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Rule-Based Semantic Sensing

Przemyslaw Woznowski and Alun Preece

Cardiff University, School of Computer Science, 5 The Parade, Cardiff, UK
{p.r.woznowski,a.d.preece}@cs.cf.ac.uk

Abstract. Rule-Based Systems have been in use for decades to solve
a variety of problems but not in the sensor informatics domain. Rules
aid the aggregation of low-level sensor readings to form a more complete
picture of the real world and help to address 10 identified challenges
for sensor network middleware. This paper presents the reader with an
overview of a system architecture and a pilot application to demonstrate
the usefulness of a system integrating rules with sensor middleware.
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1 Introduction & Motivation

A single sensor provides only partial information on the actual physical condition
measured, e.g. an acoustic sensor only records audio signals. For an application
to reason over sensor data, raw sensor readings have to be captured and often
aggregated to form a more complete picture of the real-world condition mea-
sured. Sensor Network Middleware (SNM) aids this process. As defined in [1],
“The main purpose of middleware for sensor networks is to support the develop-
ment, maintenance, deployment, and execution of sensing-based applications”.
However, existing SNMs don’t give the user – who can be an expert in some area
that is not computer science – an opportunity to easily specify data aggregation
logic themselves.

It is hypothesised that rules help to address this problem and can greatly
improve the SNM. Moreover, such an approach to sensor networks addresses
many of the 10 challenges for SNM, listed in [2], in the following way:

Data Fusion - Rules fuse simple facts to infer higher-level facts about the real world.
Application Knowledge - Expert’s knowledge encoded into an automated system.
Adaptability - Applicable to any domain, non-programmers can write rules.
Abstraction Support - Each fact is an interpretation of data. How the data is in-

terpreted is determined by an expert via rules.
QoS Support - Multiple combinations of rules and facts can often answer the same

query. Solution can be explained by retracing the reasoning.

The remaining challenges: Network Heterogeneity, Dynamic Topology, Resource
Constraints, Security and Scalability – need to be met by SNM. Additional ben-
efits come from well-known advantages of using RBS systems: reproducibility,
permanence, consistency, timeliness, efficiency, breadth, completeness, documen-
tation, etc. – as identified in [3]. Finally, representing sensor data in the form
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of facts adds semantics. We propose the Rule-Based Semantic Sensor System
(RBS3) which employs a Rule-Based System (RBS) on top of existing off-the-
shelf SNM. The pilot application described in Section 3 was implemented to test
the hypothesis that rules help to address the 10 Challenges and ease the devel-
opment, maintenance, execution and extensibility of sensing-based applications.

2 Proposed System Architecture

The proposed system architecture in Figure 1 consists of four layers. The SNM
layer serves as a bridge between physical sensors and the layer above it. It ab-
stracts away the network heterogeneity by modelling hardware entities, and the
output they produce, in software. The Interface layer is responsible for injecting
sensor data, coming from the layer below it, into the Reasoning Engine layer in
the form of facts. Its main function is to translate the SNMs output into facts,
defined in terms of a semantic data model (for which we currently use RDF
Schema for simplicity, although details of this are not included in this paper due
to lack of space). The Reasoning Engine layer is the heart of the system. It con-
tinuously reasons over incoming facts and those already in the Working Memory
(WM) to produce new, more complex facts. The more complex the facts, the
higher the semantic enrichment and therefore more detailed picture of the real
world. The Application layer bridges the user’s interface with the Reasoning En-
gine. It exposes facts and queries, which persist in the KB, to the application.
Moreover, it takes user’s queries, pushes them to the layer below and returns
the results in the format easily consumable by the application.

Application Layer

Rule-Based System Layer JESS

Interface Layer

SNM Layer

Physical Sensors

GSN

Fig. 1. System Architecture

The system architecture in Figure 1 is implemented in our RBS3 system
as follows. The SNM layer currently consists of Global Sensor Networks (GSN)
middleware, which serves XML data in response to queries. GSN (GNU GPL li-
cense) is a SNM, which deals with sensor network heterogeneity via use of Virtual
Sensor (VS) abstraction. Any type of sensors, whether hardware or software, is
represented by a single VS XML file, which specifies its inputs and output struc-
ture [4]. However, other SNMs such as: Pachube, ITA Sensor Fabric or SWE
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compliant middleware could replace GSN. The Interface Layer parses the XML
data to JavaBeans, which are then injected into the Reasoning Engine (Jess)
in the form of facts. Alternatively SweetRules, which is much more compact
and offers extra features, could replace Jess, as both rule engines accept rules
in CLIPS format. Queries, their arguments, and return parameters are available
through the Application Layer, which serves data in JSON(JavaScript Object
Notation) format, because it is a lightweight data-interchange format, which is
easy for humans to read/write and easy for machines to parse.

3 Pilot Application

The aim of this application is to provide information on people’s indoor locations,
their history of visited locations, and information on walking speed between the
locations - later referred in this paper as “corridor tests”. The basic assumption
for the system to work is that the tracked person wears either the RFID tag or
any Bluetooth(BT) enabled device pre-registered with the mobileDevStore VS.
Also corridor entities need to be defined in the corridorStore VS in order for the
system to log corridor tests. This is part of a larger project looking at people’s
recovery from physical injury.

ID = 730
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Fig. 2. Localisation with the Room Locator

The room-level localisation of active RFID tags is possible via use of the
Room Locators, which broadcast a pre-set location code via IR (Figure 2). The
active RFID wristband tags are IR enabled, therefore report the IR location
code to the RFID reader. For this a direct line-of-sight between tag and the
Room Locator is required. In the experiment, the network consisted of 1 laptop,
1 RFID reader, 2 Room Locators and 2 standard desktop PCs with Bluetooth,
placed in two rooms, both running an instance of the GSN server. To clarify,
the software/hardware components used in the experiment have the following
functions:

RFID Active Tag: Every 2 seconds broadcasts it’s unique ID, IR location code,
motion status, etc. to the RFID Reader.

11



Bluetooth: Alternative source of information on user’s location.
GSN: Connects to sensors, logs their readings and exposes them via a web server.

Also serves as a source of information for static data.
RFID Reader: Receives active RFID tags’ signals.
Room Locator: Transmits an IR pulse pattern containing a unique 3-digit location

code to enable room-level accuracy localisation.
mobileDevStore VS: Lookup service. Stores name to RFID/BT address mappings.
corridorStore VS: Lookup service. Stores corridor entities (endA, endB, length).
btReader VS: Logs device’s discovery time, BT address and reader’s location.
rfidReader VS: Logs tag’s discovery time, ID and reader’s location.

3.1 Facts

Shadow fact, as described in [5], is “an unordered fact whose slots correspond
to the properties of a JavaBean”. Three shadow fact templates are defined in
the Knowledge Base (KB): MobileTrace, Person and Corridor. They allow for
quick insertion of JavaBean objects into the Working Memory (WM) and they directly
represent GSN Virtual Sensor’s outputs.

(deftemplate MobileTrace (declare (from-class javaBeans.MobileTrace)))

;Java class members/slots: location, address, time.

(deftemplate Person (declare (from-class javaBeans.Person)))

;Java class members/slots: name, deviceAddress.

(deftemplate Corridor (declare (from-class javaBeans.Corridor)))

;Java class members/slots: enda, endb, length.

Apart from shadow facts described above, the following set of unordered facts exists
in the KB. All these facts originate from rules defined in the KB. To summarise, in this
implementation, shadow facts (capitalised) represent sensor readings and unordered
facts are used internally in Jess to represent fused sensor data. These fact templates
are the semantic interface and we do have the RDF Schema for them, however, this is
not included due to lack of space.

(deftemplate is-seen-at (slot name)(slot location)(slot time))

(deftemplate is-currently-at (slot name)(slot location)(slot tStart)

(slot tFinish))

(deftemplate was-at(slot name)(slot location)(slot tStart)(slot tFinish))

(deftemplate was-tracked (slot name) (slot endA) (slot endB)

(slot tStart)(slot tFinish)(slot distance)(slot tTaken)(slot velocity))

3.2 Rules

The set of rules defined in the KB, allows the system to infer four types of ob-
servations from sensor and static data: is-seen-at, is-currently-at, was-at and
was-tracked. First rule, seen at, simply aggregates Person and MobileTrace facts to
assert is-seen-at to the WM. It also retracts all the MobileTraces that are success-
fully fused with Person facts.

(defrule seen_at

(Person (deviceAddress ?address)(name ?name))

?mob <- (MobileTrace (location ?loc)(time ?time)(address ?address))

=> (retract ?mob)

(assert (is-seen-at(name ?name)(location ?loc)(time ?time))))
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The next rule, was at, asserts two facts to the WM: was-at and is-currently-at. The
latter contains information about a person’s current location; therefore whenever the
same person is seen at different location, the is-currently-at fact becomes was-at

and a new is-currently-at fact is added. This time both facts, which are used to infer
new information (is-seen-at and is-currently-at) are retracted from the WM, as at
any point in time there should only exist one of each of these facts, simply because some
person can only be seen at one location at any time. However, was at will never fire
unless the initial is-currently-at fact is inserted as is-currently-at facts are only
produced by this rule. Therefore, a dummy fact is defined for each person tracked by the
system, e.g. for Pete we have (assert(is-currently-at(name ‘‘Pete’’)(location

‘‘dummyLoc’’)(tStart 0)(tFinish 0))).

(defrule was_at

?c <- (is-currently-at(name ?n)(location ?l1)(tStart ?tS)(tFinish ?tF))

?seen <- (is-seen-at (name ?n)(location ?l2)(time ?t))

=>(retract ?c ?seen)

(assert(was-at(name ?n)(location ?l1)(tStart ?tS)(tFinish ?tF)))

(assert(is-currently-at(name ?n)(location ?l2)(tStart ?t)(tFinish ?t))))

As opposed to was at, the update current loc rule deals with the situation when the
location reported by is-seen-at is the same: it simply updates the tFinish of the
is-currently-at fact.

(defrule update_current_loc

?c <- (is-currently-at (name ?n)(location ?loc)(tStart ?tS)(tFinish ?tF))

?seen <- (is-seen-at (name ?n)(location ?loc)(time ?time))

(test(< ?tF ?time))

=> (retract ?seen)(modify ?c (tFinish ?time)))

The three rules discussed above can already provide information on a subject’s current
location and history of visited locations. If a human expert was to analyse this data,
they could easily answer questions on where the person currently is/was at any point
in time. Additionally, it wouldn’t be a problem to tell how much time it took somebody
to transfer from one location to another, as this can be worked out from was-at facts.
Find corridor events does exactly this, but in a slightly different way. Instead of
analysing consecutive was-at facts it works with is-currently-at and was-at facts,
whose locations are defined as ends of some Corridor in the KB. However, was-tracked
fact is asserted if the subject travels from A to B and not B to A. This logic is there
in purpose, as one may be interested in journeys in only one direction.

(defrule find_corridor_events

(was-at (name ?name)(location ?loc1)(tStart ?t1S)(tFinish ?t1F))

(is-currently-at (name ?name)(location ?loc2)(tStart ?t2S)(tFinish ?2tF))

(Corridor (enda ?loc1)(endb ?loc2)(length ?length))

=> (bind ?tTaken (- ?t2S ?t1F))

(assert (was-tracked (name ?name)(endA ?loc1)(endB ?loc2)(tStart ?t1F)

(tFinish ?t2S)(distance ?length)(tTaken ?tTaken)

(velocity (/ ?length (/ ?tTaken 1000)))))

It seemed to be enough to define only four rules in the KB. However, test results have
revealed the missing logic. Assuming a scenario where somebody visits locations in
the following order: 730, 000, 740, 000, 730, 000, 740 and the corridor is defined as
(Corridor (enda 730)(endb 740)(length 20)) any person would know that there
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are two journeys of interest: 2 x “730 through 000 to 740”. However, the system inferred
one additional fact: “730 through 000, 740, 000, 730, 000 to 740”. Since it does not
make sense to consider cyclic journeys, we also have rules to retract these from the WM.
Obviously the find corridor events rule could be replaced with a query, which looks
for was-at and Corridor facts, however the general idea is to infer new, more complex
facts from existing lower-level facts, rather that to come up with a clever query which
can provide information on one’s journeys. By inserting new and often more complex
facts, the KB is populated with more data what allows for defining new rules that can
simply look at existing facts and infer even more complex ones. Find corridor events

is an example of a rule that does not modify facts that are already in the WM but
instead populates new facts, which can then be used by other rules.

3.3 Results

Three queries, that take name as the parameter, are defined in the KB: find journeys,
where is and location history. They simply look for was-tracked, is-currently-at
and was-at facts respectively for some person. Querying the WM becomes very simple,
as neither new data needs to be inferred, nor any calculations done - simply query
parameter needs defining. Hence query of the form "find journeys Pete" lists all the
was-tracked facts (corridor test results) for Pete.

To validate this application some tests were carried out. The table below contains
results of the corridor tests recorded by the system, contrasted with times recorded by
the subject of these tests via use of an ordinary watch synchronised with system’s time.
For simplicity, times represented in the table are of form HH:MM:SS and do not include
milliseconds. From Table 1 it is easy to see that the system never underestimates the

Table 1. Experiment Results

Recorded by the system Recorded by hand

tStart tFinish tTaken tStart tFinish tTaken

13:30:44 13:31:26 42 13:30:43 13:31:21 38

13:36:21 13:37:00 39 13:36:18 13:36:56 38

13:59:25 14:00:08 43 13:59:22 14:00:03 41

14:13:41 14:14:16 35 14:13:38 14:14:08 30

tTaken but is rather an overestimate of it. This behaviour was predictable due to the
following two factors. Firstly, RFID tags broadcast their signal every 2 seconds (when
in motion) and therefore introduce a maximum delay of 2 seconds on both ends of the
corridor. Therefore, if somebody arrives at some location, this information may not be
injected into the system until the next round of broadcasting, which in worst case is 2
seconds later. Secondly, in order for the tag to report it’s location it has to receive the
IR signature of some location. If there is no direct line-of-sight between the tag and
Room Locator, the tag reports location code 000 instead of the broadcasted location
code. To account for both these factors the system could subtract the average delay
time from the results returned.

4 Related Work

Many of the popular Sensor Network Middlewares, such as GSN, ITA Sensor Fabric,
Pachube or SWE-compatible products are rather low-level [4,6,7,8]. They simply pro-
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vide sensor data (using different models and abstractions) and do not make it very
easy for the programmer to program with them. We consider these as candidates for
the SNM layer rather than complete solutions that meet all the 10 challenges to a sat-
isfactory level. Application knowledge, adaptability and abstraction support are not
very well addressed by these SNMs.

To the best of our knowledge there are no systems that implement a Rule-Based
System on the top of SNM. The most similar is Semantic Streams (SS) – “. . . a frame-
work . . . that allows users to pose declarative queries over semantic interpretations of
sensor data” [9]. SS and RBS3 are both very high-level in terms of ability to query
for real world facts. RBS3 adapts ideas from SS in a sense that rules have analogous
function to the semantic services – both take some inputs and produce outputs as a
result of data aggregation. Moreover, streams of data (in case of RBS3 - facts) are
reused in both systems. However, SS uses a modified version of Prolog and connects to
sensors using MSR Sense toolkit, hence lacks openness at the lower layer, and can only
use sensors compatible with this toolkit – according to Microsoft [10] “MSR Sense has
only been tested on TinyOS-based sensor motes, although in theory, it should work
with any 802.15.4 compatible wireless sensors”. Therefore SS is hard to extend with
new sensors or other sensor middleware. In addition rules are coded implicitly using
SS markup language another specification to learn in order to use the system. RBS3,
on the other hand, defines rules explicitly in a well-known “standard” form of rule
(CLIPS) and allows adding new rules at the runtime. Semantic Streams use a variant
of backward chaining to find semantic services that can satisfy the query. In contrast,
RBS3 implements forward-chaining mechanism and only allows the user to query the
system using queries defined in the KB.

5 Conclusion & Future Work

In this paper, we have proposed a system architecture which combines rules and sensor
middleware to better address 10 identified challenges for sensing systems. The proposed
system architecture provides several benefits amongst which are: flexibility and exten-
sibility. This approach also aids application development, maintenance, deployment,
and execution. Other benefits come from using a Rule-Based System and they help
to address half of the 10 challenges for SNM: Data Fusion, Application Knowledge,
Adaptability, QoS and Abstraction Support.

The current implementation of the system only has GSN in the SNM layer. In the
next version of RBS3, wrappers to interface with other popular sensor middleware,
such as Pachube, ITA Sensor Fabric or SWE, will be present. The proposed system
architecture makes the system extensible – if the user is constrained to use a specific
type of SNM they can implement their own wrapper for it; and flexible – if the user
does not want to be limited to use one SNM but wants to use sensor data from various
sources. Another improvement to the system would be to modify the Interface Layer,
so that RDF data serialised in JSON is parsed and injected into the Reasoning Engine,
instead of XML parsed to JavaBeans – “since XML just describes grammars there is
no way of recognising a semantic unit from a particular domain of interest” [11]. The
Reasoning Engine would then be processing semantically rich data.

Because the system works in a forward-chaining way, only when a rule that produces
certain type of facts is specified, these facts become available for queries. The next
version of the system may use both: backward- and forward-chaining mechanisms to
allow the user to query for data for which production rules are specified just before the

15



query – therefore, historical data stored in DBs can participate to the query. Another,
desirable enhancement to the system is at the Application layer – the system is easier
to interface with if the user has a choice whether to receive data in JSON or RDF
format.

Scalability is something that the entire system, once fully implemented, has to
be extensively tested for in order to provide good response times and good level of
reliability – the more sensors used, the more data to parse and store. However, the
system as it is, is proven to work correctly and starts to reveal it’s potential. As facts
are injected into the system, they are not only aggregated together but also they are
re-used across multiple rules. The more complex the facts are the better they re-create
the real world conditions measured by sensors and can answer more complex queries.
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