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Abstract. Subgroup Discovery is the process of finding and describing suffi-
ciently large subsets of a given population that have unusual distributional char-
acteristics with regard to some target attribute. Such subgroups can be used as a
statistical summary which improves on the default summary of stating the over-
all distribution in the population. A natural way to evaluate such summaries is
to quantify the difference between predicted and empirical distribution of the
target. In this paper we propose to use proper scoring rules, a well-known fam-
ily of evaluation measures for assessing the goodness of probability estimators,
to obtain theoretically well-founded evaluation measures for subgroup discov-
ery. From this perspective, one subgroup is better than another if it has lower
divergence of target probability estimates from the actual labels on average. We
demonstrate empirically on both synthetic and real-world data that this leads to
higher quality statistical summaries than the existing methods based on measures
such as Weighted Relative Accuracy.

1 Introduction

Statistical models intend to capture the distributional information in a domain of in-
terest. While a global statistical model is useful, it is often also of interest to capture
local variations exhibited in a subset of the data. Recognising such subsets can provide
valuable knowledge and opportunities to improve performance at tasks relying on the
statistical model. In the area of machine learning and data mining, the problem of ob-
taining such statistically different subsets is known as Subgroup Discovery (SD) [7, 17,
10, 6], loosely defined as the process of finding and describing sufficiently large sub-
sets of a given population that have unusual distributional characteristics with regard to
some target attribute.

Consider a synthetic toy data set relating to someone’s dietary habits. It contains
two (discretised) features: the time of the day, denoted as X1 ∈ {Morning,Afternoon,
Evening} and the calorie consumption in the diet, denoted as X2 ∈ {Low,Medium,
High}. The target variable is Y ∈ {Weekday,Weekend}. Figure 1 visualises the data,
with two potentially interesting subgroups (shaded areas). The subgroup on the right
concentrates on the area of maximum statistical deviation (high calorie intake in the
evening is more common during weekend), while the one on the left covers both medium
and high calorie intake in the evening. In this paper we study reasons why one of these
subgroups might be preferred over the other.
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Fig. 1: An example bivariate data set with two subgroups (shaded areas) defined on the
discretised features, both capturing an area of statistical deviation in comparison to the
overall population. The subgroup on the left is preferred by a commonly used evaluation
measure (WRAcc) while the right subgroup is preferred by the one of the measures we
propose in this paper.

Clearly, if a subgroup is small, distributional differences may arise purely because
of random chance in sampling, so a trade-off between subgroup size and distributional
deviation needs to be made. Statistical tests such as χ2 can be used, but are usually over-
emphasising size: a very large subgroup with small deviation is more likely to be picked
up than a medium-sized subgroup with considerable deviation. p-values as reported in
rule-based approaches [10] tend to suffer from the same issue.

Historically, SD developed as a variation on rule-learning and other logic-based
approaches, and hence it is not surprising that many existing quality measures have
been adapted from decision trees and rule-based classifiers. For instance, [1] explored
the use of Gini-split (among several others) as quality measure for subgroups, which
hypothesises that a good binary split in a decision tree also establishes a good subgroup.
One of the most commonly used measures is Weighted Relative Accuracy (WRAcc),
which can be seen as an adaptation of precision, a measure that is used as a search
heuristic in rule learners such as CN2 [3]. Many other subgroup quality measures have
been introduced in the literature, see [6] for an overview.

Evaluation methods for SD depend on the task for which subgroups need to be
found. In [10], the subgroups are used to construct a ranking model, and the area un-
der the corresponding ROC curve is used as an evaluation measure. In [1] the obtained
subgroups are used as features for a decision tree and hence they can be evaluated ac-
cording to the classification performance of the trees. However, the predictive task used
in evaluation (ranking or classification) is then different from the descriptive Subgroup
Discovery (SD) task, and it is unclear how the predictive task affects the choice of
subgroup quality measure.

In this paper we propose a novel approach to evaluate subgroups as summaries
which improve on the default summary of stating the overall distribution in the popu-
lation. A natural way to evaluate such summaries is to quantify the difference between
predicted and empirical distribution of the target. This obviates the use of proper scoring
rules, a well-known family of evaluation measures for assessing the goodness of proba-
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bility estimators, to obtain theoretically well-founded evaluation measures for subgroup
discovery. From this perspective, one subgroup is better than another if it on average
has lower divergence of target probability estimates from the actual labels.

We derive a novel SD method to directly optimise for the proposed evaluation mea-
sure, from first principles. The method is based on a generative probabilistic model,
which allows us to formally prove the validity of the method. We perform experiments
on a synthetic data set where the theoretically optimal subgroup is known, and demon-
strate that our method outperforms alternative methods in the sense that it finds sub-
groups that are closer to the theoretically optimal one. Additionally, we perform exper-
iments on 20 UCI data sets which demonstrate that the proposed method is superior in
summarising the statistical properties of the data.

The structure of this paper is as follows. Section 2 introduces the notations and
concepts for SD. Section 3 provides an overview of Proper Scoring Rules (PSRs) and
describes related quality measures. In Section 4 we propose a novel generative mod-
elling approach to address the summarisation problem, and derive the corresponding
measures. Section 5 evaluates the proposed quality measures against existing measures
and Section 6 presents related work. Section 7 concludes this paper and discusses pos-
sible future research directions.

2 Subgroup Discovery

We start by introducing some notation. Consider a dataset (Xi,Yi), i = 1, . . . ,n in the in-
stance space (X,Y). We assume a multi-class target variable, representing the k classes
in Y by unit vectors, i.e. class j is represented by the vector with 1 at position j and
0 everywhere else. The set of all considered subgroups is indicated by G ⊂ 2X. This
set is typically generated by a subgroup language (e.g., the set of all conjunctions over
some fixed set of literals) but here it suffices to deal with subgroups extensionally. A
subgroup g ∈ G can then be identified with its characteristic function g : X→ {0,1}
determining whether an instance Xi is in the subgroup (g(Xi) = 1) or not (g(Xi) = 0).
A subgroup quality measure is a function φ : G→ R such that better subgroups g get a
higher φ(g). The task of SD is then to find the subgroup g∗ with the highest value of φ ,
i.e. g∗ = argmaxg∈G φ(g).

A wide range of proposed quality measures can be found in the literature. The com-
mon way of defining a quality measure is to separate them into two factors: the deviation
factor and the size factor. The deviation factor is in charge of comparing the local statis-
tic to the global statistic. In the case of a discrete target variable, the deviation factor can
be seen as a function that takes two estimates of class probabilities as input and outputs
a single number to indicate how different these two estimates are. The size factor is
normally treated as a correction term to encourage the method to find larger subgroups,
as small subgroups tend to be less valuable.

One of the most widely adopted quality measures is the Weighted Relative Accu-
racy (WRAcc) family [1, 2, 9, 10]. For a binary target this essentially is the covariance
between the target variable and subgroup membership: since these are both Bernoulli
variables this takes values in the interval [−0.25,0.25]. For a multi-class target we take
the average of all one-against-rest binary WRAcc values, taking the absolute value of
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the latter to avoid positive and negative covariances cancelling out [1]. For our purposes
we derive a related but unnormalised quantity, as follows.

Denote the overall class distribution in the data set by π = (∑n
i=1 Yi)/n (note that Yi

and π are vectors of length k). Let m denote the number of training set instances belong-
ing to the subgroup g, i.e. m = ∑

n
i=1 g(Xi). Denote the class distribution in the subgroup

by ρ(g), i.e., ρ(g) = (∑n
i=1 g(Xi) ·Yi)/m. Then an unnormalised version of Multi-class

Weighted Relative Accuracy (MWRAcc) can be calculated as:

φMWRAcc(g) = m ·
k

∑
j=1
|ρ(g)

j −π j| (1)

The definition of [1] is obtained from this by normalising with n · k, where n is the
number of training instances and k is the number of classes (both constant). Our version
can be interpreted as absolute differences between observed and expected counts.

3 Proper Scoring Rules

The class distribution π is a very simple way to summarise the target variable across
the whole training dataset. That is, we summarise the labels vectors Y1, . . . ,Yn with the
summary Sπ where we define Sπ

i = π for i= 1, . . . ,n. Another possibility is to separately
summarise a particular subgroup g with its class distribution ρ(g) while its complement
is summarised with π . We denote this summary by Sg,ρ(g),π , and for an instance i this

summary predicts Sg,ρ(g),π
i = ρ(g) if g(Xi) = 1 and Sg,ρ(g),π

i = π if g(Xi) = 0, which can

be jointly written as Sg,ρ(g),π
i = ρ(g)g(Xi) + π(1− g(Xi)). One could then ask which

of the subgroups gives the best summary, and whether the summary is better than the
default summary Sπ . In order to assess this, we need a way to calculate the extent to
which the probability estimates within the summary deviate from the actual labels.

Proper Scoring Rules (PSRs) have been widely adopted in the area of machine learn-
ing and statistics to assess the goodness of probability estimates [16]. A scoring rule is
a function ψ : S×Y→ R that assigns a real-valued loss to the estimate Si within the
summary S with respect to the actual label Yi of instance i. Two of the most commonly
adopted scoring rules are the Brier Score (BS) and Log-loss (LL), which are defined as:

ψBS(Si,Yi) =
k

∑
j=1

(Si, j−Yi, j)
2 (2)

ψLL(Si,Yi) =− log(Si,∗) (3)

where Yi, j = 1 if the i-th instance is of the j-th class and 0 otherwise, Si, j is the proba-
bility estimate of class j for the i-th instance, and Si,∗ denotes the probability estimate
of the i-th instance for the true class as determined by Yi.

The distance from a whole summary S to the actual labels can then be calculated as
follows:

ψ
′(S,Y ) =

n

∑
i=1

ψ(Si,Yi) (4)
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The scoring rule ψ is proper if argminp ψ ′(Sp,Y ) = π for any Y , i.e., if the actual
class distribution is the minimiser of the scoring rule. In particular, both BS and LL are
proper.

For every proper scoring rule ψ there is a corresponding divergence measure d
which quantifies how much a class probability distribution diverges from another class
distribution. Formally, the divergence d(p,q) is the expected value of the difference
ψ(p,Y )−ψ(q,Y ) where Y is drawn from the distribution q. The divergences corre-
sponding to BS and LL are the squared error and Kullback-Leibler (KL) divergence,
respectively.

dBS(p,q) =
k

∑
j=1

(p j−q j)
2 (5)

dLL(p,q) =
k

∑
j=1

q j · log
q j

p j
(6)

For more details see [8].

3.1 Information Gain

Suppose we now want to decide whether to summarise the whole dataset by Sπ or by
Sg,ρ(g),π for some g. For this let us take a proper scoring rule ψ ′ to quantify the loss of
a summary with respect to actual labels. We can now define the quality of a subgroup g
as the gain in ψ ′ of the summary Sg,ρ(g),π over the default summary Sπ , that is:

φIG(g) = ψ
′(Sπ ,Y )−ψ

′(Sg,ρ(g),π ,Y ) (7)

In principle, we could consider summaries Sg,ρ,π for any other class distribution ρ .
However, the summary with ρ(g) is special among these, as it is maximising the gain
over the summary Sπ due to properness of the scoring rule. This is stated in the follow-
ing theorem:

Theorem 1. Let ψ,ψ ′,d be a proper scoring rule, its sum across the dataset, and its
corresponding divergence measure, respectively. Then for any given subgroup g the
following holds:

argmax
ρ

ψ
′(Sπ ,Y )−ψ

′(Sg,ρ,π ,Y ) = ρ
(g) (8)

where ρ(g) denotes the class distribution within the subgroup g. The maximum value
achieved is m ·d(π,ρ(g)) where m is the size of the subgroup g.

Proofs of all theorems are provided in Appendix A.
The theorem implies that Eq.(7) can be rewritten as follows:

φIG(g) = m ·d(π,ρ(g)) (9)

In words, this quality measure multiplies the size of the subgroup by the divergence of
the overall class distribution from the distribution within the subgroup3.

3 In general, divergence measures are not symmetric, so d(π,ρ(g)) is different from d(ρ(g),π).
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If we consider Log-loss as the proper scoring rule, then the corresponding informa-
tion gain measure is:

φIG-LL(g) = m ·KL(π,ρ(g)) (10)

where KL is the KL-divergence. For Brier Score the corresponding measure is quadratic
error:

φIG-BS(g) = m ·
k

∑
j=1

(π j−ρ
(g)
j )2 (11)

where ρ
(g)
j is the proportion of the j-th class in the subgroup g.

These information gain measures have a long history in machine learning, for exam-
ple in decision tree learning where they measure the decrease in impurity when splitting
a parent node into two children nodes. If we measure impurity by Shannon entropy this
leads to Quinlan’s information gain splitting criterion; and if we measure impurity by
the Gini index we obtain Gini-split. We have shown how they can be unified from the
perspective of Proper Scoring Rules; we now proceed to improve them.

4 Generative Modelling

The general context in which SD is applied is where one observes a set of data points
that belongs to a particular domain and the task is to extract information from the data.
As mentioned in the introduction, such information can then be adopted to improve the
performance of corresponding applications. Therefore, it is desirable that the subgroups
as the representation of obtained knowledge would generalise to future data observed
in the same domain.

Two problems need addressing when generalising to future data. First, the class dis-
tribution ρ(g) is calculated on a (small) sample and can therefore be a poor estimate of
the actual distribution in the future. Second, it is not certain whether the actual distri-
bution of the subgroup is different from the overall distribution π . In order to capture
these aspects we employ a generative model to generate a new test instance Y of the
subgroup g. We assume that the observed (training) instances of subgroup g were gen-
erated according to the same model, which is defined as follows.

4.1 The Generative Model

First, we fix the default k-class distribution π . We then decide whether the distribution
of the subgroup g is different from the default (Z = 1) or the same as default (Z = 0):

Z ∼ Bernoulli[γ] (12)

where γ is our prior belief that Z = 1. If Z = 1 then we generate the class distribution Q
for the subgroup g:

Q∼ Dir[β ] (13)

where Dir[β ] is the k-dimensional Dirichlet distribution with parameter vector β . Fi-
nally, we assume that the test instance Y and the training instances of the subgroup g are
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all independent and identically distributed (iid). For simplicity of notation, let us assume
that the training instances within g are the first m instances Y1, . . . ,Ym. The distribution
of Y1, . . . ,Ym and the test label Y is as follows:

Y,Y1, . . . ,Ym ∼Cat[ZQ+(1−Z)π] (14)

where Cat is the categorical distribution with the given class probabilities. In the ex-
periments reported later we used non-informative priors for Z and Q (γ = 0.5 and
β = (1, . . . ,1), respectively).

4.2 Proposed Quality Measures

The above model can be used to generate instances for a subgroup g. We will now ex-
ploit this model to derive two subgroup quality measures, the first one of which takes
into account the uncertainty about the true class distribution in the subgroup, while the
second one also models our uncertainty whether it is different from the background
distribution. Therefore, we consider the task of choosing ρ which would maximise the
expected gain in ψ ′ on the test instances. The following theorem solves this task, con-
ditioning on the observed class distribution within the subgroup and on the assumption
that this subgroup is different from background (Z = 1).

Theorem 2. Consider a subgroup as generated with the model above. Denote the counts
of each class in the training set of this subgroup by C = ∑

m
i=1 Yi. Then

argmax
ρ

E[ψ ′(π,Y )−ψ
′(ρ,Y )|C = c,Z = 1] =

c+β

∑
k
j=1 c j +β j

(15)

Denoting this quantity by ρ̂ , the achieved maximum is d(π, ρ̂), where d is the divergence
measure corresponding to ψ .

In the experiments we use β = (1, . . . ,1) and hence the gain is maximised when predict-
ing the Laplace-corrected probabilities, i.e., adding 1 to all counts and then normalising.
According to this theorem we propose a novel quality measure which takes into account
the uncertainty about the class distribution:

φd(g) = m ·d(π, ρ̂) (16)

where m is the size of the subgroup.
The following theorem differs from the previous theorem by not conditioning on

Z = 1. Hence, it additionally takes into account the uncertainty about whether the dis-
tribution of the subgroup is different from the background.

Theorem 3. Consider a subgroup as generated with the model above and denote C as
above. Then

argmax
ρ

E[ψ ′(π,Y )−ψ
′(ρ,Y )|C = c] = a

c+β

∑
k
j=1 c j +β j

+(1−a)π (17)

where a=P[Z = 1|C = c]. Denote this quantity by ˆ̂ρ . Then the achieved maximum value
is d(π, ˆ̂ρ), where d is the divergence measure corresponding to ψ .



8

Following this theorem we propose another novel quality measure, which takes into
account both the uncertainty about the class distribution and about whether it is different
from the background distribution:

φPSR(g) = m ·d(π, ˆ̂ρ) (18)

where m is the size of the subgroup. In order to calculate the value of a=P[Z = 1|C = c]
we have the following theorem:

Theorem 4. Consider a subgroup as generated with the model above and denote C as
above. Then the following equalities hold:

P[Z = 1|C = c] =
γ ·P[C = c | Z = 1]

γ ·P[C = c | Z = 1]+ (1− γ) ·P[C = c | Z = 0]

P[C = c | Z = 1] =
(

m
c

)
·

Γ (∑k
j=1 β j)

∏
k
j=1 Γ (β j)

·
∏

k
j=1 Γ (c j +β j)

Γ (m+β0)

P[C = c | Z = 0] =
(

m
c

)
·

k

∏
j=1

π
c j
j

(19)

where β0 = ∑
k
j=1 β j.

Referring back to Figure 1 in the introduction, the subgroup on the left was discov-
ered with φWRAcc as quality measure and the right one by φPSR with Brier Score. While
WRAcc provides a larger coverage, it can be seen that the PSR measure captures a more
distinct statistical deviation of the class distribution in the subgroup.

5 Experiments

In this section we experimentally investigate the performance of our proposed measures.
The experiments are separated into two parts. For the first part we generated synthetic
data, such that we know the true subgroup. In the second part we applied our methods
to UCI data to investigate summarisation performance.

For our proposed measures, we adopt the generalised divergences of BS and LL
as given in Section 3, Eqs.(5-6). Plugging these into Eqs.(16) and (18) we obtain four
novel measures d-BS, d-LL, PSR-BS and PSR-LL. We compare these proposals against
a range of subgroup evaluation measures used in the literature: Weighted Relative Ac-
curacy (WRAcc), IG-LL (Eq.(10)), IG-BS (Eq.(11)), as well as the χ2 statistic, which
is defined as follows:

φChi2 =C ·
K

∑
j=1

(ρ j−π j)
2

π j
(20)

5.1 Synthetic Data

In the experiments on the synthetic data we evaluate how good the methods are in
revealing the true subgroup used in generating the data, as well as in producing good
summaries of the data.
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π1 PSR-BS PSR-LL WRAcc Chi2 IG-BS IG-LL d-BS d-LL
.1 .744 .736 .597 .526 .030 .029 .742 .716
.2 .636 .638 .510 .436 .089 .091 .628 .631
.3 .587 .589 .480 .403 .218 .223 .581 .585
.4 .558 .564 .454 .390 .372 .379 .550 .559
.5 .567 .569 .458 .410 .561 .565 .561 .565

Table 1: Micro-averaged F-scores on the artificial data, for different class distributions
(π1). The best results for each row are shown in bold.

To provide a more intuitive illustration, we construct our data set according to a
real-life scenario. Suppose one has been using a wearable device to record whether
daily exercises were performed or not, for a whole year. As it turned out, there were
146 out of 365 days when the exercises were performed, which gives a probability
about 2/5 that the exercises were performed on a random day. According to the website
of the wearable device, the same statistics are about 1/3 for the general population. It is
possible that the overall exercise frequency was different, but perhaps a more plausible
explanation might be that more exercises were performed during a particular period
only. SD can hence be applied to recognise the period of more intensive exercise and
summarise the corresponding exercise frequency.

Following this scenario, the feature space consists of the 52 weeks of the year,
hence X = {1, ...,52}. We define the subgroup language as the set of all intervals of
weeks of length from 2 to 8 weeks. The data set is assumed to contain a single year
from January to December. This setting allows us to perform exhaustive search on the
subgroup language. As here our aim is to compare the performance among different
quality measures, applying exhaustive search can avoid the bias introduced by other
greedy search algorithms.

The way to generate the data is then as described in the previous section. Given
the default class distribution π , the subgroup class distribution Q is sampled from a
Dirichlet prior and a true subgroup is selected uniformly within the language. Therefore,
all the 7 days within each week can be distributed either according to π or according to
Q.

We evaluate each subgroup quality measure by comparing the obtained subgroup
against the true subgroup. This is done by measuring similarity of the respective indica-
tor functions Z and Ẑ. For similarity we use the F-score as we are not really interested
in the ‘true negatives’ (instances in the complements of both true and discovered sub-
groups). The F-score for this case can be computed as (Zi and Ẑi are used to represent
whether an instance belongs to the true subgroup and the obtained subgroup respec-
tively):

F1 =
2 ·∑N

i=1 I(Zi = 1, Ẑi = 1)

∑
N
i=1(2 · I(Zi = 1, Ẑi = 1)+ I(Zi = 1, Ẑi = 0)+ I(Zi = 0, Ẑi = 1))

(21)

The results are given in Table 1 as the micro-averaged F-scores from 5 000 synthetic
sequences, for different values of π1 (the first component of the class distribution vec-
tor). We can see that the PSR-based approaches generally outperform existing measures,
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π1 PSR-BS PSR-LL WRAcc Chi2 IG-BS IG-LL d-BS d-LL
.1 .195± .03 .195± .03 .207± .03 .212± .03 .231± .04 .231± .04 .195± .03 .195± .03
.2 .326± .03 .326± .03 .334± .03 .337± .03 .350± .04 .350± .04 .326± .03 .326± .03
.3 .419± .02 .419± .02 .424± .02 .426± .02 .430± .03 .430± .03 .420± .02 .420± .02
.4 .475± .02 .475± .02 .479± .02 .480± .01 .478± .02 .478± .02 .476± .02 .476± .02
.5 .494± .02 .494± .02 .497± .01 .498± .01 .494± .02 .495± .02 .494± .02 .494± .02

Table 2: Average Brier scores on the artificial data. The best results are shown in bold.

π1 PSR-BS PSR-LL WRAcc Chi2 IG-BS IG-LL d-BS d-LL
.1 .344± .04 .344± .04 .359± .04 .368± .04 .406± .06 .407± .06 .344± .04 .347± .04
.2 .507± .03 .507± .03 .517± .03 .520± .03 .539± .05 .540± .05 .508± .03 .509± .03
.3 .610± .03 .610± .03 .616± .02 .618± .02 .624± .03 .624± .03 .611± .03 .611± .03
.4 .668± .02 .668± .02 .673± .02 .674± .02 .671± .02 .671± .02 .670± .02 .669± .02
.5 .687± .02 .686± .02 .690± .01 .691± .01 .688± .02 .687± .02 .688± .02 .687± .02

Table 3: Average Log-loss on the artificial data. The best results are shown in bold.

with a slight advantage for Log-loss over Brier score. The information gain-based meth-
ods perform particularly poorly, as they have a preference for pure subgroups, whereas
for skewed π it would be advantageous to look for subgroups with a more uniform class
distribution. As π becomes more uniform, the ‘true’ subgroup becomes more random
and harder to identify, which is why all methods are expected to perform poorly for
π1 ≈ 0.5. The variance is quite high across all methods, probably because the data set
is quite small (52 ·7 = 364 instances).

Since a better statistical summary is essentially our aim, the results are also evalu-
ated according to their overall loss on a test set (also of length 1 year) drawn from the
same distribution. For each quality measure, a subgroup is obtained from the training
fold together with the local statistical summary ( ˆ̂ρ for φPSR, ρ̂ for other quality mea-
sures). The loss for the obtained summarisation can then be calculated as in Eq.(4). The
corresponding results are given in Tables 2-3 for both Brier score and Log-loss. We see
a similar pattern as with the F-score results.

5.2 UCI Data

We proceed to compare our method with existing approaches on UCI data sets [13]. We
selected the same 20 UCI datasets as described in [1]. The information regarding the
number of attributes and instances are provided in the appendix.

The subgroup language we used here is conjunctive normal form, with disjunctions
(only) between values of the same feature, and conjunctions among disjunctions in-
volving different features. All features are treated as nominal. If the original feature is
numeric and contains more than 100 values, it is discretised into 16 bins.

Since for most data sets in this experiment exhaustive search is intractable we per-
form beam search instead. The beam width is set to be 32 (i.e., 32 candidate subgroups
are kept to be refined in the next round). The number of refinement rounds is set to 8.
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data set PSR-BS PSR-LL WRAcc Chi2 IG-BS IG-LL d-BS d-LL
Abalone .872± .005 .874± .005 .879± .006 .897± .004 .878± .01 .884± .006 .872± .005 .874± .005
Balance-scale .539± .043 .572± .027 .527± .047 .578± .024 .561± .032 .562± .032 .539± .043 .572± .027
Car .379± .023 .380± .032 .381± .030 .466± .031 .406± .036 .406± .036 .379± .024 .380± .032
Contraceptive .618± .019 .647± .013 .638± .015 .650± .012 .619± .021 .616± .021 .618± .019 .647± .013
Contact-lens .624± .283 .651± .285 .579± .226 .611± .151 .461± .438 .461± .438 .627± .284 .655± .287
Credit .351± .047 .351± .047 .351± .047 .500± .012 .351± .047 .351± .047 .351± .047 .351± .047
Dermatology .633± .073 .708± .027 .721± .026 .806± .026 .633± .073 .635± .077 .633± .073 .708± .027
Glass .698± .050 .698± .051 .725± .065 .745± .046 .716± .068 .719± .048 .698± .050 .698± .051
Haberman .427± .083 .387± .092 .391± .096 .398± .068 .394± .094 .394± .094 .430± .082 .387± .092
Hayes-roth .634± .029 .625± .040 .632± .046 .659± .028 .608± .048 .602± .044 .634± .029 .625± .040
House-votes .269± .041 .271± .037 .309± .061 .482± .027 .306± .055 .306± .055 .269± .041 .271± .037
Ionosphere .389± .061 .389± .062 .411± .115 .470± .054 .401± .114 .398± .112 .389± .061 .389± .062
Iris .460± .077 .460± .077 .460± .077 .675± .005 .460± .077 .460± .077 .460± .077 .460± .077
Labor .478± .237 .466± .249 .500± .338 .491± .152 .397± .328 .397± .328 .478± .237 .467± .249
Mushroom .253± .010 .253± .010 .279± .012 .505± .001 .279± .012 .253± .010 .253± .010 .253± .010
Pima-indians .416± .029 .458± .044 .422± .062 .462± .035 .425± .058 .427± .060 .416± .029 .458± .044
Soybean .826± .046 .882± .019 .882± .018 .920± .011 .826± .046 .861± .026 .826± .046 .882± .019
Tic-Tac-Toe .395± .019 .455± .039 .434± .053 .460± .034 .424± .051 .403± .046 .395± .019 .455± .039
Breast Cancer .274± .035 .306± .053 .325± .051 .459± .030 .318± .050 .306± .053 .274± .035 .306± .053
Zoo .582± .135 .684± .052 .675± .058 .781± .077 .582± .135 .582± .135 .582± .135 .684± .052

Table 4: Average Brier scores for the UCI data sets. The best results are shown in bold.

The resulting average Brier scores and Log-loss are given in Tables 4-5. All the
results are obtained by 10-fold cross-validation. As in the previous experiment, a sub-
group is learned on the training folds and the class distribution estimated on the test
fold is then used to compute the corresponding loss.

Given these results, it can be seen that our proposed measures generally outper-
form WRAcc, Chi2 and both versions of information gain. The PSR measures (first two
columns) are never outperformed by the generalised divergence (last two columns) so
we recommend using the former unless simplicity of implementation is an issue (as the
latter don’t need estimation of a). Regarding the choice between (BS,LL), this is still
an ongoing debate in the community. Here we used both to demonstrate that our novel
measure can apply either as the two most well-known Proper Scoring Rules.

6 Related Work

As is the case for supervised rule learning in general, SD comprises three major compo-
nents: description language, quality measure and search algorithm. A detailed compar-
ison with rule learning can be found in [15]. While early work in SD has been surveyed
in [6], we briefly describe some recent progress in the area.

Regarding the subgroup description language, most existing work defines it through
logical operations on attribute values. In [14] the authors present an approach to con-
struct more informative descriptions on numeric and nominal attributes in linear time.
The proposed algorithm is able to find the optimal interval for numeric attributes and
optimal set of values for nominal attributes.The results show improvements on the qual-
ity of obtained subgroups comparing to traditional descriptions.

In terms of quality measures, recent work has focused on the extension of tradi-
tional measures with improved statistical modelling. In [4, 11] Exceptional Model Min-
ing (EMM) was introduced as a framework to support improved target concepts with
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data set PSR-BS PSR-LL WRAcc Chi2 IG-BS IG−LL d-BS d-LL
Abalone 2.430± .055 2.436± .057 2.450± .062 2.608± .051 2.504± .061 2.511± .061 2.430± .055 2.436± .057
Balance-scale .958± .077 .918± .064 .918± .084 1.026± .064 .986± .067 .993± .067 .958± .077 .918± .064
Car .766± .037 .764± .047 .766± .052 .946± .056 .797± .066 .797± .066 .766± .037 .764± .047
Contraceptive 1.119± .031 1.068± .021 1.089± .022 1.173± .021 1.122± .035 1.115± .036 1.119± .031 1.068± .021
Contact-lens 1.166± .483 1.212± .485 1.042± .336 1.076± .239 .884± .735 .884± .735 1.175± .488 1.223± .492
Credit .563± .069 .563± .069 .563± .069 .794± .014 .563± .069 .563± .069 .563± .069 .563± .069
Dermatology 1.459± .178 1.424± .075 1.443± .077 1.807± .084 1.459± .178 1.464± .185 1.459± .178 1.424± .075
Glass 1.479± .130 1.477± .131 1.478± .211 1.635± .154 1.552± .188 1.493± .192 1.479± .130 1.478± .131
Haberman .695± .104 .601± .111 .617± .121 .686± .083 .623± .117 .622± .117 .693± .105 .601± .111
Hayes-roth 1.142± .050 1.054± .116 1.045± .103 1.180± .051 .968± .116 .953± .108 1.142± .050 1.054± .116
House-votes .491± .074 .476± .071 .476± .101 .774± .029 .467± .088 .467± .088 .491± .074 .476± .071
Ionosphere .667± .098 .670± .102 .629± .139 .763± .062 .620± .147 .616± .145 .667± .098 .670± .102
Iris .836± .132 .836± .132 .836± .132 1.210± .008 .836± .132 .836± .132 .836± .132 .836± .132
Labor .775± .332 .747± .359 .787± .482 .785± .176 .622± .470 .622± .470 .775± .333 .747± .359
Mushroom .408± .016 .408± .016 .455± .019 .798± .001 .455± .019 .408± .016 .408± .016 .408± .016
Pima-indians .688± .034 .659± .060 .655± .077 .754± .041 .669± .076 .669± .076 .688± .034 .659± .060
Soybean 2.579± .157 2.447± .079 2.452± .083 2.810± .103 2.579± .157 2.455± .172 2.579± .157 2.447± .079
Tic-Tac-Toe .660± .022 .647± .040 .663± .061 .752± .040 .669± .067 .641± .061 .660± .022 .647± .040
Breast Cancer .507± .048 .455± .087 .508± .078 .751± .035 .491± .077 .456± .086 .507± .048 .455± .087
Zoo 1.435± .329 1.439± .118 1.447± .139 1.825± .228 1.435± .329 1.435± .329 1.435± .329 1.439± .118

Table 5: Average Log-loss for the UCI data sets. The best results are shown in bold.

different model classes. For example, if linear regression models are trained on the
whole data set and different candidate subgroups, the quality of subgroups can be eval-
uated by comparing the regression coefficient between the global model and the local
subgroup model. In [5] the authors extend the framework to support predictive statisti-
cal information. This further allows subgroups to be found where a scoring classifier’s
performance deviates from its overall performance.

With respect to the search algorithm, while greedy search algorithms have been
widely adopted in existing implementations, recent work in [12] presents a fast exhaus-
tive search strategy for numerical target concepts. The authors propose and illustrate
novel bounds on different types of quality measures. The exhaustive search can then be
performed efficiently via additional pruning techniques.

7 Conclusion

In this paper we investigated how to discover subgroups that are optimal in the sense of
maximally improving the global statistical summary of a given data set. By assuming
that the (discrete) statistical summary is to be evaluated by the Proper Scoring Rule,
we derived the corresponding quality measures from first principles. We also proposed
a generative model to consider the optimal statistical summary for any candidate sub-
group. By performing experiments on both synthetic data and UCI data, we showed that
our measures provide better summaries in comparison with existing methods.

The major advantage of adopting our generative model is that it prevents finding
small subgroups with extreme distributions. This can be seen as applying a regulari-
sation on the class distribution, similar to performing Laplace smoothing in decision
tree learning. Given the experiments, we can observe that the novel measures tend to
perform better on small data sets (e.g. Contact-lenses, Labor).
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Since in this paper we assume that only the subgroup with the highest gain will be
discovered, one major direction for further work is to investigate multiple subgroups
that can together improve the overall statistical summary. Previous Subgroup Discov-
ery algorithms have extended the covering algorithm to weighted covering in order to
promote the discovery of overlapping subgroups [10]. We expect that the PSR approach
will be able to derive appropriate weight updates in a principled fashion.

Another direction would be to generalise our approach to numeric target variables.
Although in general PSRs are designed to work with discrete random variables, Log-
loss has been widely adopted in Bayesian analysis, which provides an interface to ex-
tend our approach to a general form of statistical modelling.
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Appendix A: Proofs

Lemma 1. Let ψ be a proper scoring rule and d its respective divergence measure.
If S,S′ are random vectors representing two sets of class probability estimates for a
random variable T representing the actual class, then

E[ψ(S,T )−ψ(S′,T )] = E[d(S,T )−d(S′,T )] = E[d(S,E[T ])−d(S′,E[T ])] (22)

Proof. By using Lemma 1 from the supplementary of [8] we get the decomposition
E[ψ(S,T )] = E[d(S,T )] = E[d(S,E[T ])]+E[d(E[T ],T )] and the analogous decompo-
sition for S′. The second term is shared and hence when subtracting it cancels, yielding
the required result.

Theorem 1. Let ψ,ψ ′,d be a proper scoring rule, its sum across the dataset, and its
corresponding divergence measure, respectively. Then for any given subgroup g the
following holds:

argmax
ρ

ψ
′(Sπ ,Y )−ψ

′(Sg,ρ,π ,Y ) = ρ
(g) (23)

where ρ(g) denotes the class distribution within the subgroup g. The value of achieved
maximum is m ·d(π,ρ(g)) where m is the size of the subgroup g.

Proof. For simplicity of notation, let us assume that the training instances within g
are Y1, . . . ,Ym (the first m instances). Consider a random variable T obtaining its value
by uniformly choosing one Yi that belongs to g among Y1, . . . ,Ym. The summaries Sπ

and Sg,ρ(g),π are equal for instances m+ 1, . . . ,n, hence ψ ′(Sπ ,Y )−ψ ′(Sg,ρ(g),π ,Y ) =
m ·E[ψ(π,T )−ψ(ρ(g),T )]. Using Lemma 1 this is in turn equal to m ·E[d(π,E[T ])−
m ·E[d(ρ(g),E[T ])]. However, since E[T ] = ρ(g) then the second term is zero and the
first is m ·d(π,ρ(g)), which is exactly the required result.
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Theorem 2. Consider a subgroup as generated with the model above. Denote the counts
of each class in the training set of this subgroup by C = ∑

m
i=1 Yi. Then

argmax
ρ

E[ψ ′(π,Y )−ψ
′(ρ,Y )|C = c,Z = 1] =

c+β

∑
k
j=1 c j +β j

(24)

Denoting this quantity by ρ̂ , the achieved maximum is d(π, ρ̂), where d is the divergence
measure corresponding to ψ .

Proof. Consider a random variable T obtaining its value by uniformly choosing one
Yi that belongs to g among Y1, . . . ,Ym. Then E[ψ ′(π,Y )−ψ ′(ρ,Y )|C = c,Z = 1] =
E[ψ(π,T )−ψ(ρ,T )|C = c,Z = 1]. Using Lemma 1 this is in turn equal to d(π,E[T |C =
c,Z = 1])− d(ρ,E[T |C = c,Z = 1]). Since the first term does not depend on ρ this
quantity is maximised by minimising the second divergence. As with any divergence,
the minimal value is zero and it is obtained if the two terms are equal, i.e., ρ =E[T |C =

c,Z = 1]. It remains to prove that E[T |C = c,Z = 1] = c+β

∑
k
j=1 c j+β j

. This holds because it

is a posterior distribution under the Dirichlet prior Dir(β ) after observing c1, . . . ,ck of
the classes 1, . . . ,k, respectively.

Theorem 3. Consider a subgroup as generated with the model above and denote C as
above. Then

argmax
ρ

E[ψ ′(π,Y )−ψ
′(ρ,Y )|C = c] = a

c+β

∑
k
j=1 c j +β j

+(1−a)π (25)

where a=P[Z = 1|C = c]. Denote this quantity by ˆ̂ρ . Then the achieved maximum value
is d(π, ˆ̂ρ), where d is the divergence measure corresponding to ψ .

Proof. Consider a random variable T obtaining its value by uniformly choosing one Yi
that belongs to g among Y1, . . . ,Ym. Then E[ψ ′(π,Y )−ψ ′(ρ,Y )|C = c] = E[ψ(π,T )−
ψ(ρ,T )|C = c]. Using Lemma 1 this is in turn equal to d(π,E[T |C = c])−d(ρ,E[T |C =
c]). Since the first term does not depend on ρ this quantity is maximised by minimis-
ing the second divergence. As with any divergence, the minimal value is zero and it
is obtained if the two terms are equal, i.e., ρ = E[T |C = c]. It remains to prove that
E[T |C = c] = aρ̂ + (1− a)ρ̂ where ρ̂ is defined in the previous Theorem 2. Indeed,
E[T |C = c] = P(Z = 1|C = c)E[T |C = c,Z = 1]+P(Z = 0|C = c)E[T |C = c,Z = 0] =
aρ̂ +(1− a)π , where E[T |C = c,Z = 0] = π due to Y (and therefore T ) drawn from
Bernoulli with the mean ZQ+(1−Z)π . The achieved maximum is d(π, ˆ̂ρ).

Theorem 4. Consider a subgroup as generated with the model above and denote C as
above. Then the following equalities hold:

P[Z = 1|C = c] =
γ ·P[C = c | Z = 1]

γ ·P[C = c | Z = 1]+ (1− γ) ·P[C = c | Z = 0]

P[C = c | Z = 1] =
Γ (∑k

j=1 β j)

∏
k
j=1 Γ (β j)

·
∏

k
j=1 Γ (c j +β j)

Γ (m+β0)
·
(

m
c

)

P[C = c | Z = 0] =
(

m
c

)
·

k

∏
j=1

π
c j
j

(26)
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where β0 = ∑
k
j=1 β j.

Proof. Due to P[Z = 1] = γ , we can obtain the first result from the Bayes formula with
P[Z = 1|C = c] = P[C=c|Z=1]P[Z=1]

P[C=c] . To obtain the second result we note that in the sub-
group Z = 1 the class distribution is drawn from Dir(β ), therefore the distribution of C
follows the Dirichlet-Multinomial distribution. The stated result represents simply the
probability distribution function of the Dirichlet-Multinomial with Dir(β ) and multi-
nomial of size m. The third result is simply the probability distribution function of the
Multinomial Distribution.

Appendix B: Information for the UCI Data

Name # instances # features # classes
Abalone 4176 9 3
Balance-scale 624 5 3
Car 1727 7 4
Contraceptive 1472 10 3
Contact-lenses 24 5 3
Credit 589 16 2
Dermatology 365 35 6
Glass 213 11 6
Haberman 305 4 2
Hayes-roth 131 5 3
House-votes 434 17 2
Ionosphere 350 34 2
Iris 150 5 3
Labor 57 17 2
Mushroom 8123 23 2
Pima-indians 767 9 2
Soybean 683 36 19
Tic-Tac-Toe 957 10 2
Breast Cancer 197 34 2
Zoo 100 18 7

Table 6: The 20 UCI data sets used in the experiments.


