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ABSTRACT 

The effect of soil inhomogeneity and material nonlinearity on kinematic soil-pile interaction and 

ensuing bending under the passage of vertically propagating seismic shear waves in layered soil, is 

investigated by means of 1-g shaking table tests and nonlinear numerical simulations. To this end, a 

suite of scale model tests on a group of five piles embedded in two-layer sand in a laminar container 

at the shaking table facility in BLADE Laboratory at University of Bristol, are reported. Results 

from white noise and sine dwell tests were obtained and interpreted by means of one-dimensional 

lumped parameter models, suitable for inhomogeneous and layered soil profiles, encompassing soil 

material nonlinearity. A frequency range from 0.1 to 100 Hz and 5 to 35 Hz for white noise and sine 

dwell tests, respectively, and an input acceleration range from 0.015 to 0.1g, were employed. The 

paper points out that soil nonlinearity and inhomogeneity strongly affect both site response and 

kinematic pile bending, so that accurate nonlinear analyses are necessary to predict the dynamic 

response of pile foundations. 

 

1. Introduction 

 

The seismic behavior of pile foundations constitutes a classical problem of soil-structure 

interaction. Dynamic loads on piles are not only the result of inertial forces induced by the 

oscillation of the superstructure (inertial interaction), but also of deformations of the soil 

surrounding the pile caused by the propagation of the seismic waves regardless of the presence of a 

superstructure (kinematic interaction). 

Studies on dynamic soil-pile interaction have been carried out over the years, mostly by means of 

numerical approaches such as the finite-element [1-7] and the boundary-element method [8-14].  

Among simplified procedures [15], the dynamic Winkler model [16-20] has provided reasonably 

accurate, versatile and economic alternative to the aforementioned rigorous approaches. 

Furthermore, the so-called p-y curves, originally developed for nonlinear pile-soil interaction under 

large static or low-frequency cyclic loads, have been extended to the dynamic regime in terms of 

lumped-parameter formulations encompassing both stiffness and damping using beds of springs and 

dashpots attached in parallel [21-28]. In recent years, pseudo-static methods, which constitute an 

essential tool in engineering practice, have been established for the seismic design of piles [29-31]. 

Similarly, simplified closed-form expressions for the evaluation of kinematic pile bending have 

been formulated [7,32-36]. 
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On the other hand, experimental studies in the field and the laboratory are more limited, primarily 

because of cost and complexities in carrying out and interpreting such tests. Following early 

experiments by Novak and co-workers [37,38], Finn and Gohl [39,40] performed centrifuge tests 

under earthquake loading on model piles. Shaking table scale model tests on single pile and pile 

groups were presented by Meymand [41] and large scale shaking table tests on pile-structure 

models were studied by Tokimatsu et al. [42]. Shirato et al. [43] performed large scale shaking table 

experiments on a 3x3 pile group, while shaking table tests on a soil-pile-structure model subjected 

to seismic excitation were performed by Chau et al. [44]. Moccia [45] conducted a large number of 

shaking table tests on a single pile embedded in layered soil at University of Bristol, in an 

experimental campaign that preceded the one at hand. 

In this paper, small scale model shaking table tests, carried out at the BLADE Laboratory in 

University of Bristol within the framework of the Seismic Engineering Research Infrastructures for 

European Synergies (SERIES) project [46,47], are presented and discussed. Tests were performed 

on both single and grouped piles embedded in a two-layer soil profile. They aimed at assessing the 

effects of both kinematic and inertial effects, by attaching caps and simple superstructure models on 

the piles, or testing them under free-head conditions. 

The results obtained are interpreted by means of a one-dimensional lumped-parameter model, 

suitable for heterogeneous and layered profiles, encompassing inertial properties and material 

nonlinearity. The analyses focus on the nonlinear behavior of the soil and inhomogeneity effects for 

both site response and kinematic bending of fixed-head piles. Comparisons with simple equations 

for evaluating kinematic pile bending are also shown. 

 

2. Experimental layout and instrumentation 

 

The 1-g shaking table experiments were conducted using a 3 m x 3 m cast aluminium platform 

weighing 3.8 tonnes, capable of carrying a maximum payload of 15 tonnes. An equivalent shear 

beam (ESB) container has been used to carry the model soil deposit (Fig. 1). The ESB consists of 8 

rectangular aluminium rings, stacked alternately with rubber sections to create a hollow flexible box 

of inner dimensions 1190 mm long by 550 mm wide and 814 mm deep [48]. 
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2.1. Soil profile  

Two geo-materials were used to constitute the soil profile: Leighton Buzzard sand fraction B (LBB) 

and Leighton Buzzard sand fraction E (LBE). Experimental tests are available on these sands to 

allow a precise characterization [49-51]. The Leighton Buzzard Sand fraction B is constituted by 

coarse rounded particles with a diameter ranging between 0.6 mm and 1.1 mm. The Leighton 

Buzzard sand fraction E is a uniform fine sand. Main features of LBE and LBB sands are provided 

in Table 1. A two-layer soil profile was pluviated into the ESB laminar container (Fig. 2). The free 

surface of the soil deposit was 800 mm above the laminar container floor. The bottom layer was 460 

mm thick, made of LBB and LBE in a 85-15% granular mix, respectively, and for this layer a mass 

density of 1.78 Mg/m3 had been achieved. The upper layer was 340 mm thick, contained LBE sand, 

and achieved a mass density of 1.39 Mg/m3. 

 

2.2. Model piles arrangement 

Five aluminum tubes (commercial model 6063-TS) were used to model the piles (Tab. 2). Each pile 

was 750 mm long and its head protruded 64 mm above the soil surface. Piles numbering and 

positioning into the ESB laminar container are depicted in Fig. 2. Piles were aligned in the ESB 

longitudinal middle plane with two different spacings. Center-to-center distance between piles 1-2 

and 2-4 was 140 mm (about 6 pile diameters), whereas for piles 4-5 and 5-3 it was 70 mm (about 3 

diameters). Pile 3 was located 455 mm (20 diameters) from the ESB right cross wall while pile 1 

was 315 mm (14 diameters) from the ESB left cross wall. During the tests some model 

configurations were examined under different head constraints [46]. In this work, the following 

arrangement is discussed: two free-head piles (1 and 2) and a 3x1 pile group (piles 3, 4 and 5) with 

a restraining cap (Fig. 2). 

 

2.3. Dynamic excitations employed 

The model was initially subjected to a suite of white noise excitations (Fig. 3) of bandwidth 0.1-100 

Hz and input acceleration levels (𝑎𝑏𝑎𝑠𝑒) varying from 0.01g to 0.10g. These tests aimed at 

providing information as to the shear wave propagation velocity and the damping characteristic of 

the two soil layers. 

In a second step, harmonic modulated signals (notably sine dwells) were applied to investigate the 

dynamic response of the model piles. Sine dwell excitations are composed of 3 linear ramp up 

cycles, 11 stationary cycles and 3 linear ramp down cycles (Fig. 4). This sequence is important as 

the input motion needs to be applied to avoid strong transients in the response. Different excitation 
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frequencies ranging from 5 to 50 Hz were utilized, as well as stationary signal amplitudes between 

0.01g and 0.18g. 

 

2.4. Monitoring instrumentation 

Sixty transducers were employed to instrument the model as summarized in Table 3. Input 

acceleration at the shaking table was controlled by means of two accelerometers along the x and y 

direction. Each pile head was equipped with a uniaxial accelerometer in the y direction. Soil 

response in terms of acceleration was monitored by 7 accelerometers. Five of these instruments 

were placed along a vertical line in the middle plane of the ESB laminar container (Fig. 5), at a 

distance from the nearest pile (pile 3) of 85 mm (about 4 pile diameters). The other two were placed 

out of the middle plane, near the soil surface and the layer interface. Piles 4 and 5 were 

instrumented with 8 pairs of strain gauges each (Fig. 6), to measure kinematic and inertial-induced 

curvatures. 

In the ESB laminar container (Fig. 1), horizontal displacements were measured by two LVDT’s 

placed on ring 8 (surface level) and ring 5 (layer interface level). Two LVDT’s were attached to the 

heads of piles 4 and 5 for measuring horizontal displacements. A rotation measuring device was 

installed at the heads of piles 4 and 5. This device is composed by a T-shaped plexiglass plate 

screwed to the pile head, and two micrometers measuring in the z direction. The difference between 

the left and right vertical displacements divided by the corresponding distance provides a measure 

of pile head rotation. An Indikon sensor was installed to measure settlements at soil surface. 

 

3. Soil parameters estimation and materials behavior during the tests 

 

During white noise tests, the accelerations within soil profile (Fig. 5) were filtered and decomposed 

into harmonics by means of Fourier transforms. In this way, the experimental transfer functions, 

defined as the ratio of the complex Fourier components of acceleration between any two points of 

the soil profile, can be obtained. 

Figure 8 shows the absolute values (amplification functions) of the upper layer transfer function 

𝐹1(𝜔) and of |𝐹(𝜔)| referred to the entire deposit. These functions have been experimentally 

obtained through A1, A4 and A6 sensors measures. For a two-layer deposit resting on a rigid base, 

the theoretical transfer function 𝐹(𝜔) can be calculated from the familiar expression [54]: 

𝐹(𝜔) =
1

cos(𝜅1ℎ1) cos(𝜅2ℎ2) − 𝛼𝑠𝑖𝑛(𝜅1ℎ1) sin(𝜅2ℎ2)
 (1) 
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in which  is the circular excitation frequency; 𝜅1 =
𝜔

𝑉𝑆1
∗ and 𝜅2 =

𝜔

𝑉𝑆2
∗  are the wave numbers of 

the upper and lower layer, respectively, 𝑉𝑆1
∗ = 𝑉𝑆1√1 + 2𝑖𝜉1 and 𝑉𝑆2

∗ = 𝑉𝑆2√1 + 2𝑖𝜉2 being the 

complex shear wave velocities of the two layers, having frequency-independent damping ratios 1 

and 2; ℎ1 and ℎ2 are respectively the thickness of the upper and lower layer;  𝛼 =
𝜌1𝑉𝑆1

∗

𝜌2𝑉𝑆2
∗ is the 

impedance ratio of layers, 𝜌1 and 𝜌2 being the mass densities of the top and the bottom layer. 

Using the above formulation, the shear wave velocities VS1 and VS2 can be readily determined. 

Once the experimental frequency response is known, the first mode frequency of the upper layer, 

𝑓𝑁
1
, is estimated approximately as the frequency corresponding to the maximum of the 

amplification function; VS1 can then be calculated using the familiar expression 𝑉𝑆1 = 4 ∙ 𝑓𝑁
1 ∙ ℎ1 

[32]. The shear wave velocity VS2 is estimated based on equation 1 as the value that provides the 

best fit to the measured data (Fig. 7b). In addition, assuming, as a first-order approximation, the 

same damping ratio 𝜉𝑆 for the two layers, this can be determined directly from the amplification 

function of the whole deposit by the half-power bandwidth method [55]. 

In Fig. 8 the experimental amplification function versus frequency is reported for different input 

acceleration levels applied in two sets of white noise tests, which have been indicated with 

corresponding numbers and codes [46]. Evidently, the natural frequency of the system decreases 

with amplitude of input motion. Likewise, peak soil amplification decreases with increasing 

acceleration level at the base. These results suggest that the three frequency response curves 

displayed in each graph correspond to different strain levels. At greater shear strain amplitudes 

induced by the shaking motion, a reduction in soil stiffness occurs and the peak of the amplification 

function moves towards lower frequencies. In addition, internal soil damping increases and 

maximum soil acceleration attenuates. 

For all the performed white noise tests (indicated on the x axis), the back-calculated upper and 

lower layer shear wave velocity values are shown in Fig. 9, along with the corresponding 

acceleration levels imposed by the shaking table. This representation allows a visual investigation 

of dynamic soil response. In particular, for the upper layer (Fig. 9a) three different response stages 

can be identified: (a) in stage 1, consisting of three consecutive tests, a non-reversible stiffening 

associated with densification of the loose sand is detected. In fact, as input motion amplitude 

increases, shear wave velocity increases too; (b) a transient phase (stage 2) in which the upper layer 

behaves in a linear-like manner, with shear wave velocity amplitude showing little sensitivity in 

input acceleration amplitude; (c) a residual phase (stage 3), where the upper layer tends to behave as 

a strain softening material, since shear wave velocity decreases with increasing input motion 
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amplitude. This tendency is also demonstrated in Fig. 10a, where the three stages are identified. 

However, for the most part of the excitation campaign, VS1 remains almost constant (at 

approximately 52 m/s). Calculations based on the Hardin and Drnevich [56] and Iwasaki [57] 

equations provided values in the range 48-65 m/s, which are in meaningful agreement with the 

back-calculated one. 

For the lower soil layer, two different response stages can be identified (Fig. 9b): (a) a non-

reversible softening behavior - the opposite to stage 1 shown above - is exhibited early on, 

corresponding to a decrease in shear wave velocity with increasing acceleration amplitude; (b) the 

transient and after shaking stages coincide (stage 2) and the granular mix in the specific layer begins 

to behave as a strain-softening material, since the shear wave velocity decreases with increasing 

shaking table input motion amplitude. These nonlinear patterns are evident in Fig. 10b. 

The variation in damping ratio of the soil deposit, 𝜉𝑆, for all the data sets examined is plotted in Fig. 

11 as a function of base acceleration. Evidently, S increases or decreases according to the 

amplitude of base acceleration. A better understanding of the dynamic soil response is provided in 

Fig. 12. The data shown in white square dots represent the damping ratio of the soil corresponding 

to the transient phase in which the upper layer behaves as a quasi-linear material (stage 2) and the 

lower layer stays in the after-shaking stage. The values marked with black square dots refer to the 

stage 3, in which both layers exhibit a strain-softening behavior. Linear regressions for the two 

series of data have been made, and are displayed with a dotted line and a continuous line, 

respectively. These results reveal that when both layers are in the after-shaking stage, i.e. when the 

entire soil deposit behaves as a strain-softening medium (stage 3), damping increases more rapidly 

with input acceleration amplitude contrary to the case (stage 2) in which the upper layer behaves as 

a quasi-linear material and tends to dissipate less energy, since the total hysteresis of the soil system 

is reduced.  

It should be noticed that, for the relatively low strain levels achieved during experiments, damping 

ratio of the soil has expected to be less than what observed. In general, the half-power bandwidth 

method, as well as the peak response method, provides values larger than the true ones [55]. 

However, for the cases examined, this could be explained considering the contribution of the 

container, as indicated in Fig. 12. 

Insight on the nonlinear behavior of the soil deposit can be achieved from the evolution of the free 

surface settlement measured during tests (Fig. 13), including both white noise and sine dwell 

experiments. It can be seen that, after the initial phase of soil consolidation  in which about 20% of 
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total settlement occurs (presumably due to the low relative density of the upper layer), a gradual 

process of densification takes place. Therefore, it is anticipated that the shear modulus of the 

surface layer increased during the specific phase. The experimental data of the set labelled 101116 

have been selected to discuss the analyses presented in the following sections, as they allow 

assuming a nearly constant value of shear wave velocity VS1 of the upper layer, with no increment 

of the settlement, as highlighted in Fig. 13. A one-dimensional nonlinear lumped-parameter model 

[58] is employed to interpret the observed soil-pile interaction effects. 

 

4. Employed numerical model 

 

In this paper, the dynamic response of a single pile embedded in a two-layer soil excited at the base 

by vertically propagating shear waves, has been analyzed by means of a lumped-parameter model 

specifically developed by the authors for the problem at hand (Fig. 14). Driving loads imposed on 

the pile by the seismic waves propagating in the soil must first be determined by analyzing the free-

field response.  Both pile and soil are represented by a group of vertically aligned media with 

lumped masses. Given the low amplitude of the excitation, linear elastic beam elements are used to 

model the pile. The restraining action of soil is modelled by horizontal springs and dashpots 

obeying a hyperbolic force-displacement law. The solution is obtained in two consecutive steps: (1) 

determining the free-field soil motion and (2) predicting the pile response by imposing the free-field 

soil motion as excitation at the base of the soil springs supporting the pile. 

 

4.1 Free-field motion 

The equilibrium of the wave-induced horizontal forces in the free-field soil can be expressed in a 

discrete form as 

[𝑀]{𝑢̈} + [𝐶]{𝑢̇} + [𝐾]{𝑢} = {𝐽}𝑓(𝑡) (2) 

where {𝑢̈} is the absolute soil acceleration vector corresponding to the nodes of the model in Fig. 

16; {𝑢̇} and {𝑢} are the corresponding velocity and displacement vectors, respectively; [𝑀] is the 

lumped-mass matrix, while [𝐾] and [𝐶] are the corresponding stiffness and viscous damping 

matrices, respectively. Finally, {𝐽}𝑓(𝑡) is the load vector applied at the base of the model, {𝐽} being 

a vector with the last term equal to 1 and the rest equal to zero. 
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The soil must be divided into a suitable number of layers, modeled by a corresponding mass, a 

nonlinear spring and a viscous dashpot attached in parallel to the spring [59,60]. Mass density 𝜌𝑖 

and shear modulus 𝐺𝑖 are constant in each layer of thickness ∆𝑧𝑖, within a specific time step ∆𝑡. 

In this way, the lumped-mass matrix [𝑀] of the system has a diagonal form, and the stiffness matrix 

[𝐾] is banded. Damping matrix [𝐶], consistent with experimental data, can be determined through 

the Rayleigh approach [61] depending on mass and stiffness matrices as follows 

[𝐶] = 𝛼𝑅[𝑀] + 𝛽𝑅[𝐾] (3) 

in which 𝛼𝑅 = 2𝜉𝑆 (
𝜔𝑁𝜔𝑀

𝜔𝑁+𝜔𝑀
) and 𝛽𝑅 = 2𝜉𝑆 (

1

𝜔𝑁+𝜔𝑀
)  are scalar quantities selected to provide a 

given damping ratio 𝜉𝑆 in correspondence of the two control frequencies 𝜔𝑁 and 𝜔𝑀 often 

coinciding with specific modes of vibration. Modes 𝑁 and 𝑀 must be selected to ensure reasonable 

values of 𝜉𝑆 in each mode contributing significantly to the system dynamic response [62,63]. In this 

work, the first and third mode were selected, which lead to satisfactory performance of the model 

over dynamic measurements. Following Joyner and Chen [64], the excitation is expressed as a 

viscous force, per unit of area, applied at the base of the soil column as 

𝑓(𝑡) = 𝜌𝑅𝑉𝑆
𝑅𝑢̇𝑏𝑎𝑠𝑒(𝑡) (4) 

where 𝑢̇𝑏𝑎𝑠𝑒(𝑡) is the input velocity time history, 𝜌𝑅 and 𝑉𝑆
𝑅 are mass density and shear wave 

velocity of the base material, respectively, assumed sufficiently large to model the stiff base under 

the laminar box. Equation 2 is integrated in the time domain through the -Newmark scheme [65]. 

In this study the extended hyperbolic model [66] has been employed to represent the hysteretic 

behavior of the granular soils. Accordingly, the stress-strain backbone curve is expressed by the 

equation 

𝜏 =
𝛾𝐺𝑀𝐴𝑋

1 + 𝛽 (
𝛾
𝛾𝑟

)
𝑠 

(5) 

in which 𝛾 and 𝜏 are the shear strain and stress  respectively, 𝐺𝑀𝐴𝑋 is the initial shear modulus, 𝛾𝑟  a 

reference strain, 𝛽 and 𝑠 are model parameters, usually estimated with best fitting experimental 

results. Masing criteria [67] are used for driving the unloading and reloading branches from the 

skeleton curve. Reference strain 𝛾𝑟 is determined  following Matasovic and Vucetic [66] as 

𝛾𝑟 =
𝜏𝑚𝑜

𝐺𝑀𝐴𝑋
 (6) 
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𝜏𝑚𝑜 being the shear stress related to a strain of approximately 1%. It should be noticed that 𝛾𝑟 is the 

yield strain of an elastic-perfectly plastic soil having an elastic shear modulus equal to 𝐺𝑀𝐴𝑋, 

depending on the soil shear strength and is implicitly related to confining pressure, 𝜎′ [60,68]. 

Values for parameters 𝛽, 𝛾𝑟 and 𝑠 in the two layers are provided in the following. 

 

4.2. Pile response 

The equation of dynamic equilibrium of the pile component can be written as 

[𝑀𝑃]{𝑦̈} + [𝐾𝑃]{𝑦} + {𝑝} = 0 (7) 

where [𝑀𝑃] and [𝐾𝑃] are the pile mass and stiffness matrices, respectively; {𝑦̈} is the absolute 

lateral acceleration vector, {𝑦} is the corresponding displacement vector and {𝑝} is the soil reaction 

vector. Since the external loads applied along the pile are in the form of horizontal forces, pile 

rotations can be eliminated by static condensation [69] to provide [𝐾𝑃]. 

For a generic mass constituting the pile, soil reaction can be expressed as 

𝑝 = 𝑘𝑆(𝑦 − 𝑢) + 𝑐𝑆(𝑦̇ − 𝑢̇)                 
(8) 

in which 𝑢 and 𝑢̇ are the free-field displacement and velocity, respectively, at given time and depth; 

𝑘𝑆 is the stiffness of the spring; 𝑐𝑆 is the dashpot coefficient. Following Kavvadas and Gazetas [19], 

these model parameters can be calculated from the expressions 

𝑘𝑆 = 𝛿𝐸𝑆 (9) 

𝑐𝑆 = 2𝜉𝑆

𝑘𝑆

𝜔
 (10) 

𝐸𝑆 being the Young’s modulus of soil, 𝛿 a dimensionless soil stiffness parameter, 𝜉𝑆 the soil 

damping ratio and 𝜔 the frequency of input motion. Typical values of 𝛿 vary between 0.8 and 1.5 

[17,23,70,71]. Kavvadas and Gazetas [19] showed that, contrary to pile displacements, bending 

moments can be sensitive to spring stiffness, which may attain values up to 4ES in heterogeneous 

soil. In the present study the fitted formula proposed by Syngros [72] is employed 

𝛿 = 2 (
𝐸𝑃

𝐸𝑆
)

−0.075

 (11) 

𝐸𝑃 being the Young’s modulus of the pile. 
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5. Theoretical results versus experimental evidences 

5.1. Soil model parameters 

The 1-D lumped parameter model used in the simulations at hand is shown in Fig. 14. The 

experimental data under consideration refer to the 12 sine dwell input signals applied during 101116 

experimental set. These harmonic excitations have frequencies 𝑓 varying between 5 to 35 Hz and 

amplitudes 𝑎𝑏𝑎𝑠𝑒 ranging between 0.0155g to 0.0452g (Table 4). Two different shear wave velocity 

profiles are considered (Fig. 15): for profile A, 𝑉𝑆1=52 m/s and 𝑉𝑆2=87 m/s for the upper and lower 

layer, respectively, are assumed as low strain (initial) values. In profile B a constant value of 

𝑉𝑆2=80 m/s is adopted, whereas 𝑉𝑆1 is considered to vary with depth according to the parabolic law 

[73] 

𝑉𝑆1(𝑧) = 𝑉ℎ1 [𝑏 + (1 − 𝑏)
𝑧

ℎ1
]

𝑛

 (12) 

In this equation, 𝑉ℎ1 is the shear wave velocity value at the layer interface, ℎ1 is the upper layer 

thickness, 𝑏 = (
𝑉0

𝑉ℎ1
)

1

𝑛
 is an inhomogeneity coefficient, and 𝑛 is a rate of inhomogeneity parameter 

(usually varying between 0.2 and 0.3 for sands), 𝑉0 is the shear wave velocity at the soil surface. 

The following parameters are used in the realm of profile B: 𝑉ℎ1=60 m/s, 𝑉0=40 m/s,  𝑛 =0.25. 

All the above parameters are introduced to define the initial material properties of the soils. They 

have been selected as the quantities, for the soil profiles considered, that allow a better curve-fitting 

of the experimental amplitude function (Fig. 16) corresponding to the lowest amplitude white noise 

test considered. 

The parameters required to define the hyperbolic backbone curve implemented in the present 

approach are estimated as follows: linear regressions have been applied on the experimental  

VS=f(abase) dependence obtained from the white noise tests performed immediately before and after 

the suite analysed (Table 4), for both the upper and bottom layers (Fig.17a). Similarly, a linear 

regression is carried out on the S=f(abase) dependence (Fig. 17b). This allows determining the 

variation of shear wave propagation velocity and damping ratio with input acceleration level in the 

two soil layers. 

The shear modulus reduction curves, 𝐺𝑆1(𝛾) and 𝐺𝑆2(𝛾), of the soil layers (Fig. 18a) are back-

calculated by means of the following linear equivalent technique, applied to soil profile A: in 

correspondence of the natural frequency of the soil deposit, elastic analyses are performed for 

different input acceleration levels, 𝑎𝑏𝑎𝑠𝑒, fixing the model mechanical parameters (𝑉𝑆1, 𝑉𝑆2 and 𝜉𝑆) 
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in accordance to the aforementioned functions, 𝑉𝑆(𝑎𝑏𝑎𝑠𝑒) and 𝜉𝑆(𝑎𝑏𝑎𝑠𝑒). In these analyses, the 

maximum shear strains, , are calculated at the middle points of the upper and lower layer. In this 

way, the ratios 𝐺 𝐺𝑀𝐴𝑋(𝛾)⁄  indicated with symbols in Fig. 18a are determined. These extrapolated 

points are then fitted by means of Equation 5 to be used in the nonlinear simulations. For 

comparison, the reduction curve by Vucetic and Dobry [74] corresponding to a null plastic index is 

also shown. In addition, Figure 18b shows the hysteretic damping provided by the hyperbolic model 

adopted. For the strain level attained, the values obtained can be considered reasonable. 

 

5.2. Free-field response 

A comparison between the theoretical and experimental acceleration profiles along the soil deposit 

for 6 sine dwell input excitations with different frequencies (𝑓) and amplitudes (𝑎𝑏𝑎𝑠𝑒) is shown in 

Fig. 19. The modulus of maximum acceleration achieved with depth z is shown in terms of the 

dimensionless ratio amax/abase. The experimental data are depicted with dots, the calculated 

accelerations for soil profile A are indicated with a dotted line, whereas those for soil profile B are 

reported with a full line. These results have been obtained considering linearly elastic soil behavior. 

It can be noticed that these solutions do not agree well with the measured values. A similar 

comparison, where the free-field soil response has been calculated with nonlinear analyses is shown 

in Fig. 20. As can be seen, the comparison is much more satisfactory, especially for soil profile B.  

For each of the sine dwell excitations considered, the ratio of the recorded maximum acceleration 

amplitude at the free surface to the input base acceleration is plotted in Fig. 21, marked with black 

dots. The theoretical amplification functions are also shown. They have been calculated for both 

soil profiles A and B, with both linear and nonlinear response analyses. 

As can be noticed, the experimentally observed frequency response is well reproduced only when 

nonlinearity is considered. Moreover profile B matches better the experimental results.  

In addition, stress-strain loops obtained by means of the lumped-parameter model, for both the 

upper and lower layer middle points are displayed in Fig. 22, for the 25 Hz sine dwell type input. It 

is observed that, for the applied acceleration level, the top layer of sand behaves essentially as an 

elastic material with very low hysteresis. On the contrary, for the bottom layer granular mix, a shear 

modulus decay and a hysteretic damping are obtained. These results are in agreement with the 

observed experimental evidence, demonstrating that nonlinearity is mainly associated with the 

bottom layer in the cases examined. 
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5.3. Pile kinematic bending 

In this section bending strains along piles 4 and 5 are shown. Theoretical results are also presented 

for profile B. Elastic solutions (dotted line) and nonlinear analyses (full line) are compared against 

measurements for pile 4 (black dots) and 5 (white squares) in Fig. 23. In the same vein as before, 

the results obtained by nonlinear analysis are in good agreement with measured value. Major 

differences can be noticed at the proximity of the pile head. These differences should be expected, 

since the fixing device at the pile head cannot be considered as a perfect no-rotational fixity. In fact, 

a rotational compliance at the pile head can justify the lower bending strain measured in that 

location. 

Figure 24 presents the bending strains within the frequency range of the tests at hand and highlights 

the strong influence of soil nonlinearity on kinematic pile bending. As can be seen, soil nonlinearity 

results in a strong attenuation of kinematic bending at the interface between the soil layers. These 

results are well reproduced by the analysis. 

Moreover, it is possible to observe that de-resonance of the soil deposit causes a reduction and a 

shift toward lower frequencies of the maximum bending strain developing at the pile heads. This is 

in accordance with available evidence [75-77] that pile head kinematic bending is strongly related 

to the maximum acceleration at the free surface.  

For the sake of completeness, kinematic bending strains at the layer interface calculated with the 

proposed approach are compared to those obtained with few closed-form expressions available in 

the literature (Fig. 25). 

Adopting a simplified Winkler model, Mylonakis [32] defined a strain transmissibility parameter as 

the ratio between peak pile bending strain and free-field soil shear strain at the interface, 𝛾1, which 

is a function of the layer stiffness contrast, the embedment ratio of the pile in the upper layer and 

the soil-pile stiffness contrast associated with the surface layer. The author suggested to take into 

account the effect of the frequency by means of a correction function Φ. In this work the dynamic 

factor Φ2 proposed by Sica et al. [36] has been employed. 

To overcome some limitations of the Mylonakis [32] approach, Di Laora et al. [7] developed a 

simple regression formula for the strain transmissibility parameter, capable of accounting for the 

dependence of ground response on frequency.  

Nikolaou et al. [33] obtained an empirical equation for the pile kinematic moment at the interface in 

resonant steady-state conditions. Besides pile slenderness, pile-soil stiffness and shear wave 

velocity contrast, this relation is based on the shear stress at the interface induced in the free-field 

by seismic motion. Maiorano et al. [34] revised this expression introducing a dynamic coefficient 𝛽  

depending on the occurrence of resonance, and the transient peak soil shear strain 𝛾1 at the 

interface. 
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As can be observed from Fig. 25, the selected formulae compare well with the present approach, 

both under the assumption of linear and nonlinear behavior of the soil deposit. The maximum shear 

strain 𝛾1 has been determined, for each frequency, through a site response analysis carried out with 

the lumped-parameter model at hand. In the case of nonlinear analyses, the calculated values of 

shear strains of the two layers have been used to evaluate the proper shear moduli from the 

reduction curves adopted.  

 

6 Concluding remarks 

 

Soil-pile kinematic bending was investigated by means of shaking table tests. Results have been 

interpreted by means of Fourier transforms and comparisons against a simplified 1-D approach 

involving the pile and the soil as interconnected columns. Results proved that soil nonlinearity and 

inhomogeneity can strongly affect both free-field and kinematic pile response. From the 

interpretation of the experimental evidence, the following conclusions can be drawn: 

1. Soil nonlinearity drastically affects the free-field motion. Increasing the input motion 

amplitude leads to a decrease in resonant frequency and an increase in soil damping ratio. 

For the cases examined, this behavior can be mainly attributed to the response of the bottom 

soil layer. 

2. Soil inhomogeneity is an important factor in controlling free-field response.  

3. Experimental results have been satisfactorily reproduced by means of the nonlinear 

numerical analyses reported in the article. Geometric and material properties are adequately 

represented by the hyperbolic stress-strain relations to simulate the nonlinear behavior of 

sand. 

4. Whereas elastic solutions are useful for understanding the fundamentals of kinematic 

interaction, they can lead to wrong estimation of kinematic bending both at the layer 

interfaces and the pile head. More precise analyses require that the nonlinear behavior of the 

soil should be taken into account. 

5. Experimental evidence demonstrated a strong correlation between soil surface acceleration 

and kinematic bending at the pile head. As a result, elastic solutions are not expected to 

predict satisfactorily the frequency at which maximum bending strain develops at the pile 

head. 
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List of Symbols 

 

𝑎𝑏𝑎𝑠𝑒  input acceleration level 

𝑏 inhomogeneity coefficient 

[𝐶] damping matrix of soil column 

𝑐𝑆 soil-pile interface dashpot coefficient 

Cu uniformity coefficient 

D10, D50, D60 grain size diameters 

𝐸𝑃 Young’s modulus of the pile 

𝐸𝑠 Young’s modulus of soil 

𝑓 frequency 

𝑓𝑁
1
 first mode frequency of the top layer 

𝑓(𝑡) Viscous force applied at the base of the soil column 

𝐹(𝜔) transfer function of the soil deposit 

𝐹1(𝜔) transfer function of the top layer 

𝐺𝑀𝐴𝑋 elastic soil shear modulus 

𝐺𝑆1,𝐺𝑆2  shear modulus in top and bottom soil layers, respectively 

ℎ1, ℎ2 thickness of top and bottom soil layers, respectively 

[𝐾] stiffness matrix of soil column 

[𝐾𝑃] stiffness matrix of the pile 

𝑘𝑆 Winkler spring coefficient 

[𝑀] masses matrix of soil column 
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[𝑀𝑃] masses matrix of the pile 

𝑛 rate of inhomogeneity parameter 

𝑡 time 

𝑢 free-field soil displacement 

𝑉0 Shear wave velocity in the top layer (value at the soil surface) 

𝑉ℎ1 Shear wave velocity in the top layer (value at the layer interface) 

𝑉𝑆1, 𝑉𝑆2 shear wave velocities in top and bottom soil layers, respectively 

𝑉𝑆1
∗, 𝑉𝑆2

∗ complex shear wave velocities in top and bottom soil layers, respectively 

𝑉𝑆
𝑅 shear wave velocity in the bedrock 

𝑦 Pile displacement 

𝑧 Vertical coordinate 

𝛼 impedance ratio of soil layers 

𝛼𝑅 , 𝛽𝑅 Rayileigh coefficents 

𝛾 soil shear strain 

𝛾𝑟 , 𝛽, 𝑠 hyperbolic model parameters 

𝛿 Dimensionless parameter relating 𝑘𝑠 and 𝐸𝑠 

𝜅1, 𝜅2 complex wave numbers in top and bottom soil layers, respectively 

𝜉𝑆, 𝜉1, 𝜉2 damping coefficients of soil material 

𝜌1, 𝜌2 mass densities in top and bottom soil layers, respectively 

𝜌𝑅 mass density in the bedrock 

𝜎′ Confining pressure 

𝜏 soil shear stress 

𝜏𝑚𝑜 Shear stress related to a strain of approximately 1%. 

𝜔 Cyclic oscillation frequency 

𝜔𝑁,𝜔𝑀 Rayleigh damping control frequencies 
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Fig. 1. ESB: Equivalent shear beam laminar container  

 

 

 

 

Fig. 2. Soil profile and pile configuration in ESB laminar container (all dimensions in millimeters)  

 

 

 

 

 

Fig. 3. White noise type signal.  
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Fig. 4. Sine dwell type signal. 

 

 

Fig. 5. Vertical accelerometer array in free-field. 

 

 

 

Fig. 6. Strain gauges positioning on instrumented piles. 
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Fig.7. Amplification function for the upper layer (a) and the whole deposit (b) for white noise excitation (test 

101116_X2); abase=0.04g. 

 

 

 

 

Fig.8. Influence of input motion acceleration level on deposit amplification functions for: test set 101115 (a), 

tests set 101116 (b). 
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Fig. 9. Back-calculated fit shear wave velocities at top layer (a) and bottom layer (b) during white noise tests. 

Input acceleration level is shown on the right.  

 

 

 

 

Fig. 10.  Shear wave velocity at top layer (a) and bottom layer (b) versus input acceleration level during 

white noise tests.  
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Fig. 11. Variation in damping ratio during white noise tests. Input acceleration level is shown on the right.  

 

 

 

Fig. 12. Damping ratio of soil deposit versus input acceleration level 

 

 

Fig. 13. Cumulative settlement observed during experimental campaign and set of sine dwells considered. 
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Fig. 14. Nonlinear lumped-parameter model employed for soil and pile. 

 

 

 

 

Fig. 15. Shear wave velocity profiles used for modeling the soil deposit 
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Fig. 16. Calculated linear amplification functions for profiles A and B, and experimental data for white noise 

test 101116_X1; abase=0.02g. 

 

 

 

Fig. 17. Variation in shear wave velocity (a) and damping ratio (b) with input acceleration before and after 

the set of 12 tests considered. 
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Fig. 18. Back-calculated shear modulus reduction curves (a) and hysteretic damping (b) for the two layers.  
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Fig. 19. Maximum acceleration profiles for sine dwell excitation: experimental results versus linear analysis. 



 

31 
 

 

Fig. 20. Maximum acceleration profiles for sine dwell excitation: experimental results versus nonlinear 

analysis. 
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Fig. 21. Effect of soil nonlinearity on free-field surface acceleration for sine dwell excitation of variable 

frequency; abase≈0.03g. 

 

 

 

 

 

Fig. 22. Hysteretic loops at middle points of upper layer (a) and bottom layer (b) for sine dwell excitation, 

f=25 Hz, abase≈0.03g 
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Fig. 23. Maximum bending strains along piles for sine dwell tests: comparisons of experimental 

measurements and theoretical predictions for soil profile B. 

 

Fig. 24. Maximum bending strains at layer interface and pile head for sine dwell excitations of variable 

frequency: comparison of experimental measurements and theoretical predictions; abase≈0.03g. 
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Fig. 25. Kinematic bending strain at the layer interface: comparisons between the present approach and 

simplified expressions; abase≈0.03g. 
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Table 1 

Leighton Buzzard sands features 

Fraction 

Dry density 

(Mg/m3) 

Grain size diameters 

(mm) 

Uniformity 

coefficient Source 

min max D10 D50 D60 Cu 

LBE 1.33 1.62 0.095 0.140 0.150 1.58 Cay, 2010 [62] 

LBB 1.48 1.74 0.450 0.620 0.700 1.56 Visone, 2008 [63] 

 

 

 

 

 

 

 

Table 2 

Model pile characteristics 

Parameter Unit Value 

Young Modulus GPa 70 

External Diameter mm 22.23 

Wall thickness mm 0.71 

Inertia mm4 2781.7 

Bending Stiffness kNm2 0.195 
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Table 3 

Transducers employed in experiments 

Measured 

parameter 

Transducer 

type 
Description Purpose 

Acceleration 

Accelerometer 

Type: 

SETRA 141A 

Total number: 18 

High output capacitance 

type sensor with inbuilt 

pre-amplifier. 

Calibrated range: +/-8g. 

Operating frequency: 

0-3000 Hz 

Used to measure: 

Y acceleration of shaking table . 

Y acceleration of piles head. 

Y acceleration of free-field. 

Y acceleration of ESB container. 

Y acceleration of Oscillator. 

    

Strain 

Strain gauge 

Type: 

EA-13-120LZ-

120 

(Vishay Ltd) 

Total number: 32 

Linear strain gauge 

pattern 

3 mm length 

Used to measure: 

Bending strain along piles 4 and 5 

shafts  . 

 

    

Displacement 

Linear 

Variable 

Displacement 

Transformer 

(LVDTs) 

Type: 

RDP DCTH 

Total number: 6 

Used to measure: 

Y displacement of pile head for 

piles 4 and 5. 

Rotation of pile head for piles 4 

and 5. 

Y displacement of ESB laminar 

container. 

Settlement Indikon Total number: 1 
Used to measure: 

Settlements of the soil surface 
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Table 4 

Considered tests set 

Test type abase (g) frequency (Hz) 

Sine dwell 0.0215 5 

Sine dwell 0.0329 7.5 

Sine dwell 0.0409 10 

Sine dwell 0.0452 12.5 

Sine dwell 0.0436 15 

Sine dwell 0.0382 17.5 

Sine dwell 0.0308 20 

Sine dwell 0.0299 22.5 

Sine dwell 0.0335 25 

Sine dwell 0.0300 27.5 

Sine dwell 0.0224 30 

Sine dwell 0.0155 35 

   

 

 


