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Abstract There is no uniform approach in the literature for modelling sequential correla-
tions in sequence classification problems. It is easy to find examples of unstructured models
(e.g. logistic regression) where correlations are not taken into account at all, but there are also
many examples where the correlations are explicitly incorporated into a—potentially compu-
tationally expensive—structured classification model (e.g. conditional random fields). In this
paper we lay theoretical and empirical foundations for clarifying the types of problem which
necessitate direct modelling of correlations in sequences, and the types of problem where
unstructured models that capture sequential aspects solely through features are sufficient.
The theoretical work in this paper shows that the rate of decay of auto-correlations within a
sequence is related to the excess classification risk that is incurred by ignoring the structural
aspect of the data. This is an intuitively appealing result, demonstrating the intimate link
between the auto-correlations and excess classification risk. Drawing directly on this theory,
we develop well-founded visual analytics tools that can be applied a priori on data sequences
and we demonstrate how these tools can guide practitioners in specifying feature representa-
tions based on auto-correlation profiles. Empirical analysis is performed on three sequential
datasets. With baseline feature templates, structured and unstructured models achieve similar
performance, indicating no initial preference for either model. We then apply the visual ana-
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lytics tools to the datasets, and show that classification performance in all cases is improved
over baseline results when our tools are involved in defining feature representations.

1 Introduction

Structure modelling permits target variables to collaborate so that ‘informed’ decisions about
a set of random variables are based on a collection of beliefs linked together in a graphical
structure (Lafferty et al. 2001; Sutton and McCallum 2011). In such frameworks, instances
can be a list of vectors each relating to a single target variable in the graph. For classification
problems, a localised belief about a particular target variable is influenced by the beliefs of
neighbouring nodes, which, in turn, have been informed by their own neighbours. Marginal
distributions in a structured model, therefore, are explicitly influenced by all possible target
permutations over the graph. Intrinsically, this can be expensive to compute, but, in some
applications, superior classification performance admonishes time complexity.

Some applications which have benefited from structural modelling include: computer
vision (Zhang 2012) (e.g. scene recognition, item tracking), Activity Recognition (AR)
(e.g. energy expenditure estimation), Natural Language Processing (NLP) (Collins 2002)
(e.g. text chunking, information extraction), biomedical signal processing (Temko et al. 2011)
(e.g. seizure detection) etc. With many of these, structure would be employed to model the
temporal/sequential (and sometimes spatio-temporal) aspect of the data. In many of these
example applications, however, the authors do not incorporate structure in the modelling
pipeline, and so the structure is assumed to be approximated by the extraction of expressive
features, although few researchers make this statement explicitly. The abandonment of struc-
ture might be considered sub-optimal for many of these applications, yet some are considered
‘solved’ with the unstructured model choice.

We can loosely view the structured and unstructured classifiers as being model- and data-
driven respectively; model-driven can be seen to fit dynamics of the problem and data-driven
can be seen to estimate a predictor for the problem with less attention given to modelling
structure. The choice of approach is largely subjective and various practitioners approach the
problem with both techniques. For example ‘tracking by detection’ (Andriluka et al. 2008)
is a technique in computer vision where each frame in a video is considered independent,
whereas filtering techniques, e.g. the Kalman filter (1960), can be applied to a history of
predictions to estimate a trajectory to project tracking to future frames.

Despite the number of researchers that study structured problems, we cannot find specific
studieswhere the efficacy and utility of both choices are compared overmultiple classification
domains. Some communities are satisfiedwith using staticmodels, while others seem to insist
on using structured models (e.g. many NLP applications).

This paper makes the following contributions. In Sect. 3 we discuss our methodology
and approach. In this section we also demonstrate how Logistic Regression (LR) may be
interpreted as a special case of Conditional RandomField (CRF)models. These are expanded
uponwith theoretical analyses in Sect. 4wherewe derive bounds on the excess risk introduced
when applying unstructuredmodels to sequential problems. In Sect. 5we describe the datasets
and features used in our analyses, and we present our results in Sect. 6 where, for a number
of datasets, we show that equivalent classification performance is achieved for structured and
unstructured models alike. The theoretical and practical details of modelling sequences are
both emphasised in detail throughout this paper. In particular Sect. 6 will introduce methods
which relate our theoretical findingswith practical experiments andwe demonstrate that these
can guide feature extraction routines to obtain improved classification performance for the
datasets we considered. Finally, we discuss our contributions further and conclude in Sect. 7.
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2 Related work

In this section, we discuss work that relates the use of structured and unstructured classifica-
tion tasks which we outline from both practical and theoretical perspectives. In general, CRFs
can be applied to any number of application domains, including NLP, bioinformatics, activ-
ity recognition, computer vision, etc. yet many practitioners in these areas have found that
unstructured classification models can perform adequately. Examples of such applications
include activity recognition (Twomey et al. 2010) (with specific reference to the Microsoft
Kinect; Zhang 2012) and biomedical applications (e.g. brain (Temko et al. 2011) and heart
(Twomey et al. 2014)). This is a principal motivation of our work, as methods have been
derived for a number of application domains that are both structured and unstructured.

In Hoefel and Elkan (2008), the authors propose a two-stage CRF model. Their approach
first learns LR or Support Vector Machine (SVM) models which are subsequently used as
feature functions (see later) for the eventual CRFs. This work shows that CRFs with such
feature functions tend to converge quickly due to the embedding of their discriminative
characteristics.

Theoretical analysis of statistical learning has largely focused on identically distributed
(iid) datasets, and this is a feature of many publications (Cristianini and Shawe-Taylor 2000).
In Steinwart and Anghel (2009), the authors proposed the use of SVMs for forecasting on
unknown ergodic systems. It was proved that with noisy observations, SVMs that incorpo-
rate Radial Basis Function (RBF) kernels will learn the best forecaster under alpha-mixing
constraints when the decay of correlations for Lipshitz-continuous functions is summable.

In Sinn and Poupart (2011a), asymptotic theory relating to the consistency of linear-
chain CRFs is introduced (with the assumption that the feature functions are known and that
the weight parameters are not). This is used to describe parameter learning convergence of
a sequence as its length tends towards infinity with maximum likelihood estimators. This
required a definition of CRFs for infinite sequences that are defined by the limit distributions
of conventional linear-chain CRFs. One of the main questions the authors answer is the
quality of model identification in the presence of noisy data, and bounds were derived.

The investigation of infinite-sequence CRFs was continued in Sinn and Poupart (2011b)
where theoretical considerations for online prediction are discussed. The work is motivated
by the observation that marginal probability estimates can only be computed once a full
data sequence has been observed, and this implies that the computation of exact marginal
probabilities in online settings is not possible. The authors introduced methods of approx-
imating the marginal distribution and provide theoretical bounds on the error rates on the
approximations that can be calculated at run-time.

Richnotions of structure that canbe capturedby afirst-order logical language are employed
in relational learning and inductive logic programming. There, the idea of capturing structure
in features rather than in models is called propositionalisation (Kramer et al. 2001; Krogel
et al. 2003). This is a more general setting than ours as it can involve an unlimited range of
structure including spatial structure (Appice et al. 2016), network structure (Schulte et al.
2016) and molecular structure (Kaalia et al. 2016). The advantage of our focus on sequential
data is that it facilitates a more in-depth analysis of auto-correlation than would be possible
with unrestricted logical structure (see also Jensen and Neville (2002) for a study on the
effect of auto-correlation in relational learning).

Finally, we point the interested reader to a recent, complementary study on the tractability
and optimality of structured prediction for 2D grids as commonly used in machine vision
applications using a generative probabilistic model (Globerson et al. 2015).
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3 Concepts and notation

3.1 Notation

In this work, we focus on non-iid sequential data. Each observation is a sequence of length Nm

and each position of the sequence is a D-vector, i.e. xm ∈ R
Nm×D . Given a target label space,

Y , every sequence has an associated target vector, ym ∈ Y Nm . A dataset then consists of M
observation-target pairs, D = {(xm, ym)Mm=1}. For the m-th observation, its n-th position is
selectedwith xm,n (‘tokens’) and the corresponding label for this position (‘tags’) is identified
by ym,n .

Concretely, taking natural language as an example, xm may represent a sentence of Nm

words, xm,n is a word in a sentencewith the tag ym,n . In general, xm,n ∈ V , for a fixed vocabu-
lary V . However, our analyses are not limited to this and our theoretical and empirical results
hold with more general observation classes. Indeed, in all cases, predictive performance is
more a function of the issued set of feature functions (see later) than the raw observations.

3.2 Models

3.2.1 Conditional random fields

Conditional Random Fields (CRFs) (Lafferty et al. 2001; Sutton and McCallum 2011) con-
stitute a structured classification model of the distribution of ym conditional on xm . The most
common form of CRF is the linear-chain CRF which are applied to sequential data, e.g. nat-
ural language, but more general CRFs can be learnt on trees and indeed arbitrary structures.
In general the probability distribution over the n-th node is influenced by the neighbouring
nodes with graphical models, and this influence is propagated over the structure using algo-
rithms based on message passing (Pearl 1982). In this section, we will show how marginal
probability estimates are computed in the linear chain CRF framework efficiently, and we
will also depict the message passing algorithm graphically.

The general equation for estimating the probability of a sequence is given by:

PCRF(ym |xm) = 1

ZCRF

Nm∏

n=1

exp{λ�f(ym,n−1, ym,n, xm, n)} (1)

where Nm denotes the length of them-th instance and n iterates over the sequence. Themodel
requires specification of feature functions that are (often binary) functions of the current and
previous labels, and (optionally) the sequence xm . We will discuss the curation of these
feature functions later, but let us assume that a set of J feature functions exist. Both unigram
feature functions that depend on the current label yn (fu(∅, yn, x, n)) and bigram feature
functions that depend on the previous and current labels, yn−1, yn (fb(yn−1, yn, x, n)) are
allowed. We concatenate these into one vector f of length J for notational convenience. In
many applications the set of non-zero feature functions is sparse for any position n allowing
for fast computation even for large J . The set of feature functions has a corresponding set of
parameters (λ ∈ R

J ); these are learnt from data and are shared across potentials, meaning
that the dynamics of the model do not change over time. Finally, ZCRF is termed the partition
function, and this normalises the output of the model to follow a true distribution. The
graphical model for the CRF is shown for a short sequence in Fig. 1.

We will use the vectors αn,βn, γ n,ψn and matrices Ψ n during inference in CRFs. Sub-
scripts are used to denote the position along the sequence, e.g. αn is a vector that pertains
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Fig. 1 This figure shows the
graphical model for linear chain
CRFs. Observed nodes are filled
in grey, and this image shows
how each node can depend on the
whole sequence x

ynyn−1 yn+1. . . . . .

x

to the n-th position of the sequence, and parentheses are used to specify an element in the
vectors, e.g. the y-th value of the n-th alpha vector is given by αn(y). Matrices are indexed
by two positions, and the (i, j)-th element of Ψ n is specified by Ψ n(i, j).

In order to reduce the time complexity of inference, we describe a dynamic programming
routine based on belief propagation here.We first calculate localised ‘beliefs’ about the target
distributions, and these are called potentials. The accumulation of local potentials at node n
is termed the ‘node potential’. This |Y |-vector where the y-th position is defined asψn(y) =
exp{∑J

j=1 λ j f j (∅, y, x, n)}, where f j is the j-th feature function. Similarly, the accumulation
of local potentials at the n-th edge is termed the ‘edge potential’. This is a matrix of size
|Y | × |Y | where the (u, v)-th element is given by Ψ n(u, v) = exp{∑J

j=1 λ j f j (u, v, x, n)}.
Node potentials are depicted as the edges between observation and targets in Fig. 1, while in
the same figure, edge potentials are depicted by edges between pairs of target nodes.

Given these potentials, we can apply the forward and backward algorithm on the CRFs
chain. By defining the intermediate variables γ n−1 = αn−1 �ψn−1, and δn+1 = βn+1 �ψn
(where � denotes the element-wise product between vectors) the forward and backward
vectors are recursively defined as:

αn = Ψ �
n−1γ n−1 (2)

βn = Ψ nδn+1 (3)

with the base cases α1 = 1 and βN = 1. The un-normalised probability of the n-th position
in the sequence can be calculated with

P̂(Yn) = αn � ψn � βn . (4)

Finally, in order to convert this to a probability distribution, values from (4) must be
normalised by computing the ‘partition function’. This is a real number, andmay be calculated
at any position n with ZCRF = ∑

y′∈Y P̂(Yn = y′). The partition function is a universal
normaliser on the sequence, and its value will be the same when computed at any position in
the sequence.With this, we can now calculate the probability distribution on the n-th position

P(Yn) = P̂(Yn)

ZCRF
. (5)

Example 1 (Inference in CRFs) In Fig. 2 we show a graphical representation of inference for
CRFs. We have overlaid the variables that we defined in this section on the graph, and, where
appropriate, we also give the equations for the variables. From this image we can see that
because αn is a function of αn−1 (and indeed all elements in the set {αm : 1 ≤ m < n}), and
because βn is a function of all elements in {βm : n < m ≤ N }, that probability estimation
for node n is influenced by all node and edge potentials from the graph.
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Fig. 2 In this figure we show how marginal inference is performed over node yn with CRFs models, where
we have related the theoretical foundations of CRFs described in this section to a graphical representation of a
short sequence. Note, the CRF is an undirected graphical model, and the arrows shown in this image indicate
the direction of the passed messages when performing inference on yn

3.2.2 Logistic regression

We can employ LR in a similar manner as CRFs to predict sequences. LR is formulated as
follows:

PLR(ym,n |xn) = 1

ZLR
exp{λ�f(ym,n, xm, n)} (6)

where λ ∈ R
J are the parameters of the model that are associated with the unigram feature

functions, f , and ZLR is the normalising constant. The set of feature functions for LR will be
the same as that for CRFs with the exception that all bigram feature (Fb) functions are zero.

Incorporating LR for sequence prediction assumes that position n of a sequence is uncon-
ditionally independent of all other positions of that sequence. This is clearly naïve assumption
as neighbouring positions should provide additional information for probability estimates in
sequences. However, if the order of the data is preserved and feature extraction captures the
sequential nature of the data, LR may be capable of approximating the marginal distribu-
tion. Probabilities will be approximate, but can be computed with a significant reduction of
computational complexity than CRFs.

To help us understand the use of LR for sequence prediction, we show in Theorem 1 that
given certain conditions on transition potentials of CRFs, unconditional independence can
be proved between adjacent nodes.

Theorem 1 (Effect of rank-1 transition potentials on linear chains) Rank-1 transition poten-
tials at any position n(1 ≤ n ≤ N − 1) of a chain induces unconditional independence
between the portions of the chain preceding and following position n, i.e. P(Y1, Y2, . . . Yn)
⊥⊥ P(Yn+1, Yn+2, . . . YN ). In the special case where all transition potentials are of rank
1, the joint probability of the chain may be exactly computed with P(Y1, Y2, . . . , YN ) =
P(Y1)P(Y2) . . . P(Yn).

Proof Assuming a rank-1 incoming transition potential at position n − 1, Singular Value
Decomposition (SVD) can be employed to decompose Ψ n−1 = σn−1un−1v�

n−1, where σn−1

is the first singular value of Ψ n−1, and un−1 and vn−1 are the first left and right singular
vectors respectively. Given this decomposition, we can re-write the forward vectors as αn =
(σn−1u�

n−1γ n−1)vn−1. By noting that (σn−1u�
n−1γ n−1) is a scalar which we will denote as

cn−1, un-normalised probability estimates can now be re-written as

P̂(Yn) = cn−1vn−1 � ψn � βn (7)

and the partition function can be computed by marginalising over all possible labels,
i.e. ZCRF = cn−1

∑
y′∈Y vn−1(y′)ψn(y

′)βn(y
′). The probability distribution over the labels

at position n can now be written as
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Fig. 3 This figure shows the effect of full rank transition potentials (left) and rank-1 transition potentials
(right) on marginal probability estimation on CRFs. We can see that probability estimates at positions 1–5 are
unaffected by this permutation when the rank of Ψ 5 is 1

P(Yn) = vn−1 � ψn � βn∑
y′∈Y vn−1(y′)ψn(y′)βn(y′)

(8)

which no longer depends on the previous incoming forward vectors (α).
A similar approach will show that P(Yn−1) is independent of all backward vectors when

the rank(Ψ n) = 1. Finally, if both rank (Ψ n−1) = 1 and rank (Ψ n) = 1, it follows that

P(Yn) = vn−1 � ψn � un∑
y′∈Y vn−1(y′)ψn(y′)un(y′)

(9)

which we can is independent of all forward and backward vectors due to the absence of α

and β. 	

The purpose of this analysis is to motivate the use of LR for sequence modelling by

viewing it as a special case of CRFs. We do not necessarily advocate the use of SVD during
learning/inference as it has time complexity O

(|Y |3), while belief propagation requires
O

(|Y |2). Instead, the decomposition of Theorem 1 allows us to understand the connection
between nodes and in particular the conditions where non-trivial transition potentials induce
unconditional independence. Finally, we note that the use of SVD to detect unconditional
independence with large (possibly loopy) graphs of binary variables may be advisable for
non-active transition potentials (i.e. transition potentials that do not depend on x; ‘bias’
transitions). In this case, the presence of rank-1 transition potentials may allow inference
to be performed on a simpler graph that depicts equivalent marginal properties, and this
condition can be encouraged by nuclear-norm regularisation (Recht and Fazel 2010).

Example 2 (Rank-1 transition potentials) In Fig. 3 we visually demonstrate effect of rank-1
transition potentials on a sequence. In both subplots in this figure, the log potentials beyond
position 5 were then randomly permuted 250 times. When Ψ 5 is of full rank (left), probabili-
ties at positions 1–5 are dependent on the rest of the sequence. However, when the transition
potential Ψ 5 is compelled to have rank 1 (right) we can see that probability estimates at
positions 1–5 are unaffected by potentials at positions 6–10.

4 Theoretical analysis

In this section we provide some theoretical results regarding learning on weakly dependent
sequences, and where possible we give examples of definitions and concepts. The goal of this
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analysis is to show that under certain conditions, regularised Empirical Risk Minimisation
(ERM) classifiers, of which LR is an example, are capable of achieving expected risk of
forecasting on stochastic processes comparable to the risk achievable in a standard iid setting.

4.1 Preliminaries

We first introduce some basic definitions that will aid the following analysis.1

First we introduce the concept of a measure preserving dynamical system that will be
used throughout. Let

⊗ = (Ω,Σ,μ) be a probability space for a setΩ,Σ a sigma-algebra
on Ω and μ a probability measure. We similarly define a stochastic process (Ω,Σ,μ, T )

where T : Ω → Ω is an endomorphism (measure-preserving transformation), meaning that
T is surjective, measurable, and μ(T−1A) = μ(A) for all A ∈ Σ , where T−1(A) denotes
the pre-image of A.

Definition 1 (Ergodicity; Walters 2000) An endomorphism T is called ergodic if it is true
that T−1A = A implies μ(A) = 0 or 1, where T−1A = ω ∈ Ω : T (ω) ∈ A.

Definition 2 (Stationarity) Let Z = (Xi , Yi )i≥0 be a stochastic X × Y -valued process
defined on the probability space (Ω,Σ,μ), with X ⊂ R

d , Y ⊂ R are compact subsets, and
FX (xi )i=t1+τ,...,tk+τ represent the cumulative distribution function of the joint distribution
of {Xt } at times t1 + τ, . . . , tk + τ . Then, {Xt } is said to be stationary if, for all k, for all τ ,
and for all t1, . . . , tk ,

FX (xt1+τ , . . . , xtk+τ ) = FX (xt1 , . . . , xtk ). (10)

Since τ does not affect FX (·), FX is not a function of time.

Definition 3 (Regularity) Let μ be a measure on R
d . μ is a regular Borel measure if for any

two measurable sets A, B ⊂ R
d , μ(A) = μ(A+ B)+μ(A\ B), and if there exists a B ∈ R

d

such that A ⊂ B and μ(A) = μ(B).

Definition 4 (Hölder continuity) A function f onRd space is Hölder continuous, when there
are non-negative real constants C, α, such that

| f (x) − f (y)| ≤ C ||x − y||α (11)

for all x and y in the domain of f . α is the exponent of the Hölder condition. If α = 1, then
the function satisfies a Lipschitz condition. If α = 0, then the function is simply bounded.

Example 3 (Regularity and Hölder continuity) In Fig. 4 we show a signal (blue, dotted) and
the Hölder envelope (green, solid) at a position x0 = 0. In this example, we can see that
the signal never extends beyond the Hölder envelope, and consequently we can understand
Hölder continuity is a measure of the regularity of a signal.

Definition 5 (Mixing) The transformation T : X → X is said to be mixing if for any
two measurable sets A, B ⊂ X , one has μ(A ∩ T−n(B)) → μ(A)μ(B) as n → ∞. This
property is closely related to the decay of correlations. If f is mixing, and iff correlations
decay, cor(φ, ϕ) → 0 as n → ∞, where

cor(φ, ϕ) :=
∫

Ω

φ · ϕdμ −
∫

Ω

φdμ −
∫

Ω

ϕdμ, (12)

1 The symbols α, β, γ, δ, and λ have alternate definitions when referenced in Sects. 3 and 4. While potentially
confusing, we chose this notation in order to be consistent with the conventions of previous research in both
areas.
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Fig. 4 A signal (dotted blue line) and its Hölderian envelope computed at x0 (solid green line). As expected,
the envelope bounds the signal, i.e. | f (x) − f (x0)| ≤ C ||x − x0||α (Color figure online)

is the correlation of the square integrable functions φ, ϕ ∈ L1(μ) satisfying
φϕ ∈ L1(μ).

Example 4 (Mixing) iid processes are mixing according to Definition 5 applied to finite
dimensional cylinder sets (open sets of the natural topology of sequences of random vari-
ables). Ergodic Markov chains are also mixing (such as the Occasionally Dishonest Casino
(ODC) example that we will analyse in Sect. 4.3). Generally, any strictly stationary, finite or
countable-state aperiodic Markov chain is mixing.

Definition 6 (Strong mixing) Suppose X := (Xk, k ∈ Z) is a sequence of random variables
on a given probability space (Ω,Σ,μ). For −∞ ≤ j ≤ � ≤ ∞, let Σ�

j denote the σ -field
of events generated by the random variables Xk, j ≤ k ≤ � (k ∈ Z). For any two σ -fields
A and B ⊂ Σ , define the ‘measure of dependence’

α(A ,B) := sup
A∈A ,B∈B

|μ(A ∩ B) − μ(A)μ(B)|.

For the given randomsequence X , for any positive integer n, define the dependence coefficient
α(n) = α(X, n) := sup j∈Z α(Σ

j
−∞,Σ∞

j+n). By a trivial argument, the sequence of numbers
(α(n), n ∈ N) is non-increasing. The random sequence X is said to be ‘strongly mixing’, or
‘α-mixing’, if α(n) → 0 as n → ∞.

Definition 7 (Lipschitz Loss) Let the function L : X × Y × R → [0,∞) be a convex,
differentiable and locally Lipschitz continuous loss function, and it also satisfies L(x, y, 0) ≤
1 for all (x, y) ∈ X × Y . Moreover, for the derivative L ′ there exists a constant c ∈ [0,∞)

such that for all (x, y, t), (x ′, y′, t ′) ∈ X×Y ×Rwe have |L ′(x, y, 0)| ≤ c and |L ′(x, y, t)−
L ′(x ′, y′, t ′)| ≤ c

∥∥(x, y, t) − (x ′, y′, t ′)
∥∥
2.

Definition 8 (Linear Classifiers) Given X ⊂ R
d and Y ⊂ R, and a measurable function L as

defined above. For a finite sequence T = ((x1, y1), . . . , (xn, yn)) ∈ (X ×Y )n and a function
f : X → R, we define the empirical L-risk by RL ,T ( f ) := 1

n

∑n−1
i=0 L(xi , yi , f (xi )).

For a distribution P on X × Y , we write RL ,P ( f ) := ∫
X×Y L(x, y, f (x))dP(x, y) and

R∗
L ,P := inf

(
RL ,P ( f )| f : Rd → R

d
)
for the L-risk and minimal L-risk associated to P .

Let Λ be a stable regulariser on F , that is, a function Λ : F → [0,∞) with Λ(0) = 0. We
will also require the following:

r∗ := inf Λ( f ) + RL ,P ( f̂ ) − R∗
L ,P , r > r∗ (13)
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and

Fr :=
{
f ∈ F : Λ( f ) + RL ,P ( f̂ ) − R∗

L ,P ≤ r
}

. (14)

giving r∗ ≤ 1 since L(x, y, 0) ≤ 1, 0 ∈ F , and Λ(0) = 0. We also assume there is a
monotonically decreasing sequence (Ar )r∈(0,1] such that

‖L ◦ f ‖ ≤ Ar ∀ f ∈ Fr , r ∈ (0, 1] (15)

Because of Eq. 14 we have that
∥∥∥L ◦ f̂

∥∥∥ ≤ A1∀ f ∈ F and r ∈ (0, 1]. Finally assume there

exists a function ϕ : (0,∞) → (0,∞) and a p ∈ (0, 1] such that, ∀ r > 0 and ε > 0, we
have

logN (Fr , ‖·‖∞ , ε) ≤ ϕ(ε)r p. (16)

We will first use a result regarding the consistency of SVM for forecasting the evolution
of an unknown ergodic dynamical system from observations with unknown noise (Steinwart
and Anghel 2009) that can easily be extended to LR. We firstly restate assumptions S1 and
S2 from Steinwart and Anghel (2009) monotone sequences:

Assumption 1 For a fixed strictly positive sequence (γi )i≥0 converging to 0 and a locally
Lipschitz continuous loss L themonotone sequences (λn) ⊂ (0, 1] and (σn) ⊂ [1,∞) satisfy
limn→∞ λn = 0, supn≥1 e

−σn |L|
σ

−1/2
n ,1

< ∞,

sup
n≥1

λnσ
4d
n

|L|
σ

−1/2
n ,1

< ∞ and lim
n→∞

|L|3
σ

−1/2
n ,1

σ 2
n

nλ4n

n−1∑

i=0

γi = 0.

Assumption 2 For a fixed strictly positive sequence (γi )i≥0 converging to 0 and a locally
Lipschitz continuous loss L themonotone sequences (γn) ⊂ (0, 1] and (σn) ⊂ [1,∞) satisfy
limn→∞ λnσ

d
n = 0,

lim
n→∞

λnσ
4d
n

|L|
σ

−1/2
n ,1

= ∞ and lim
n→∞

σ 2+12d
n

nλn

n−1∑

i=0

γi = 0.

These assumptions define two complementary conditions: the first implies that λn should
tend to zero, and the other is that it should not decay too fast. This in turn ensures that both
the approximation error and statistical error decay to zero, which is as we would expect for
consistent classifiers (see Steinwart and Anghel (2009) for details).

Theorem 2 (Consistency of LR) Let Z be a stochastic process as defined in Definition 2.
We write P := μ(X0, Y0) and assume thatZ has a decay of correlations of some order (γi ).
In addition, let L : X ×Y ×R → [0,∞) be the logistic loss L(t) = log(1+ exp(−t)). Then
for all sequences (λn) ⊂ (0, 1] and (σn) ⊂ [1,∞) satisfying Assumptions S1 and S2 from
Steinwart and Anghel (2009) and all ε ∈ (0, 1] we have

lim
n→∞ μ(ω ∈ Ω : |RL ,P ( fTn (ω), λn, σn) − R∗

L ,P | > ε) = 0

where Tn(ω) := ((X0(ω), Y0(ω)), . . . , (Xn−1(ω), Yn−1(ω))) and fTn (ω), λn, σn is the LR
forecaster defined by Eq. 6.
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Proof This is an application of Theorem 2.4 of Steinwart and Anghel (2009) to LR using the
fact that LR and SVMs are both Lipschitz continuous up to a change in constants (Rosasco
et al. 2004), and since the logistic loss satisfies Definition 7 as well as assumptions 1 and 2
it also satisfies Theorem 2.4. 	


Using the smoothness assumptions on the map T : M → M, M ⊂ R
d as defined in

Definition 5, and restricting the measure μ to be a Lebesgue outer measure on R
d (i.e. it

satisfies Definition 3, the LR is consistent in the sense of Theorem 2 and has a rate of con-
vergence that is related to the the rate of mixing of the stochastic processZ (or alternatively,
rate of decay of the auto-correlations). Theorem 2 applies to stochastic processes that are
α-mixing with rate (γi ). However, there are interesting stochastic processes that are not
α-mixing but still have fast decay of correlations. We now introduce C-mixing processes
(Hang and Steinwart 2015), which make weaker assumptions than the strong mixing used
thus far.

Definition 9 (C-Mixing; Hang and Steinwart 2015)Given a semi-norm ‖·‖ on a vector space
E of boundedmeasurable functions f : Z → R, we define theC-Normby ‖ f ‖C := ‖ f ‖∞+
‖ f ‖ and denote the space of all boundedC-functions byC(Z) := { f : Z → R| ‖ f ‖C < ∞}.
Some examples of semi-norms that can be used for ‖ f ‖ are given in Hang and Steinwart
(2015). Let (Ω,Σ,μ) be a probability space, (Z , B) be a measurable space, Z := (Zi )i≥0

be a Z -valued, stationary process on Ω with a C-norm ‖·‖C , then for n ≥ 0 we define the
C-mixing coefficients by:

φC (Z , n) := sup
{
cor(ψ, h ◦ Zk+n) : k ≥ 0, φ ∈ BL1(Ak

0,μ), h ∈ BC(Z)

}
(17)

with the time reversed coefficients

φC,rev(Z , n) := sup
{
cor(h ◦ Zk, ϕ) : k ≥ 0, h ∈ BC(Z), ϕ ∈ BL1(A∞

k+n ,μ)

}
. (18)

Let (dn)n≥0 be a strictly positive sequence converging to 0. Then we sayZ isC-mixing with
rate (dn)n≥0 if φC,(rev)(Z , n) ≤ dn∀n ≥ 0. Moreover, if (dn)n≥0 is of the form

dn := c exp(−bnγ ), n ≥ 1, (19)

for some constants b > 0, c ≥ 0, γ > 0, then Z is called geometrically time-reversed
C-mixing.

Example 5 (Bounded variation and C-Mixing) If we take as an example of the semi-norm
‖ f ‖ = ‖ f ‖BV (Z), where BV (Z) = sup

∫
f (dZ)/(dx), i.e. the total variation is bounded,

then it is well know that BV (Z) together with ‖ f ‖∞ forms a Banach space, and satisfies the
conditions of a C-norm. Examples of such functions are given in Fig. 5, and some further
examples ofC-mixing processes are given inHang and Steinwart (2015), alongwith relations
to well-known results on the decay of correlations of dynamical systems.

4.2 Learning rates

Thus far we have only shown that the risk of the LR solution converges to the smallest
possible risk. However, for practical considerations the speed of this convergence is of great
importance. In order to use the above analysis to get a rate of convergence, we need to place
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Fig. 5 On the interval [0,1], the function x2 sin
(
x−1

)
is of bounded variation, but x sin

(
x−1

)
is not

additional restrictions on T and μ to give us a quantitative version of Theorem 2. We will
now give learning rates for regularised ERM classifiers on C-Mixing processes.

Theorem 3 Let Z := (Zn)n>0 be a Z-valued stationary geometrically (time-reversed) C-
mixing process on (Ω,Σ,μ, T ) with rate (dn)n≥0 and ‖·‖C as defined in Definition 9, and
P := μZ0. Moreover, let L be a loss satisfying Definition 7. In addition assume that there
exists a Bayes decision function f ∗

L ,P , we have that

EP
(
L(x, y, f ) − L(x, y, f ∗

L ,P )
)2 ≤ 16

(
EP

(
L(x, y, f ) − L(x, y, f ∗

L ,P )
))

, f ∈ F ,

(20)

where F is a hypothesis set with 0 ∈ F . Defining r∗,Fr , and Ar by (13), (14), (15)
respectively and assume that Eq. 16 holds. Finally, let Λ : F → [0,∞) be a regulariser
with Λ(0) = 0, f0, f1 ∈ F be fixed functions, and A0, A1, A∗ ≥ 0, B0 ≥ 1 be con-
stants such that ‖L(x, y, f0(x))‖ ≤ A0, ‖L(x, y, f1(x))‖ ≤ A1,

∥∥L(x, y, f ∗
LP )

∥∥ ≤ A∗ and
‖L(x, y, f0(x))‖∞ ≤ B0. Then for all fixed ε > 0, δ ≥ 0, τ ≥ 1 and

n ≥ n∗
0 := max

{
min

{
m ≥ 3 : m2 ≥ K and

m

(log(m))2/γ
≥ 4

}
, e3/b

}
(21)

with K = 1212c(4A0 + A∗ + A1 + 1), and r ∈ (0, 1] satisfying

r ≥ max

{
cV (log(n))2/γ (τ + log(4/ε)2pr2p

n
,
20(log(n))2/γ B0τ

n

}
(22)

with cv = 329382
3 , every learning method defined by Definition 8 satisfies with probability

μ not less than 1 − 16e−τ :

Λ( fDn ) + RL ,P ( fDn ) − R∗
L ,P < 2Λ( f0) + 4RL ,P ( f0) − 4R∗

L ,P + 4dr + 5dε + 2dδ.

(23)

Proof This is a direct application of the bound of Hang and Steinwart (2015, Theorem 4.10),
with some minor modifications. Firstly, since we are interested in classification rather than
regression, and we can without loss of generality shift our classifier outputs away from
zero and one by some small epsilon, we are not concerned with the possibility that our
predictor can incur arbitrarily large loss for any given example. This allows us to drop the
clipping restriction required by the theorem, and instead fall back on linear classifiers that
have Lipschitz bounded loss functions defined in Definition 7. Further to this, we are here
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interested in a simpler class of Hilbert spaces than that induced by the Gaussian kernel, so we
can instead use the covering number of linear or polynomial kernels (which can be seen as
equivalent to n-gram type features when neighbouring data points are concatenated). Since
we know from Li andWang (2009) that the covering number for a polynomial kernel is given
by logN (ε) ≤ (d +1) log(4/ε),∀ε > 0, it is easy to see that the covering number for linear
kernels is logN (ε) ≤ 2 log(4/ε). 	


It is worth noting that these bounds are very similar to the Bernstein type bounds achiev-
able for iid processes. The implication is that, given mild assumptions on the nature of the
dependence of the underlying process (i.e. a geometric rate of decay of correlations), we will
be able to learn a classifier that in the limit will behave as if the data were indeed iid, with the
rate of convergence being directly related to the rate of decay of correlations of the under-
lying process. Intuitively, this makes sense: if the decay is sufficiently fast, we have a high
probability that, given a ‘current’ example and another randomly selected example, there will
be virtually no dependence between them, so the standard theory then holds. Furthermore,
it implies that if we construct features that capture some notion of the context, such as the
n-gram feature templates discussed herein, we can accurately capture the full dependency
structure of the sequence, and that the faster the rate of decay of correlation, the smaller the
resulting feature templates need to be.

In this analysis, we have considered linear measures of correlation. It is also possible to
consider nonlinear measures of dependence in the time series, such as the non-parametric
extension of Kendall’s Tau for sequences (Ferguson et al. 2011), or other nonlinear rank-
based measures (Naro et al. 2014). Whilst this is outside the scope of this work, this would
be an interesting area of investigation from both theoretical and experimental perspectives.

Interestingly, however, linearmeasures of correlation are valid formany stochastic (includ-
ing chaotic) processes that display highly nonlinear behaviour, as they will still have bounded
auto-correlation. A common example is the set of Lipshitz continuous functions, which are
a special case of these C-Mixing processes (c.f. Definition 9 and Example 5).

In the following, as a concrete example of a stochastic process to which this theory can be
applied, we analyse the Occasionally Dishonest Casino (ODC), giving a method to quantify
the rate of convergence of correlations based on the parameter settings used to define the
sequence. We empirically analyse this setting in Sects. 5 and 6.

4.3 Auto-correlation of the occasionally dishonest casino

Markov’s theorem tells us that a Markov chain is ergodic if there is a strictly positive prob-
ability to pass from any state to any other state in one step, so by construction the ODC as
defined in Theorem 4 satisfies ergodicity. Furthermore, by the definition of stationarity given
in Eq. 10, by construction the ODC is also a stationary system. Following on from this, we
give an example of quantifying the expected auto-correlation for the ODC as:

Theorem 4 An Occasionally Dishonest Casino (ODC) uses two kinds of die. Define the set
of outcomes S, e.g. for a 6-sided die S = {1, 2, 3, 4, 5, 6}. A fair die has 1

|S| probability
of rolling any number, and a loaded die that has pv probability to roll a value v ∈ S and
p∼v = 1−pv

|S|−1 probability to roll each of the remaining numbers. We will use the notation
ΣS = ∑

x∈S x to denote the sum of the possible outcomes in S, and ΣS\v = ∑
x∈S\{v} x.

Assume a symmetric probability ps that the casino switches from fair to loaded die and back.
The expected auto-correlation R of the discrete time process depending on v, pv and ps , and
for a six-sided die S = {1, 2, 3, 4, 5, 6}, is given by:
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R(v, pv, ps) = lim
N→∞

1

N

N−1∑

n=0

[
2 (Xt − C) (Xt+n − C)

35
12 + pv(v − D)2 + p∼v

5

∑
x∈S\{v} (x − D)2

]
.

where C = 7 − 2D

4
, D = vpv − 21 − v

5
p∼v (24)

Proof See supplementary material. 	

This analysis has related the learning rates of linear classifiers such as LR of the decay

in correlations in the sequence, which motivates the empirical use of auto-correlation as a
sensible quantity to estimate when deciding whether or not a structured model is required.
There are two main factors affecting the decay of correlations in a sequence: the strength
of the chaos in the underlying dynamical system g : X → X , and the regularity of the
observables F and G. Generally speaking, the correlations decay rapidly if the system is
strongly chaotic and the observations are sufficiently regular (e.g. systems that are Hölder
continuous—see Definition 4). We shall see that many real-world problems that have been
considered to be sequential classification tasks, and hence ‘requiring’ structured models, in
fact do exhibit the rapid decays in auto-correlation required by the theory.

5 Features, datasets and experiments

In this sectionwe describe feature extractionmethodology and datasets used for our empirical
results.

5.1 Features

Feature are often specifiedwith so-called ‘feature templates’ in sequential classification. This
is a powerful framework as it allows the practitioner to abstractly define the form of features
instead of manually curating them explicitly.

We extract n-gram features from our datasets as a proxy for encoding sequential informa-
tion. For example, the templates f〈−1,0〉 and f〈0,1〉 specify that, for every position n in the input
sequence, the feature f〈−1,0〉 will be the concatenation of the (n− 1)-th and n-th value in the
input sequence, and the feature f〈0,1〉 will be a concatenation of the n-th and (n+1)-th values.
In thisworkwe employ n-grams of up to length 5, andwe also extract long-range ‘skip-grams’
(i.e. conjunctions of non-contiguous positions) which can capture long-range dependencies.

The exact form of the feature templates used in our analyses will be clarified in the
next sections. Our data is generally discrete from a finite vocabulary, V , meaning that the
feature functions in this analysis return binary values. However, this is not a limitation of our
framework and real-valued and continuous data (e.g. accelerometer, physiological signals,
images) can be considered by our analysis by incorporating sparse coding techniques, for
example. In general, CRFs are entirely agnostic to the operations that are performed on the
data so long as real-valued numbers are returned.

5.2 Datasets

5.2.1 Word hyphenation

Word Hyphenation (WH) (or orthographic syllabification) is the process of separating words
into their constituent syllables, and the boundaries between syllables are a natural position
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Fig. 6 Floorplan of the twor.2009 smart home. Motion sensors (prefixed with m) are regularly distributed
throughout the house. As residents move throught the smart home, these sensors detect motion and trigger
between the ‘off’ (no motion) and ‘on’ (motion) states

for hyphens. This is a pre-processing step in a number of different tasks. Trogkanis and Elkan
(2010) posed this problem as a sequential binary classification task using linear-chain CRFs.
To represent the problem, the researchers used the feature template system described earlier
considering all 15 contiguous sub-strings up to length 5 that include the n-th position:

FH = { f〈0〉, f〈−1,0〉, f〈0,1〉, . . . , f〈−1,0,1,2,3〉, f〈0,1,2,3,4〉}. (25)

Excellent prediction was obtained for English and Dutch corpora. In our results section,
we assess the classification performance on the English corpus (the harder task based on
performance evaluation, consisting of approximately 80% negatives) with FH.

5.2.2 Smart home activity recognition

The Centre for Advanced Studies in Adaptive Systems (CASAS) research group focus on
many aspects of Activity Recognition (AR) in smart environments, and provide a number of
annotated datasets. We consider the hand-segmented data from the twor.20092 multiresi-
dent dataset (Cook and Schmitter-Edgecombe 2009) to allow a focus on activity recognition
instead of other AR challenges, such as activity segmentation. This dataset was recorded ‘in
the wild’ where various sensors placed in the home (e.g. motion, temperature, door sensors
were present in all rooms in the house) were activated when a resident performed Activities
of Daily Living (ADL), and activities are predicted based on the patterns sensor activation,
see Fig. 6. Annotations were applied retrospectively by domain experts.

2 http://casas.wsu.edu/datasets/twor.2009.zip
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Fig. 7 The ODC drawn as a graphical model. Here, we have fair and loaded states, and the probability
distribution over a die is shown for both in a conditional probability table. Data is generated by randomly
walking through the automaton

Fifteen activities are labelled in this dataset, and labels with fewer than two occurrences
were removed. Some ADLs will ‘look’ the same from a sensor activation point of view
(e.g. meal preparation and washing up). Therefore, the principal difficulty of AR lies in dis-
criminating between ‘similar’ activities and in identifying the correct resident to the predicted
activity.

We represent this data in an atomic state-change manner, e.g. xn = (m16_on,m15_on,

m17_on,m15_off, . . . )would be a sequence of sensor activations that would be predome-
nently in the kitchen (lower right hand side of Fig. 6), and we make predictions for all events.
With this representation we can readily apply feature templates discussed earlier. Because
‘breakfast’ sensor activities will resemble ‘lunch’ and ‘dinner’ activities, we further adjust
feature specification by adding 1-of-24 categorical hour of day features.

5.2.3 Occasionally dishonest casino

The Occasionally Dishonest Casino (ODC) is a well-known hypothetical scenario in which
a die can transition between fair (F) and loaded (L) states. When in the fair state, a uniform
discrete probability distribution is imposed on the die, and when in the loaded state the die
will roll to its biased face with probability pb, and to its remaining faces with probability
(1 − pb) /5.

The ODC is depicted by the automaton in Fig. 7 in which the biased face is selected as
1. The task we choose is to predict when the die is in a fair state given only a sequence
of face observations. To generate an instance, we randomly walk through the automaton
according to the ‘transition’ and ‘emission’ probabilities. Each walk consists of Mn ‘rolls’
(Mn � Poisson(λ)), and we set λ = 100 arbitrarily. We reduce the degrees of freedom of
this model to one by imposing symmetric transition probabilities. A dataset consists of N
random walks, and we have set N = 2 000, pt = 0.05, and pb = 0.5 (following Murphy
(2012). The class distribution is balanced due to the symmetric transition probabilities.

5.3 Performance evaluation

Given a set of ground truth labels and classifier predictions, we can define predictions as being
True Positives (TPs), True Negatives (TNs), False Positives (FPs), or False Negatives (FNs).
By accumulating these over a dataset, we can compute various accuracy metrics, including
precision, recall as follows:

precision = #T P

#T P + #FP
(26)
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recall = #T P

#T P + #FN
(27)

Precision and recall are accuracymetrics, and these averaged by calculating their harmonic
mean, which yields the F-Score:

F1 = 2 × precision × recall

precision + recall
(28)

The F-Score relates to classification accuracy and ignores the effect of the true negative
examples, and its utility as an accuracy measure is well documented (Provost et al. 1998).

Finally, we also compute the Brier score (Brier 1950):

BS = 1

N

N∑

n=1

C∑

c=1

wc
(
pn,c − yn,c

)2 (29)

where N is the number of test sequences, C is the number of classes, wc is the weight for
each class, pn,c is the predicted probability of instance n being from class c, and yn,c ground
truth label. Lower Brier score values indicate better performance, with optimal performance
achieved with a Brier score of 0.

We perform 10-fold cross validation on all experiments, and results report the mean and
standard deviation calculated on the test-folds. Hyperparameters are kept at their default
values for all experiments.

Generally, it is assumed that for sequential tasks CRFs will perform significantly better
than non-sequential models, such as LR. In our results, we compare the performance of
CRF and LR models with statistical hypothesis testing. Note that for experiments that yield
insufficient evidence to reject the null hypothesis indicate that we should not prefer CRFs
over LR.

5.4 Experiments conducted

Our first experiments assess the difference in classification performance betweenLRandCRF
models over the Word Hyphenation (WH), Activity Recognition (AR) and Occasionally
Dishonest Casino (ODC) datasets (described previously). With the ODC dataset, we also
show how LR models can approximate the ‘smoothing’ behaviour that one can achieve in
sequential models (e.g. CRFs).

We demonstrate relationship between our main theoretical results with practical experi-
ments.We have already shown the empirical effect of rank-1 transition potentials on inference
with CRFs in Example 2. Second, we show how the auto-correlation and its rate of decay
can be employed to glean insight into the characteristics of sequential data. This is then
used to guide the specification of feature templates in a manner that demonstrably improves
classification performance.

Finally, we perform analyses that investigate classification performance with increas-
ingly expressive feature representations (which we term ‘incremental performance assess-
ment’). To do this, we will assume that the feature templates are ordered by increasing
expressivity (n-gram templates are more expressive than (n − 1)-gram templates). The
incremental subsets will consider up to c templates, and are denoted by F c

H ⊆ FH.
Using the WH feature templates as an example, F 2

H = { f〈0〉, f〈−1,0〉}, and F 4
H =

{ f〈0〉, f〈−1,0〉, f〈0,1〉, f〈−1,0,1〉}.
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6 Results and discussion

6.1 LR and CRF classification performance

6.1.1 WH/AR/ODC

Table 1 shows the averaged F-Score and Brier score of the CRF and LR models for the
WH and AR datasets. LR models performed marginally better than CRF models on both F-
Score and Brier score metrics on the WH task. We conducted two-way Analysis of Variance
(ANOVA) to determine if any of the differences reached statistical significance, but found
that all main effects failed to reach significance at the p < 0.01 level. Indeed, the lack of
statistical significance is suggestive that neither model should be preferred. We obtained
similar performance to those from the original paper (Trogkanis and Elkan 2010) with both
LR and CRF classification models.

Table 1 summarises the results for the AR dataset. It is worth noting that our results are
competitive with those obtained by a number of AR researchers with FH feature templates
even though these were not designed for AR. Classification performance is improved sub-
stantially against the majority-class classifier. We also note that variance of predictions is
quite large for the AR results, and this is due to sample size and the sparsity of some labels.

Figure 8 shows the probability estimates obtained by CRF and LR models for a particular
sub-sequence of die rolls of the ODC dataset. The upper bar chart shows the faces that were
rolled (blue fill indicates the fair state whereas red fill indicates the biased state). In the lower
image, the red line gives the probability estimates from the CRF model, and the blue line
gives those of the LR model. The biased face is 1.

While we are attempting to estimate the probability of bias in this example, we do not nec-
essarily desire ‘responsive’ changes in these probability estimates. Such changeswould likely
be indicative of overfitting because realisations of the biased face are always possible in both
biased and unbiased states. Instead, we wish for probability estimates between neighbouring

Table 1 Classification
performance of CRF and LR
models on WH dataset and AR
datasets

Dataset Model F-Score Brier score

WH CRF 0.963 ± 0.0014 0.012 ± 0.0004

LR 0.966 ± 0.0012 0.011 ± 0.0003

AR CRF 0.7980 ± 0.0445 0.0222 ± 0.0044

LR 0.7876 ± 0.0439 0.0209 ± 0.0039

Fig. 8 Marginal probability estimates of bias with LR and CRF models for a sequence of die rolls. Both
models follow similar general trends indicating that LR probability estimation approximates CRF smoothing
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positions to be correlated, due to the parameterisation of pt in the ODC (c.f. Sect. 5.2.3). For
applications that require decisions rather than probability estimates, we would recommend
computing theViterbi path (Viterbi 1967) through the sequence rather than thresholding these
probability estimates as the Viterbi path depicts the most likely path through the sequence.

We can see that CRF and LR predictions exhibit similar dynamics, though the CRF
estimates are smoother due to the message passing routine used within the internal structure
of the model. LR probability estimates appear to not fall below a value of 0.15 whereas CRF
models can assign lower probability estimates because sequences of agreeing beliefs will
support one another.

6.1.2 Comments on results

We evaluated our classification performance on F-Score and Brier scores. Statistical testing
did not yield sufficient evidence for rejecting the null hypothesis for all datasets, i.e. CRFs
should not be preferred. However, upon deeper investigation, we consistently found for all
experiments on all datasets that LRmodels out-performed CRFs on precision, and CRFmod-
els out-performed LR models on recall; in other words, CRFs predict more actual positives,
but positive predictions from LR models are more likely to be true positives. CRF models
make predictions with influence of the beliefs at neighbouring positions (which themselves
have been influenced by their neighbours) so that all nodes in a sequence affect the mar-
ginal probabilities calculated at all positions, whereas LR models can only rely on features
extracted from local regions of a sequence.

For the task ofWH, Trogkanis and Elkan (2010) explicitly stated that false positive predic-
tions are less desirable than false negatives. In prediction, therefore, the authors thresholded
probability estimates at a high value (e.g. 0.99) and were able to reduce the false positive rate
significantly. We have found that LR models can naturally achieve this on the WH dataset
without having to threshold the probability estimates at such high values. Therefore, based
on the consistency of our observations in all of our experiments, if LR and CRF performance
is equivalent, we believe that practitioners informed on the relative costs of false positive and
false negative predictions in the application domain may wish to pick the model that best
suits these costs; e.g. LR if false positives are more costly than false negatives.

The ODC dataset has been used extensively as an exemplar of ‘smoothing’ probability
estimates over sequences. The task we investigate here is to learn the conditional distribution
of the fair and biased states with expressive feature templates. Interestingly we demonstrated
that LR probability estimates resemble the smoothed probabilities (Fig. 8), which indicates
that the smoothing behaviour of structured models can be approximated with a rich set of
features. However, in some applications the number of parameters required for unstructured
models to approximate the smoothed estimates may be greater than the number of parameters
required to train a ‘simpler’ CRF model. We will look at this in more detail in Sect. 6.3.3.

6.2 Comparison to theory

6.2.1 Analysis of auto-correlation

The theory discussed in Sect. 4 related the excess classification risk imposed by ignoring
the sequential nature of data to the auto-correlation of the examples. We show the log of
auto-correlations of the features as calculated on the three datasets considered in Sect. 5.2.

Figure 9a shows the log of the auto-correlation of theODCdataset for a sample of 1000000
die rolls with various values of pt (as shown in the legend). This image shows that smaller
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(a) (b) (c)

Fig. 9 Auto-correlation of ODC/AR/WH datasets. The x-axis is the range of lages that were considered, and
the y-axis marks the log of the auto-correlation. The rate of decay of the auto-correlation is dataset-dependent,
with AR depicting the slowest rate, and WH depicting the fastest. a ODC dataset b AR dataset c WH dataset

pt yield correlations which persist for longer, as one might expect, although these decay
exponentially to a baseline value (≈ 10−6).

The auto-correlation of the AR data is shown in Fig. 9b. A wide range of lags was con-
sidered here as the average sequence length was long. In this image we can observe a high
auto-correlation over the set of lags considered, with a slower rate of decay in comparison to
that shown in the ODC. This trend in this figure is visually reminiscent of the trend shown
in Fig. 9a for small pt .

Figure 9c shows the auto-correlations for the WH dataset. Interestingly, this image shows
asymmetric auto-correlation is obtained, and that the values obtained at positive lags are
greater than those obtained for negative lags.

6.3 Relating theoretical results to practical experiments

6.3.1 Improving WH performance

We noted greater auto-correlation values at positive lags for WH which suggested that
more contextual information about hyphenation is available at positive lags than at neg-
ative lags. We constructed a new set of feature templates which placed more emphasis
on conjunctions of ‘future’ sub-strings (FH+) to determine whether performance would
improve. Using FH+, we obtained higher F-Scores to 0.965 and 0.971 respectively for
CRF and LR models. While this is a modest and statistically insignificant improvement,
the use of the FH+ features yielded improved results on all 10 test folds for LR and
CRF models. Furthermore, that these templates should improve prediction is not altogether
obvious, but the potential for improvement was unveiled by an a priori analysis of the auto-
correlation.

FH+ defines feature templates that place increased emphasis on ‘future’ data. We also
performed experiments with FH- which increase emphasis on past data. We found that all
performance metrics withFH- feature templates degraded when compared toFH andFH+.

6.3.2 Improving AR performance

By considering the auto-correlation in Fig. 9b, we can see that the auto-correlation remains
high over the range of lags shown. We postulate that wide-spanning feature templates may
capture context which may improve classification performance. We tested this hypothesis by
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defining the following skip-gram feature templates

FAR = f〈0〉 ∪ { f〈−i,0,i〉}NAR
i=1 (30)

where we have set NAR = 25 as, for this range, the auto-correlations remained approximately
symmetric in Fig. 9b. Using these feature templates we obtained an improvement of 5%with
CRF and 6% with LR models, yielding a micro F-Score of ≈ 84% for both models.

While modest improvements were made in predicting ADLs on average, we have made
particular improvements on ‘bed to toilet’ activities achieving relative improvements of
≈ 0.25 with LR and CRFmodels for both residents. It should be noted that we achieved these
improvements using new feature templates that were inspired by analysis of auto-correlation
trends rather than explicit curation.

6.3.3 Incremental performance assessment

We previously stated that is reasonable to assume that (n + 1)-gram features are more
expressive than n-gram features, so by taking subsets of FH (as described in Sect. 5) we
can demonstrate classification performance as the feature representation becomes more and
more expressive.

For WH and AR datasets, optimal classification performance is obtained with the full set
of feature templates, and so incremental performance only demonstrates that CRF models
achieve better performance with more features. With the ODC dataset we notice that CRF
models begin to overfit the data quickly, as shown in Fig. 10. We believe the cause for this
is due to using complex features to model the simple generative process that underlies the
ODC. Interestingly, maximal performance is achieved with the CRF using only three feature
templates (i.e. F 3

H = { f〈0〉, f〈−1,0〉, f〈0,1〉}).
To investigate the effect of encoding long-range dependencies into the sequences, we

applied theFAR feature templates to the ODC prediction problem. With reference to Fig. 9a
we selected NAR = 12 (as this is approximately the point at which the auto-correlations
decay to their minimal value). With these feature templates we obtained F-Scores of ≈ 0.83
with both LR and CRFmodels. Interestingly, the span of these features is 24 instances, which
approximately corresponds to the expected run-length of the model since pt = 0.05.

Fig. 10 Incremental F-Scores obtained from LR and CRF models on the ODC dataset. We can see here that
the CRF model achieves its best results with a simpler representation (owing to the propagation of beliefs over
the sequence), while LR models require a more complicated representation in order to capture the context of
the data
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7 Conclusions and future work

The ultimate aim of this work is to lay the foundations to determine whether structure needs
to be modelled in sequence prediction. Since no unified theoretical and practical assessment
of this important question has been considered before, the decision of incorporating structure
into a classification problem in much of the applied work that deals with sequences can be
considered arbitrary. This paper makes the first steps towards rationalising this decision in
general settings.

We demonstrated that structured and unstructured classification models can both achieve
equivalent performance on sequential prediction problems. It is remarkable that all sequential
datasets investigated in this work could be equivalently modelled by simpler, unstructured
models that ignore the sequential nature of the data and instead use features to capture
the temporal dependencies. However, we provide an explanation for this in our theoretical
analysis of these problems and show that classification risk is intimately linked to the rate
of decay of auto-correlations, and the features used in unstructured models cases capture the
context with features.

For applications where statistical significance favours neither CRF nor LR models, we
would submit to Occam’s razor and recommend the selection of the simpler model (i.e. the
model with fewer parameters) as these should reduce the risk of overfitting and because they
offer (potentially significant) reduction in training time. Indeed, from a computational per-
spective, LR requires optimisation over |Y |2 fewer parameters than linear-chain CRFs, and
therefore may be a favourable model choice based on savings in time and space complexity.
This point is of particular interest for streaming applications using CRFs as exact marginal
distributions are only available once the full sequences have been obtained (see Sinn and
Poupart (2011b) for further discussion). Conversely, exact marginal distributions may be
calculated in real-time with LR models.

We used visual analytics tools by leveraging the results of our theoretical analyses. These
tools operate on the auto-correlations of dataset sequences a priori to learning classification
models, and naturally guided us to specify feature templates that, when incorporated into the
classification model, improved classification performance over all datasets.

We speculate that, in general, sequential datasets may have a ‘fundamental bandwidth’
property, that is related to the jurisdiction over which a particular instance has marked influ-
ence. We are encouraged by the variety of auto-correlation profiles that we obtained in our
experimental section as these lead us to define different feature templates that improved
classification performance. Defining a means of automatically computing this would yield
many advantages in sequential modelling, and this work lays the theoretical and practical
foundations for the automated discovery of this property.

Future work will seek to extend this work in the following manners. First, we will attempt
to automate the specification of (potentially localised) structure based on the auto-correlation
profiles that were described in this paper. Furthermore, we will seek to generalise the theoret-
ical and practical analyses outlined in this paper over, for example, nonlinear auto-correlation
measures, and to arbitrary graphical structures.
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