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Understanding the time-varying importance of different
uncertainty sources in hydrological modelling using global

sensitivity analysis

Francesca Pianosi* and Thorsten Wagener
Department of Civil Engineering, University of Bristol, Bristol, UK

Abstract:

Simulations from hydrological models are affected by potentially large uncertainties stemming from various sources, including
model parameters and observational uncertainty in the input/output data. Understanding the relative importance of such sources of
uncertainty is essential to support model calibration, validation and diagnostic evaluation and to prioritize efforts for uncertainty
reduction. It can also support the identification of ‘disinformative data’ whose values are the consequence of measurement errors
or inadequate observations. Sensitivity analysis (SA) provides the theoretical framework and the numerical tools to quantify the
relative contribution of different sources of uncertainty to the variability of the model outputs. In traditional applications of global
SA (GSA), model outputs are aggregations of the full set of a simulated variable. For example, many GSA applications use a
performance metric (e.g. the root mean squared error) as model output that aggregates the distances of a simulated time series to
available observations. This aggregation of propagated uncertainties prior to GSAmay lead to a significant loss of information and
may cover up local behaviour that could be of great interest. Time-varying sensitivity analysis (TVSA), where the aggregation and
SA are repeated at different time steps, is a viable option to reduce this loss of information. In this work, we use TVSA to address
two questions: (1) Can we distinguish between the relative importance of parameter uncertainty versus data uncertainty in time?
(2) Do these influences change in catchments with different characteristics? To our knowledge, the results present one of the first
quantitative investigations on the relative importance of parameter and data uncertainty across time. We find that the approach is
capable of separating influential periods across data and parameter uncertainties, while also highlighting significant differences
between the catchments analysed. Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd.
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PREFACE

One of Keith Beven’s major contributions lies in the field
of uncertainty analysis. Following pioneering works by
Freeze (1980), he was one of the first to introduce Monte
Carlo strategies for uncertainty assessment in hydrolog-
ical models (Binley et al., 1989; Beven and Binley,
1992), and he has pushed the topic of uncertainty analysis
for almost a quarter century by now. His efforts are a
main reason why uncertainty analysis in hydrology is
more advanced than in most other environmental or
natural hazard fields (Rougier et al., 2013). We bring two
of Keith’s major contributions together in the research
discussed here. First, we use a time-varying implemen-
tation of sensitivity analysis that can be traced back to
Keith’s work on generalized likelihood uncertainty
estimation (GLUE) (Beven and Binley, 1992; Freer

et al., 1996). GLUE brought an easy to implement and
effective approach to analyse parameter uncertainty of
hydrological models. It also brought us a discussion of the
validity of statistical assumptions given the specific nature
of hydrological models (including strong nonlinearity and
potentially large model structural errors). This discussion
also opened the path for an investigation into what
metrics are hydrologically relevant, rather than just
statistically convenient. These questions, e.g. regarding
the appropriate likelihood function based on these
statistical assumptions in the context of such models,
have still not been answered (e.g. Stedinger et al., 2008).
These discussions are unlikely to go away unless we
understand how to build likelihood functions that
realistically account for all sources of error. Second, we
consider Keith’s more recent efforts focused on the
implications of ‘disinformative data’, i.e. data points that
are erroneous and negatively influence the model
calibration or evaluation process. A key question is how
we identify data points whose values are the consequence
of measurement errors or inadequate observations (such

*Correspondence to: Francesca Pianosi, Department of Civil Engineering,
University of Bristol, Bristol, UK.
E-mail: francesca.pianosi@bristol.ac.uk

HYDROLOGICAL PROCESSES
Hydrol. Process. (2016)
Published online in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/hyp.10968

Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

mailto:francesca.pianosi@bristol.ac.uk
http://creativecommons.org/licenses/by/4.0/


as a convective rainstorm largely falling between rain
gauges). Keith and colleagues pointed out that formal
methods to identify such data periods are surprisingly
poorly established given the importance of data in our
field of study (e.g. Beven and Westerberg, 2011). Here,
we try to combine both of these efforts into a single
formalized approach to understand the relative impor-
tance of data and model parameter uncertainty.

INTRODUCTION

Sensitivity and uncertainty analysis have become com-
mon practise in hydrological modelling. One strand of
methods is based on Monte Carlo sampling of the
parameter space and on conditioning these parameter sets
by using one or more objective functions. This approach
originates in the regional sensitivity analysis (RSA)
method introduced by Young et al. (1978) and Spear
and Hornberger (1980) in which these authors separate
parameter sets into behavioural (well performing) and
non-behavioural groups. Parameters matter for the model
output if their marginal distributions across these two
groups are different. Spear and Hornberger (1980) tested
their approach on an algae bloom problem in a lake for
which the sampled parameter sets either produced algae
bloom (bad) or not (good). This binary separation made
the separation into behavioural and non-behavioural
groups simple and unambiguous. Beven and Binley
(1992) generalized RSA by showing how the parameter
sets can be conditioned on any performance metric if
appropriately transformed (so that it has some, but not all,
of the characteristics of a likelihood function). A
parameter set is deemed behavioural if the associated
value of the performance metric is above a modeller
prescribed threshold (or below, if the performance metric
is to be minimized). They found that in most cases, a wide
range of behavioural parameter sets can be found for
hydrological models. Keith Beven and colleagues referred
to this finding as the problem of equifinality. Since then,
RSA based on conditioning of performance metrics has
been widely applied to investigate parameter uncertainty
and their relative influence in hydrological and environ-
mental modelling (e.g. Freer et al., 1996; Wagener et al.,
2001; Sieber and Uhlenbrook, 2005).
One issue with using conditioning on performance

metrics in RSA is that performance metrics are based on
aggregation of model residuals across the whole time series
used for calibration. This temporal aggregation process
unavoidably leads to a loss of information (e.g. Freer et al.,
2003). Sometimes, few but very large residuals will
dominate the value of the performance metric, especially
if the residuals are squared before aggregation (as carried
out for instance when using the root mean squared error or
the Nash–Sutcliffe efficiency). Wagener et al. (2003)

suggested to apply a variation of the parameter condition-
ing used in GLUE as a time-varying algorithm in their
dynamic identifiability approach (DYNIA). They estimate
the performance metric value as a running mean using
different window sizes. This approach reduces the loss of
information and allows for an assessment of which periods
are most informative for parameter calibration or regarding
which data points might be erroneous. They visualize the
conditional marginal cumulative distribution function
(CDF) for each parameter so that they can both separate
periods where conditioning takes place or not (i.e. where
data is informative or not) and so that they can see which
part of the parameter space is better performing (e.g. to test
whether different parameter values are required for
different system response modes as an indicator of model
structural problems such as missing model dynamics). The
chosen window size allows for tailoring across influence
scales of parameters (Massmann et al., 2014), i.e.
parameters controlling the quick recession process require
shorter window sizes than those controlling baseflow or
water balance processes. There has been a flurry of studies
by using different analysis methods for time-varying SA
(e.g. Wagner and Harvey, 1997; Wagener et al., 2003;
Cloke et al., 2008; Reusser and Zehe, 2011; Kelleher et al.,
2013; Herman et al., 2013a, b; Guse et al., 2014).
While the assessment and consideration of parameter

uncertainty have become common practise, there is also the
increasing recognition that data uncertainty can have a
significant influence on model calibration and validation.
Keith Beven and colleagues referred to this problem as that
of disinformative data (Beven et al., 2008; Beven and
Westerberg, 2011). Specific data points, when erroneous,
can have a disproportionate impact on model calibration or
evaluation, and approaches to identify them are rather
poorly developed in hydrology. Initial work for example
demonstrates that event-based water balance estimates can
show much larger runoff volumes than feasible given
rainfall magnitudes in the streamflow record (Beven and
Smith, 2014). Such unrealistic data points can lead to large
residuals, which, in turn, strongly influence performance
values. It is therefore important to be able to identify these
data points and appropriately decide on their validity.
In this paper, we address two questions: (1) Can we

distinguish between the relative importance of parameter
uncertainty versus data uncertainty in time? (2) How do
relative influences change in places with different
catchment characteristics? To answer these questions,
we introduce a time-varying implementation of a recently
proposed density-based SA approach called PAWN
(Pianosi and Wagener, 2015). As a hydrological model,
we use the widely applied lumped Hydrologiska Byråns
Vattenbalansavdelning (HBV) model (Bergstrom, 1995).
We repeat our analysis for three catchments in the USA
that span different hydroclimatic regimes and geographic
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locations. We assess the relative importance of data and
parameter error/uncertainty in time and investigate how
far SA allows for a formalized approach to identify
periods where data uncertainty could have a
disproportionally large influence. Because we consider
parameters and data as sources of uncertainty, but not
model structure, our approach to identify potential
disinformation is conditional on the hydrological model
being adopted (the HBV model in our case). As such,
the approach is complimentary to other methods (e.g.
Beven and Smith, 2014) where a more general model
is used, which however only captures part of the runoff
generation process (for example, the event runoff
coefficient).
Our results present one of the first quantitative

investigations of the relative importance of parameter
and data uncertainty in time. Understanding this
variability is relevant for investigations into additional
data collection needs and model calibration/evaluation.

MODELS AND METHODS

Hydrological model and study sites

The hydrological model investigated in this study is the
lumped HBV conceptual model. It includes three
components: a snow accumulation/melting module, a soil
moisture accounting module and a flow routing module.
The forcing input data are time series of temperature,
precipitation and potential evapotranspiration. The model
is described in various articles, e.g. Bergstrom (1995),
Seibert (1997) and Kollat et al. (2012). A schematic is
given in Figure 1.

At each time step, the model classifies precipitation as
either rainfall or snowfall depending on whether temper-
ature is above or below a given threshold (TS). Snowfall
and rainfall contribute to the water balance of the solid and
liquid component of the snowpack respectively.
Exchanges between the two components are allowed
through either snowmelt or refreezing, depending on the
temperature being above or below the threshold TS. The
amount of snowmelt or refreezing is linearly proportional
to temperature via two proportionality coefficients
CFMAX and CFR (see again schematic in Figure 1).
When the liquid component exceeds the snow pack
holding capacity (CWH), the excess water leaves the
snowpack and inputs the soil moisture accounting module.
The implementation of the soil moisture accounting and
flow routing modules are the same as in Kollat et al.
(2012), which includes three parameters (β, LP and FC)
for the soil moisture accounting and six parameters
(PERC, K0, K1, K2, UZL, MAXBAS) for the flow routing.
The meaning, units of measurements and range of
variation of these parameters are summarized in Table I.
The model is applied to simulate streamflow in three

catchments in the USA with very different climatic
characteristics: the English River in Iowa, a relatively
humid, snow-affected catchment; the French Broad River
in North Carolina, a very wet catchment; and the
Guadalupe River in Texas, a very dry catchment. Time
series of daily streamflows and meteorological inputs
(precipitation, temperature and potential evapotranspira-
tion) for these catchments were developed as part of the
Model Parameter Estimation Experiment (Duan et al.,
2006). The characteristics of the three catchments are
summarized in Table II.

Figure 1. Schematic of the conceptual hydrological model used in this study. Model parameters are highlighted in blue. Their meaning is further
explained in Table I
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Characterization of the uncertainty sources
The goal of this study is to assess the relative

importance of parameter and data uncertainty for model
accuracy. We group sources of uncertainty into six
groups: (1) the observational uncertainty in the precipi-
tation time series, (2) the uncertainty in the potential
evapotranspiration time series, (3) the uncertainty in the
four parameters of the snow accumulation/melting model
component, (4) the uncertainty in the three parameters of
the soil moisture accounting component, (5) the uncer-
tainty in the six parameters of the flow routing
component, and (6) the uncertainty in streamflow
observations used to evaluate model performance. These
sources of uncertainty are characterized as follows.
Parameter uncertainty is described by assuming

independent uniform distributions with the ranges
reported in Table I. These ranges were defined by
combining a priori knowledge about the physical meaning
of each parameter and a preliminary evaluation of the
model’s behaviour in each study area. Kollat et al. (2012)
provide a set of wide parameter ranges that should cover

catchments with any hydroclimatic characteristics across
the USA. Sampling from those ranges, we ran Monte
Carlo simulations and identified behavioural parameter-
izations by defining a set of thresholds on model
performances (we considered root mean squared error,
absolute mean error and bias). The range of variation of
the behavioural parameterizations was then taken as
uncertainty range for each study site. These ranges are
reported in Table I. As it can be noted from the table,
some of these ranges are still quite large, and for some
parameters (for example, LP and K2), they are the same
as in Kollat et al. (2012), which means that the
conditioning on performances did not constraint them.
This is a consequence of our choice of quite loose
performance thresholds, which, in turn, reflects the fact
that our aim is to define ranges that reasonably reflect our
uncertainty in model parameters, rather than to identify a
small set of highly performing parameterizations.
As for data uncertainty, a range of studies has assessed

how much uncertainty can be expected in certain
measurements of hydrological and meteorological vari-

Table I. Parameters of the hydrological model and associated uncertainty ranges for the English, French and Guadalupe catchments.

Name Description (unit) Range

English French Guadalupe

Snow parameters
TS Threshold temperature (C) �3 3 — — — —
CFMAX Degree day factor (mm/C) 1 20 — — — —
CFR Refreezing factor (–) 0 1 — — — —
CWH Water holding capacity of snow (–) 0 0.8 — — — —
Soil parameters
BETA Exponential parameter (–) 1 7 0.4 2.4 1.5 6
LP Evapotranspiration limit (–) 0.3 1 0.3 1 0.3 1
FC Field capacity (mm) 50 600 125 500 100 1000
Routing parameters
PERC Maximum flux from UZ to LZ (mm/day) 0 100 10 100 0 100
K0 Near surface flow coefficient (day�1) 0.05 1 0.15 1 0.05 1
K1 UZ outflow coefficient (day�1) 0.1 1 0.1 0.5 0.05 1
K2 LZ outflow coefficient (day�1) 0.05 0.1 0.05 0.1 0.05 0.1
UZL Near surface flow threshold (mm) 0 100 28 90 0 100
MAXBAS Flow routing coefficient (day) 1 4 1 4 1 4

UZ, upper zone; LZ, lower zone.

Table II. Catchment characteristics.

River Outlet location Area (km2) Length (km) P (mm/year) ROC (–) PE (mm/year) WI (–)

English Kalona, IA 1484 120 868 0.28 994 0.87
French Broad Ashville, NC 2448 350 1509 0.50 819 1.84
Guadalupe Spring Branch, TX 3406 370 775 0.14 1528 0.50

P, mean annual precipitation; Q, mean annual streamflow; ROC, runoff coefficient (=Q/P); PE, mean annual potential evaporation; WI, wetness index
(=P/PE).
Catchment areas are taken from van Werkhoven et al. (2008). P, ROC, PE and WI are computed using daily data for the period from 1 October 1948 to
30 September 2003 from the MOPEX dataset.
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ables. They vary with location, with instrument, with time
period of measurement, etc. A nice summary is presented
by McMillan et al. (2012). Here, we assume what we
believe are typical ranges for the circumstances present in
our case studies.
Precipitation uncertainty was described using storm-

dependent rainfall depth multipliers as proposed by
Kavetski et al. (2002, 2006), which corresponds to the
assumption that precipitation errors are multiplicative and
that the magnitude of the multiplicative error varies from
storm to storm. The results discussed in the succeeding
texts are obtained using storm-dependent multipliers
drawn from a uniform distribution over the interval
[0.6, 1.4], which corresponds to assuming a maximum
error in precipitation data of ±40%.
Multiplicative errors are also used for potential

evapotranspiration; however, here a constant multiplier
is used for the entire time series. We assumed a uniform
distribution over [0.8, 1.2] for this multiplier, thus
allowing for a maximum error of ±20%.
Finally, for flow data, we used an additive error model

where errors are described by an autocorrelated
heteroschedastic Gaussian process, with zero mean and
variance linearly proportional to the flow (Schoups and
Vrugt, 2010). The two parameters of this model are set to
ensure that 99% of the errors on flow fall within the
interval ±0:2qobst , i.e. a maximum error in flow
observations of ±20%. More details about this model
and the procedure to set its parameters are given in the
Appendix.

Definition of the performance metric

In our study, the performance metric used to synthet-
ically measure the model accuracy is the root mean
squared error (RMSE). Because our goal is to investigate
how relative influences vary in time, we compute one
value of the RMSE for each time step along the
simulation period, by using a moving window centred
around that time step, i.e.

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2wþ 1

∑
tþw

k¼t�w
qsimk � qobsk

� �2s
(1)

where qsimk is the simulated flow on day k, qobsk is the
observed flow, t is the time step under analysis, and w is
the semi-length of the moving window.

Global sensitivity analysis method: PAWN

In global SA (GSA), each source of uncertainty (or
input factor in the GSA terminology) is associated with a
sensitivity index that measures the relative influence of
that factor on the model performance. Here, sensitivity
indices will be computed according to a density-based

method called PAWN (Pianosi and Wagener, 2015). For
each factor, say the ith, the PAWN sensitivity index is
defined as

Si ¼ max
xi

max
y

Fy yð Þ � Fyjxi y xij Þð j�� (2)

where Fy is the unconditional distribution of the
performance metric y, i.e. the one induced by variations
of all the factors, andFy xij is the conditional distribution of
y, i.e. the one induced by variations of all factors but the
ith, which is fixed to a nominal value xi.
The rationale of Equation 2 is the following. If the

unconditional and conditional distributions are very
similar, it means that variations in the ith factor do not
significantly affect the variability of y, and therefore, that
factor has little influence. Conversely, the larger the
difference between the two distributions, the more
influential the input factor. This is captured by the inner
maximum in Equation 2, which provides a measure of the
distance between the two CDFs. The outer maximum in
Equation 2 instead is used to remove the variability in the
results that might arise from different choices of the
nominal value xi. By taking the maximum with respect to
xi, we ensure that the sensitivity index of Equation 2 is
zero only if the ith factor has no influence at any point in
its space of variability.
In the operational implementation of the method, the

outer maximum in Equation 2, i.e. the one with respect to
the conditioning value of xi, is approximated by the
sample mean over a prescribed number of conditioning
values (e.g. 10). For each of these, the inner maximum,
i.e. the maximum absolute difference between CDFs, is
approximated by using empirical distribution functions.
These are obtained by evaluating the model against input
samples where all input factors vary (unconditional
distribution) and against samples where the ith input is
fixed to the conditioning value and the others vary
(conditional distribution). The PAWN method is imple-
mented in the Sensitivity Analysis for Everybody (SAFE)
Toolbox (Pianosi et al., 2015), which is freely available
for academic use.
Density-based methods have a number of advantages.

In the first place, they can be applied to any type of input
factor, including time series of model forcing inputs or
output observations, as in our study. This is not possible
for other GSA methods. For instance, RSA compares
probability distributions of the input factors in the
behavioural and non-behavioural group. Thus, it pre-
sumes that each input factor xi is a scalar variable that can
be sensibly appointed a CDF, which is not the case when
an input factor is a group of parameters or a time series, as
in our study. In PAWN instead, sensitivity indices are
defined based on the values of y only, as shown in
Equation 2. Therefore, they can be computed regardless

UNDERSTANDING THE TIME-VARYING IMPORTANCE OF UNCERTAINTY SOURCES
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of the mathematical properties and meaning of the input
factors. Variance-based SA methods (Saltelli et al., 2007)
also possess this property. However, variance-based
methods are not suitable when the output distribution is
highly skewed or multimodal and variance would be a
poor measure of uncertainty (Borgonovo, 2007, 2014).
Density-based methods, instead, are applicable also in
those situations because they assess changes in the entire
distribution of the output y, rather than in one of these
moments only. Furthermore, because the PAWN index is
defined on CDFs that are efficiently approximated by
empirical distribution functions, its application requires a
relatively limited number of model evaluations (Pianosi
and Wagener, 2015).
Finally, another advantage of PAWN is that sensitivity

indices can be easily tailored to focus on a subregion of
output values of particular interest, for instance, below a
prescribed threshold y . This is achieved by simply
adjusting Equation 3 as follows:

Si ¼ max
xi

max
y≤y

Fy yð Þ � Fyjxi y xij Þð j�� (3)

In our context where the output y is a performance
metric (to be minimized), the threshold y would represent
a minimum level of performance, and by using Equation
4 means that only model evaluations that achieve that
minimum performance contribute to the sensitivity
indices. Using the RSA/GLUE terminology, we might
call these model evaluations behavioural. However, there
is a subtle difference with respect to RSA. In RSA, both
behavioural and non-behavioural samples contribute to

determine sensitivity. Indeed, it is the very separation
between the two groups that is used to measure
sensitivity. In Equation 4, instead, the separation is only
used to filter out non-behavioural samples. The rationale
is that if we set the threshold to a reasonably loose value,
Equation 4 will ensure that any model evaluation with
unreasonably large deviations from observations do not
bias the SA results.

Experimental set-up

In our application, we use 3000 random samples to
build the unconditional CDFs, and 1000 random samples
to build each conditional CDF. For each of the six input
factors, conditional CDFs are computed at 20 condition-
ing values. The total number of model evaluations is
therefore equal to 3000+1000×20×6=123 000. For
each model evaluation, the procedure to generate and
propagate the six sources of uncertainty throughout the
model is as follows (Figure 2). (1) Generate a time series
of perturbed precipitation by multiplying the original time
series by a randomly sampled multiplier (one per each
storm). (2) Generate a time series of perturbed potential
evaporation by multiplying the original time series by a
randomly sampled multiplier (same value for the entire
time series). (3) Generate three vectors of parameters for
the snow, soil and routing component by uniform random
sampling from the ranges in Table I. (4) Run the
hydrologic model and obtain a time series of simulated
flows. (5) Generate a time series of perturbed flows by
adding a randomly generated sequence of autocorrelated
heteroscedastic Gaussian errors to the original time series
(details about the flow error model in Appendix). (6)

Figure 2. Schematic of the sampling and model evaluation procedure
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Apply Equation 1 to the simulated and (perturbed) flow
observations and obtain a time series of model perfor-
mances y at t=1,…,T. The simulation period is from 1
October 1948 to 30 September 1951.
In our application, we set w=15 (days) so that the

window size is 31days. As a threshold value y, we use
twice the mean of observed flows over the moving
window, i.e. y ¼ qobst�w þ…þ qobstþw

� �
= 2wþ 1ð Þ. In other

words, at each time step, we discard those model
evaluations where deviations from flow observations are
on average higher than twice the mean flow over that
window. As anticipated, this threshold value is quite
loose, and it is only meant to avoid that the analysis be
biased from few samples corresponding to very bad
model performance. All computations were performed
using the SAFE Toolbox (Pianosi et al., 2015).

RESULTS

Figure 3 shows the sensitivity indices of the six sources of
uncertainty for the three catchment sites. Panels on the

left show the time-varying sensitivity of the RMSE
computed over a time window of 2w+1=31days, while
panels on the right show the aggregate sensitivity of the
RMSE computed over the entire simulation period.

English River

We first analyse the top panels in Figure 3, which refer
to the English River. By comparing the two panels, we
notice in the first place that aggregation indeed induces a
loss of information. For example, by looking at aggregate
results (top right), we would conclude that uncertainty in
flow observations is the least important for this
catchment; however, when looking at time-varying results
(top left), we see that it can have a strong influence
although very localized on some specific events. Our
results thus confirm that GSA of aggregate performance
metrics might not convey the same information as GSA of
disaggregate (time varying) metrics.
In general, parameter uncertainty is more influential

than data uncertainty in this catchment. Parameters of the
soil moisture accounting module are the most influential

Figure 3. PAWN sensitivity indices (ranging from 0 to 1) of RMSE for the English River catchment (top panel), the French Broad River catchment
(middle) and the Guadalupe River (bottom). Uncertainty sources considered by sensitivity analysis are precipitation data (rain), potential
evapotranspiration data (evap), parameters of the snowmelt/accumulation component (snow), parameters of the soil moisture accounting component
(soil), parameters of the flow routing component (route) and flow data (flow). Left panels: sensitivity indices of RMSE computed over a moving window
of 31 days (for the sake of clarity, only the last 2 years of the simulation period are shown). Red line is the time series of observed flow. Right panels:

sensitivity indices of RMSE computed over the entire simulation period

UNDERSTANDING THE TIME-VARYING IMPORTANCE OF UNCERTAINTY SOURCES
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among the three groups. As expected, the snow
parameters are particularly influential in those times of
the year where snowmelt occurs while they have no
influence in summer time, which confirms that the
model’s behaviour is consistent with the system’s
behaviour.
Interestingly, uncertainty in precipitation data does not

seem to have a strong influence in this catchment. This
might be due to a limitation in the assumed error model
for precipitation, which only allows for variations in
precipitation intensity but not in the temporal distribution
of precipitation days. Allowed variations in the parame-
ters instead are such that they might amplify or reduce
timing errors, which are likely more influential than
amount errors.
As anticipated before, uncertainty in flow data has a

relatively high influence in some specific events. To
understand this better, we analysed some of those events
in more detail. Figure 4 shows this analysis for the event
labelled as A in the top left panel of Figure 3. The top
panel in Figure 4 shows the time series of observed
precipitation, temperature and flow for this event. It can
be noticed that the flow peak observed around day 500
has no clear explanation from the input forcing data:
There is no precipitation prior to the event, neither a
significant temperature increase that could produce a large
amount of snowmelt (notice that a similar increase in
temperature occurring some days before did not produce
any increase in flow). This event might thus be an
example of disinformative data. Time-varying SA
(TVSA) attributes a key role to uncertainty in flow
observations because if those observations were lower,
then the model performance could be significantly higher,
and vice versa. This is exemplified in the bottom panels in
Figure 4. The left one reports, as an example, two
sampled time series of flow perturbations used in our
TVSA. The dashed line generates a perturbed time series
where flow observations are increased; the continuous
line generates a perturbed time series were flow
observations are reduced. The bottom right panel in
Figure 4 shows the conditional CDFs of the RMSE for
day 500 when these two flow time series are used (while
varying all other sources of uncertainty). The red line in
this figure is the unconditional CDF, which is obtained
by varying all sources of uncertainty including flow
observations. The figure shows that when reducing flow
observations (continuous line), the CDF is shifted
towards the left, i.e. lower values of RMSE become
more frequent. This means that, regardless of the
variations in the other input factors (parameters and
forcing inputs), the model would be likely to perform
better if flow observations were lower. The opposite
would happen if flow observations were higher.
Uncertainty in flow observations plays a key role with

respect to other sources of uncertainty in that event, and
this is why its sensitivity index is high. This is an
example of how TVSA could be used to determine
disinformative data.

French Broad River

TVSA results for the French Broad River are given in the
middle panel of Figure 3. They show that in this catchment,
uncertainty in precipitation data has much larger influence
than in the English River and is as influential as parameter
uncertainty during some high flow events. Among
different groups of parameters, routing parameters are
more influential than soil ones. A possible reason for this is
that this catchment is very wet, and therefore, soil
parameters matter less. Furthermore, there are many small
events where timing errors might relate more to the routing
than to the runoff production (soil) parameters – especially
compared with drier catchments.
Results for the snow parameters deserve a further

comment. Because this catchment is not affected by snow
accumulation and melt, the relevant module is actually
switched off here. This is obtained by fixing the snow
parameter TS to �∞ and all other snow parameters
(CFMAX, CFR and CWH) to zero, so that all precipitation
is turned into rainfall and immediately diverted to the soil

Figure 4. Top: observed precipitation (mm/day), temperature (C) and flow
(mm/day) for the English River catchment around day 500. Bottom left:
example of two time series of the perturbation et applied to the flow
observations around day 500. Bottom right: unconditional CDF of the
RMSE for day 500 (red) and two conditional CDFs (black) obtained from
the flow perturbation time series in the left panel. These are the CDFs used
to compute the PAWN sensitivity index for flow uncertainty source (for
the sake of clarity, only 2 out of the 20 conditional CDFs are displayed)
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moisture accounting module. Hence, when performing
TVSA, the model is evaluated against the same combina-
tion of snow parameters ([�∞, 0, 0, 0]). In principle, we
should therefore obtain a zero-valued sensitivity index for
the snow parameter group. In practice, this does not happen
because the sensitivity index of Equation 4 is approximated
using empirical CDFs, and the empirical CDFs of two
different samples can differ (by a small amount) even if the
underlying probability distribution is the same. Indeed, in
both the time-varying and aggregate cases, we obtain very
low but non-zero sensitivity values. Although physically
meaningless, these values are interesting because they give
us a reference to evaluate the accuracy of the sensitivity
indices of the other input factors. For instance, in the
middle right panel of Figure 3, we see that the sensitivity
index of flow data uncertainty is of the same order as that of
the snow parameters, which means that the measured
sensitivity to flow data uncertainty is within the range of
numerical approximation errors, and might thus be
regarded as negligible.

Guadalupe River

Finally, the bottom panels of Figure 3 show the TVSA
results for the Guadalupe River near Spring Branch,
Texas. Similarly to the French Broad River, this
catchment is not affected by snowmelt, and the sensitivity
estimates for the snow parameters are reported only as a
reference to infer the approximation accuracy of the other
indices. Here, uncertainty in soil parameters is by far the
most influential source of uncertainty, which is consistent
with the fact that the catchment is very dry, and therefore,
the soil dynamics, which control the separation of
precipitation into runoff and evaporation, dominates over
routing for the lumped model we are analysing here.
Similarly to the English River, uncertainty in precip-

itation data has a limited influence in relation to parameter
uncertainty. As for uncertainty in flow observations,
TVSA reveals a very high sensitivity in one specific time
period, i.e. the beginning of the third year of the
simulation period (see letter B in Figure 3). We therefore
analysed the third year of the simulation period in more
detail. Figure 5 depicts the simulated and observed flows
in that period and exhibits two very different behaviours
in dry conditions. At the beginning of the year (days 800–
850), the observed hydrograph (red line) flattens at a
value of about 0.05mm/day, while at the end of the year
(days 1050 onwards), it goes to zero. In both periods,
precipitation events (shown at the top of the panel) are
equally infrequent and low. This evidence suggests an
inconsistency in the data, with days 800–850 suggesting
that the catchment can sustain a flow of about 0.05mm/
day even after a prolonged dry period and days 1050–
1096 suggesting that the flow goes to zero. This is why

TVSA shows a higher sensitivity to flow observations
around days 800–850: Just as for the English River, the
most effective way to improve RMSE in this period is by
perturbing (i.e. decreasing) observed flows.
The second influential factor in the dry period is soil

parameters. To further investigate the time-varying
relationship between soil parameters and model perfor-
mance, we applied the DYNIA (Wagener et al. (2003) to
the available sample of 3000 independent Monte Carlo
simulations (which we generated to build the unconditional
CDFs for PAWN). As an example, the left panel in Figure 6
shows the DYNIA results for the exponential parameter
BETA. Here, the colour scale represents the frequency
distribution of BETA over the subsample of the top 5%
performing simulations. It can be noticed that in the dry
period around days 800–850, higher performances are
more frequently obtained with low values of BETA (around
1.96), while in the dry period just after day 1050, they are
obtained with high values of BETA (around 5.55). The
reason is that increasing BETA reduces the runoff from the
soil moisture accounting component (see right panel in
Figure 6), thus allowing for increased evaporation and
reduced flow, while reducing BETA increases the runoff
and therefore the flow. In other words, DYNIA reveals how
parameter BETA can be varied to (almost) close the water
balance and compensate for inconsistencies in data.
This example shows how we can use the combination of

TVSA, output visualization and DYNIA to understand
model shortcomings and potentially disinformative data
periods. TVSA highlights an unexpected period of
parameter sensitivity, while the streamflow plot shows
that the model is not capable of encapsulating the observed
flow. Time-varying parameter analysis then further
suggests how the model is trying to reach the observed
flow by decreasing parameter BETA. Given that the model
cannot reach the observations, it is likely that data error is
to blame, rather than model structural shortcomings.

Figure 5. Observed (red) and simulated (grey) flow for the Guadalupe
River in the third year of the simulation period. Black line shows the

(reversed) precipitation data
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Impact of the moving window size

The last analysis we performed was aimed at evaluating
the impact of the chosen window size. In fact, the limited
influence of precipitation data uncertainty in the English
and Guadalupe catchments might be attributed to the fact
that performances are averaged over a relatively large
moving window (31 days), while precipitation data
uncertainty might influence the model accuracy on shorter
timescales. To verify this explanation, we repeated our
TVSA using a moving window of smaller size. We tried
different sizes down to a minimum of 3 days (w=1). This
analysis showed that changing the window size does not
significantly impact sensitivity to precipitation errors. As
an example, Figure 7 reports the sensitivity results for the
extreme case w=1 (intermediate results with 1≤w≤ 15
are qualitatively similar). Shortening the moving window
increases the sensitivity to precipitation uncertainty, but
the increase is rather small. We can thus conclude that
precipitation uncertainty has limited impact on the model
performance in the English and Guadalupe catchments
regardless of the considered timescale. However, as
discussed earlier, the uncertainty here investigated only
deals with the intensity of precipitation data and not their
temporal distribution.
Figure 7 also shows a main difference with respect to

the previous sensitivity results, that is, the loss in
sensitivity to the snow component parameters in the
English catchment (compare the row labelled as snow in
the top panels of Figures 3 and 7). The reason is that the
snow accumulation and melt process is relatively slow,
and therefore, its impact can be more clearly detected
over a 31-day simulation period than a 3-day period.
These results confirm that the choice of the window size
can significantly impact sensitivity estimates, as also
demonstrated in previous studies (e.g. Massmann et al.,
2014). While we cannot suggest a formal, objective way
to define the window size a priori, we advise to check the
impact of this choice by repeating the analysis for
different window sizes. Here, the particular hydrological

meaning of each parameter is important to consider, e.g.
parameters defining storage sizes require larger window
sizes than quick residence times. If large differences are
detected, either they can be given a physically
meaningful interpretation or they should be further
investigated as they could help in identifying conceptual
weaknesses in the model and/or in the GSA set-up.
Notice that such posterior analysis is not computation-
ally expensive because calculating the time-varying
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Figure 6. Left: dynamic identifiability analysis (DYNIA) of the soil parameter BETA for the Guadalupe River in the third year of the simulation period.
The colour scale here represents the frequency distribution of BETA in the subsample of the top 5% performing simulations. Black line is the time series
of observed flow. Right: the effect of two different choices of parameter BETA on the runoff from the soil moisture accounting routine (underlying

equation is Runoff = Prec (SM/FC)BETA where SM is the soil moisture content and FC is field capacity)

Figure 7. Same as left panels of Figure 3 but using a moving window of
3 days to compute the RMSE
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performance metric for a different window size and the
associated sensitivity indices does not require re-running
the simulation model.

LIMITATIONS OF OUR APPROACH AND FUTURE
RESEARCH DIRECTIONS

This study demonstrates the use of TVSA to quantify
the relative influence of different sources of uncertainty
on the accuracy of a lumped hydrological model. While
our results provide some interesting insights on how
such influences vary in time and across catchments, it
should be highlighted that they hold true under a
number of assumptions and choices that we made in
setting up the GSA. These choices include the
hydrological model being used; the case study sites;
several definitions of the experimental set-up of GSA,
e.g. the simulation period, the definition of the
performance metric and the selection and characteriza-
tion of the uncertainty sources; and finally the choice of
GSA method itself. In this section, we discuss some of
these choices and their possible implications on our
results and give directions for further research.
Our analysis is applied to the conceptual HBV model in

the formulation presented in Kollat et al. (2012); hence,
we cannot exclude that sensitivity estimates would be
different if a different rainfall–runoff model was used.
Herman et al. (2013a) compare TVSA for three different
hydrological models and find significant inter-model
differences. However, that study considers parameter
uncertainty only and not the relative influence of
parameter versus data uncertainty. Also, because in our
approach we analyse groups of parameters related to the
three model components (snow, soil, routing) rather than
individual parameters, using different equations to
represent individual hydrological processes in those
components might have a smaller impact on group
sensitivities. Another interesting direction for further
research would be to regard the variability of model
equations as an additional source of uncertainty (so-called
model structure uncertainty) and expand our approach to
assess the relative influence of structure uncertainty with
respect to parameter and data uncertainty.
Another subjective choice is that of the performance

metric. In this study, we use the RMSE, a metric that
tends to be particularly responsive to how well the model
reproduces the timing and shape of the hydrograph (e.g.
Gupta et al., 2009 and references therein) and therefore is
usually sensitive to the parameters of both the soil
moisture accounting and the flow routing component.
Other metrics might produce different sensitivities. Such
differences are typically significant when using aggregate
performance metrics (an example is given by Shin et al.

(2013)); however, in the case of TVSA, our own
experience is that this choice has a rather small impact
unless the window size is very large (e.g. several months,
see Wagener et al., 2003).
As for the GSA method, a range of options has been

used for TVSA in the past, including the Fourier
Amplitude Sensitivity Testing (FAST) (Reusser and
Zehe, 2011), segional sensitivity analysis (Wagener
et al., 2003; Sieber and Uhlenbrook, 2005), Sobol’
(Kelleher et al., 2013) and PAWN in this study. Given
that the results across these studies are quite consistent
with each other, we believe that also this choice is less
crucial (but for very large window sizes), although we
have not yet thoroughly tested this perception thus far.
Finally, one aspect we know that does have a large

impact on our results is the characterization of the
uncertainty sources. For example, we already discussed
how the error model used to generate equiprobable
time series of precipitation, which does not allow for
timing errors, might have reduced the sensitivity to
precipitation uncertainty. We might also expect an
increased (reduced) sensitivity to data uncertainty if we
increased (reduced) the variability of data errors (here
set to ±40% for precipitation and ±20% for potential
evaporation and flow data). Similarly, the definition of
parameter ranges might be very important. For
example, Kelleher et al. (2013) found that it was
possible to separate parameter influences in time only
after substantially reducing the uncertainty range of one
parameter (cross-sectional area), because, otherwise, the
variability of that parameter dominated the model
response by producing unreasonable model outputs.
In our approach, such effect might be mitigated by the
fact that we filter out output samples that do not satisfy
a minimum performance target (see the discussion after
Equation 3). Yet, understanding the influence of the
chosen characterization for the uncertainty sources
remains a crucial aspect in the interpretation and
transferability of GSA results.

CONCLUSIONS

In this paper, we investigate the relative importance of
parameter and data uncertainty on the performance of a
spatially lumped conceptual rainfall–runoff model via
TVSA. We find that TVSA can reveal information on
local sensitivities that would be hidden in SA of aggregate
performance and that TVSA could provide a formal
method to identify periods where data might be
disinformative due to observational errors. We also find
that the relative importance of different factors changes
across catchments with different characteristics. Routing
parameters have higher influences in a wet catchment
where the runoff coefficient is higher and quick recession
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phase is longer, while soil parameters are the main source
of uncertainty in a dry catchment, where estimating the
amount of water lost to the atmosphere as evapotranspi-
ration has a large influence. Uncertainty in precipitation
data has a significant influence in a wet catchment, while
its influence is much more limited in a snow affected and
a dry catchment. It is important to stress that the
transferability of our conclusions beyond our test
catchments has yet to be tested. The results are further
limited by the assumptions made in our study set-up as
discussed earlier.
While addressing these limitations left for future

research, this work demonstrates that (1) the relative
importance of data and parameter uncertainty, both in
time and across different places, can be formally
investigated by TVSA; (2) TVSA is a generic method-
ology that can be tailored and applied to other case studies
in a relatively straightforward way; and (3) TVSA
provides interesting insights for model diagnostic,
identification of disinformative data and prioritization of
efforts for uncertainty reduction.
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APPENDIX.

THE AUTOREGRESSIVE HETEROSCEDASTIC
GAUSSIAN MODEL FOR FLOW ERRORS
Time series of perturbed flow observations qobs;pert are
obtained from the available flow observations qobst via the
additive model:

qobs;pert ¼ qobst þ et (4)

In order to preserve the persistence of the original time
series, the error term et is described as an autoregressive
process, i.e.

et ¼ αet�1 þ gt (5)

where gt is randomly generated from a zero mean
Gaussian distribution. In order to account for the fact
that observational errors are typically larger at higher
flow values, the standard deviation of the Gaussian
distribution is not constant in time, but it is assumed
proportionally to the flow observation on the current
time step, i.e.

STD gt½ � ¼ βqobst (6)

The model thus requires specifying two parameters, α
and β. In our application, we set the parameter α to 0.8
and derived the value for β as

β ¼ 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2ð Þp
3

(7)

This choice for β ensures that at each time step, the
perturbation et is within the interval ±0:2qobst with
probability 0.99. The proof is as follows.
Given that et is a Gaussian variable, at each time step,

its value falls with 0.99 probability within the interval
± 3STD[et]. From Equation 4, the standard deviation of et
is related to that of gt by the equation

STD et½ � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2ð Þp STD gt½ � (8)

By replacing Equation 6 into Equation 8, we obtain

STD et½ � ¼ βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2ð Þp qobst (9)

Therefore, at each time step, et is within the interval
±3β=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2ð Þp

qobst with probability 0.99. In order to
ensure that relative errors do not exceed ±0.2, we need
to ensure that 3β=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2ð Þp ¼ 0:2 and therefore

Equation 7.
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