ∈ C∞(T3). The operator Op(a) is then just
given by multiplication by a. We consider a to be some finite polynomial

a(x) = ∑
|ζ|<N

â(ζ) ei〈ζ,x〉,(54)

and see from Proposition 5.1 that

〈a(x)gλ,L, gλ,L〉 → 〈â(0)gλ,L, gλ,L〉(55)

=

(∫
T3

a(y)
dy

8π3

)(∫
T3
|gλ,L(x)|2 dx

8π3

)
=
∫

T3
a(y)

dy
8π3 .

The result then follows from Corollary 4.1. �

6. Localisation in Momentum Space

Throughout this section we will assume k is diophantine of type κ < 2. Let a be
defined by

a(x, ξ) = ∑
|ζ|≤N1,l≤N2,|m|≤l

â(ζ, l, m)eζ,l,m(x, ξ)(56)

where â(ζ, l, m) is given by

â(ζ, l, m) =
1

8π3

∫
S2

∫
T3

a(x, ξ)e−i〈x,ζ〉Y∗l,m(ξ) dxdσ(ξ).(57)
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We thus have that

〈Op(a)gλ,L, gλ,L〉 ∼ 〈∑
l,m

â(0, l, m)Op(e0,l,m)gλ,L, gλ,L〉(58)

= ‖Gλ‖−2 1
64π6 ∑

l,m
∑

ξ∈A(λ,L)
â(0, l, m)

Yl,m(ξ + k)
(|ξ + k|2 − λ)2

� ‖Gλ‖−2 ∑
ξ∈A(λ,L)

∫
S∗T3

a(x, η) dx
δ(η̄ − ξ + k)

(|ξ + k|2 − λ)2 dσ(η).

Thus the component of the spectral measure for each fixed |ξ + k|2 = m on T3 × S2

consists of Leb×δξ+k. The full (unnormalised) spectral measure is thus a weighted
sum of a growing number of δ masses that become dense on S2. We aim to show
that for a positive density subsequence of λ, the tails of this sum can be bounded
uniformly in λ such that a positive proportion of its density will be supported on a
finite number of points. A key feature of the proof is the work by Marklof [9]. We
now recapitulate the necessary results in dimension 3.

Definition 6.1. Let N = {nj | j ∈ N} be defined as before. Let ψ1, ψ2 ∈ S(R+) be
Schwartz functions, and let h ∈ C0(R) be compactly supported, and ĥ its Fourier
transform. Define the generalised pair correlation function by

R(ψ1, ψ2, h, T) =
3

4πT3/2

∞

∑
i,j=1
i 6=j

ψ1

(ni

T

)
ψ2

(
nj

T

)
ĥ(
√

T (ni − nj)).(59)

Theorem 6.1 (See Theorem 2.5 in [9] for the statement in full generality). Let k be
diophantine of type κ < 2, and that assume the components of (k, 1) are linearly independent
over Q. Then

lim
T→∞

R(ψ1, ψ2, h, T) = 3π
∫

ĥ(s) ds
∫ ∞

0
ψ1(r)ψ2(r) r dr.

We now proceed with the proof.

Lemma 6.1. For G ≥ 1, we have that #{ni ∈ N (T) : ni+1− ni > G/
√

ni+1} < T3/2/G.

Proof. We see that

∑
ni≤T

√
ni+1(ni+1 − ni) < ∑

ni≤T
(n3/2

i+1 − n3/2
i )(60)

< T3/2.(61)

Thus by Chebyshev’s inequality we see

#{ni ≤ T : si = ni+1 − ni > G/
√

ni+1} < T3/2/G.(62)

�

Lemma 6.2. Given D > 0, E ≥ 1,

#{n ∈ N (T) : |N (T) ∩ [n− D√
n , n + D√

n ]| > E + 1} � DT3/2

E
.(63)
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Proof. We have that

∑
n∈N (T)

(|N (T) ∩ [n− D√
n , n + D√

n ]| − 1)(64)

= #{n, m ∈ N (T) : m 6= n,
√

n|n−m| ≤ D}(65)

� #{n, m ∈ N (T)\N (T/2) : m 6= n,
√

T|n−m| ≤ D}.(66)

Since we assumed k was diophantine, we may apply Theorem 6.1 with ψ1 = ψ2 the
indicator function of [1/2, 1], and ĥ the indicator function of [−D, D]. This gives us
the asymptotics

#{n, m ∈ N (T)\N (T/2) : m 6= n,
√

T|n−m| ≤ D} ∼ 3π2DT3/2.(67)

Again by Chebyshev’s inequality we conclude

#{n ∈ N (T) : |N (T) ∩ [n− D√
n , n + D√

n ] > E + 1} � DT3/2

E
.(68)

�

Lemma 6.3. For all A > 1

∑
n,m∈N (T)√
m|n−m|>A

1
m(n−m)2 �

T3/2

A1/3 .(69)

Proof. We first define

M(k) := |{n ∈ N : n3/2 ∈ [k, k + 1]}|.(70)

Then we deduce an L2 bound on M(k) by

∑
k≤T3/2

M(k)2 = ∑
k≤T3/2

|{m, n ∈ N : m3/2, n3/2 ∈ [k, k + 1]}|(71)

≤ |{m, n ∈ N : m3/2, n3/2 ≤ T3/2 + 1, m3/2 − n3/2 ∈ [−1, 1]}|(72)

which again by Theorem 6.1 gives us

∑
k≤T3/2

M(k)2 � T3/2.(73)

Note that we can write
√

m|n−m| =
√

m√
m +
√

n
(
√

m|n−m|+
√

n|n−m|) ≥
√

m√
m +
√

n
|n3/2 −m3/2|,

and also that
√

m|n−m| < |n3/2 −m3/2|. Hence, we can bound the sum in (69) by

∑
n,m∈N (T)√
m|n−m|>A

1
m(n−m)2 � ∑

n,m∈N (T)
|n3/2−m3/2|>A

(1 +
√ n

m )2

(n3/2 −m3/2)2(74)

=
bT3/2c

∑
k=A

∑
n,m∈N (T)

|n3/2−m3/2|∈[k,k+1]

(1 +
√ n

m )2

(n3/2 −m3/2)2 .
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Now, when m > n we can immediately conclude

bT3/2c

∑
k=A

∑
n,m∈N (T)

|n3/2−m3/2|∈[k,k+1]

(1 +
√ n

m )2

(n3/2 −m3/2)2 < 4
bT3/2c

∑
k=A

1
k2 |{m, n ∈ N (T) : (n3/2 −m3/2) ∈ [k, k + 1]}|

≤ 4
bT3/2c

∑
k=A

1
k2 ∑

m≤T3/2

M(m)(M(m + k) + M(m + k + 1)).(75)

By Cauchy-Schwarz we may bound this above by

T3/2
bT3/2c

∑
k=A

1
k2 �

T3/2

A
.

When m < n, we see that

n3/2 −m3/2 ∈ [k, k + 1] =⇒
( n

m

)3/2
≤ 1 +

k + 1
m3/2 .(76)

We know that m is bounded away from zero, say m > C, then we must have( n
m

)1/2
≤ C−1/2(k + 1 + C3/2)1/3.(77)

Repeating the previous argument in this regime yields

bT3/2c

∑
k=A

∑
n,m∈N (T)

|n3/2−m3/2|∈[k,k+1]

(1 +
√ n

m )2

(n3/2 −m3/2)2 �
bT3/2c

∑
k=A

1
k4/3 |{m, n ∈ N (T) : (n3/2 −m3/2) ∈ [k, k + 1]}|

≤
bT3/2c

∑
k=A

1
k4/3 ∑

m≤T3/2

M(m)(M(m + k) + M(m + k + 1))(78)

� T3/2
bT3/2c

∑
k=A

1
k4/3 �

T3/2

A1/3 ,(79)

where the final line follows from Cauchy-Schwarz as before. �

We are now ready to prove the second main theorem.

Proof of Theorem 3.2. Define N ′ as follows, first remove from N all points m whose
nearest left neighbour is further than G/

√
m, by Lemma 6.1 we are left with a

subsequence of density at least 1− 1/G. Now choose D and fix E large enough
such that

|{m ∈ N (T) : |N (T) ∩ [m− D√
m , m + D√

m ] > E + 1}| ≤ T3/2

G
(80)

which is possible by Lemma 6.2. Removing these points leaves us with a subse-
quence of density at least 1 − 2/G. Finally, by Lemma 6.3, and Chebyshev’s in-
equality we choose F large enough such that

|{m ∈ N (T) : ∑
n∈N (T)√

m|n−m|>D

1
(n−m)2 > F m}| ≤ T3/2

G
.(81)



14 JORY GRIFFIN

Removing these points leaves us with a subsequence of density at least 1− 3/G.
Thus if we consider pure momentum observables and for m ∈ N ′ denote by µm the
delta measure on the point corresponding to the direction ξ + k with |ξ + k|2 = m,
we see that the unnormalised measure associated to Gλm is

∑
n∈N

µn

(n− λm)2 =
µm

(m− λm)2 + ∑
n∈N

0<|n−m|< D√
m

µn

(n− λm)2 + ∑
n∈N

|n−m|> D√
m

µn

(n− λm)2 .(82)

We know that the mass of the first term is � m/G2, the mass of the second sum
has at most E terms, and the mass of the third is bounded above by F m. Thus the
normalised measure will have a positive proportion of its mass on a finite number of
points. The theorem then follows from compactness of S∗T3 and by setting ε = 3/G
and defining Mε by j ∈ Mε ⇐⇒ nj ∈ N ′ where nj is the jth ordered unperturbed
eigenvalue. �

Appendix A.

Proposition A.1. Let S(R) = #{|ξ + k| < R | ξ ∈ Z3} denote the number of shifted
lattice points inside a ball of radius R. Then we have that

S(R) =
4
3

πR3 + O(R3/2+ε).(83)

Proof. We bound the quantity S(R) above and below by sums over the indicator
function of a shifted ball convolved with some smooth bump function with smooth-
ing parameter δ. We can then employ Poisson summation and tune δ in such a way
that the error terms vanish. Let Bk(R) denote the ball of radius R centred at k, and
write ψδ(x) = δ−3ψ(x/δ) where ψ is some smooth function with compact support
in B0(1) normalised such that ψ̂(0) = 1. Define Sδ(R) to be the smoothed sum

Sδ(R) = ∑
x∈Z3

χBk(R) ∗ ψδ(x).(84)

Note that we have S(R− δ) ≤ Sδ(R) ≤ S(R + δ). By Poisson summation we see

∑
x∈Z3

χBk(R) ∗ ψδ(x) = ∑
ξ∈Z3

χ̂Bk(R)(ξ)ψ̂δ(ξ).(85)

Computing the term ξ = 0 yields∫
R3

χBk(R)(x) dx =
4
3

πR3.(86)

For ξ 6= 0, the Fourier coefficients χ̂Bk(R)(ξ) are given by

χ̂Bk(R)(ξ) = e−2πi〈k,ξ〉 1
2π2|ξ|3 (sin(2πR|ξ|)− 2πR|ξ| cos(2πR|ξ|)) .(87)

We also have that∫
R3

δ−3ψ(x/δ)e−2πi〈x,ξ〉 dx =
∫

R3
δ−3ψ(x/δ)(4π2|ξ|2)−1(−∆)e−2πi〈x,ξ〉 dx

= (4π2|ξ|2)−1
∫

R3
δ−3e−2πi〈x,ξ〉(−∆)ψ(x/δ) dx(88)

= (4π2|ξ|2δ2)−1
∫

R3
e−2πiδ〈y,ξ〉(−∆)ψ(y) dy.
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We thus have that |ψ̂δ(ξ)| � min{1, (δ|ξ|)−2} ≤ (δ|ξ|)−(1+ε). Plugging these
asymptotics in to the sum gives

∑
x∈Z3\{0}

χBk(R) ∗ ψδ(x)� Rδ−(1+ε) ∑
ξ∈Z3\{0}

|ξ|−(3+ε)(89)

� Rδ−(1+ε).

We thus have that

S(R) ≤ Sδ(R + δ) =
4
3

π(R + δ)3 + O(Rδ−(1+ε))(90)

=
4
3

πR3 + O(R2δ + Rδ−(1+ε)),

and similarly that

S(R) ≥ Sδ(R− δ) =
4
3

πR3 + O(R2δ + Rδ−(1+ε)).(91)

Setting δ = R−1/2 yields the result. �
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