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Abstract—The problem of secure software licensing is to
enforce meaningful restrictions on how software is run on
machines outside the control of the software author/vendor. The
problem has been addressed through a variety of approaches
from software obfuscation to hardware-based solutions, but
existent solutions offer only heuristic guarantees which are often
invalidated by attacks.

This paper establishes foundations for secure software licen-
sing in the form of rigorous models. We identify and formalize
two key properties. Privacy demands that licensed software does
not leak unwanted information, and integrity ensures that the use
of licensed software is compliant with a license – the license is a
parameter of our models. Our formal definitions and proposed
constructions leverage the isolation/attestation capabilities of
recently proposed trusted hardware like SGX which proves to be
a key enabling technology for provably secure software licensing.

I. INTRODUCTION

Improvements in trusted hardware technologies like Trust-
Zone and SGX [1] [2] enable new applications: restrict the
access of programs to protected information [3] [4] [5] [6]
or enable the remote execution of code while ensuring strong
privacy and authenticity guarantees [7] [8]. Software vendors
can use these applications to guard their intellectual property
– code, keys and proprietary data – against unauthorized use
or theft. This type of use falls within the broader problem
of software licensing, where vendors want to ensure that
executions of programs on remote machines outside their
control comply to some well-defined rules.

When attacking software executed on their own machine,
malicious parties have a variety of attack vectors at their
disposal. For example, an attacker can glean information
during transfer of the code, attempt to reverse engineer its
execution, deduce information about program structure from
its outputs under both normal and abnormal termination, listen
on side-channels (e.g. pattern of memory accesses), etc. The
complexity of possible attack scenarios easily leads to pitfalls;
even ideas that seem to ”obviously” work may unintentionally
leak information.

In this paper we make the first steps towards rigorous
models for secure software licensing. We leverage definitional
ideas from the fields of secure obfuscation and modern cryp-
tography. While mathematical models are not without their
own pitfalls, they play a crucial role in clarifying security
assumptions, adversarial powers and goals, thus serving as
validators of system design.

Motivated by the realistic possibility that trusted hardware
with advanced capabilities may soon be ubiquitous [9], we
cast our models in a setting where machines are equipped
with such technology. We propose constructions for these
settings and demonstrate mathematically that they meet our
desired requirements. Our possibility results show that certain
applications – software-only signing dongles or authenticating
DRM for commercial content – are both feasible and provably
secure. We detail our results next.

SYSTEM ARCHITECTURE AND EXECUTION MODEL. Our
models and constructions are for a setting where it is not pos-
sible to store securely persistent state on the remote machine.
This assumption is consistent with the design of Intel SGX,
where on system reset the state of the running program is
lost. Although SGX includes sealing, thus providing storage
with integrity and confidentiality, it is not sufficient to provide
offline licensing. This would require practical state continuity,
where adversaries cannot force replays on local state. While
hardware based solutions exist (ICE for SGX [6]), the current
generation of SGX architectures does not provide secure
storage with these properties.

We view a licensing scheme as a two-party protocol between
a licensing server and a remote machine with access to
trusted hardware. To avoid being tied down to a particular
trusted hardware architecture, our model surfaces only two
main capabilities of such hardware: their ability to completely
isolate software execution from interference by the machine on
which it resides and the ability to carry out some cryptographic
operations.

Our licensing schemes are two-party protocols composed
of two phases. In the first phase, the software vendor runs a
protection algorithm, which takes as input the target program
and the desired licensing restrictions. The algorithm outputs
a protected version of the same program and a secret token,
which are then shared with the client user through a secure
communication channel. In the second phase, the user runs the
program and uses the token to unlock the protection around
the original code; depending on the licensing algorithm, this
second phase can also involve communication between vendor
and user.

System execution is captured via traces that record various
events during the execution (e.g. the input-output at the
interface of the trusted hardware, on which machine a certain



event occurs, etc.).

SECURITY MODELS. We identify three properties which
should be satisfied by any good software licensing scheme.
The first requirement is a correctness property and demands
that the protected program still performs its function. The
next two properties are security requirements: privacy of
code demands that no information on the the source code or
machine code is leaked; licensing compliance requires that
the functionality of the program can only be unlocked under
specific circumstances, dictated by the license. Code privacy
requires that no information is leaked except the information
obtained from program output. Our mathematical formulation
is based on previous work on software obfuscation, namely the
concept of virtual black-box and, informally, it says that an
adversary with access to the licensed software does not glean
any more information than if given access to the software in
a black-box way. We remark that well-known impossibility
results that show that this level of obfuscation is not possible
in general [10] do not apply, as we consider solutions based
on trusted hardware.

To define secure licensing, we consider a flexible definition
parametrized by an arbitrary licensing predicate: secure licen-
sing essentially imposes that with overwhelming probability
execution traces satisfy this predicate. As we discuss later in
the paper in more details, it is not possible to enforce arbitrary
licensing predicates on arbitrary programs. For example, it is
not possible to stop a user from executing a licensed program
on the same input twice, even if it is on different hardware;
once the user knows the behavior, they can reimplement it on
their own and execute it as many times as desired. In turn, this
indicates that a single generic construction that enforces arbi-
trary predicates is also not possible. Nonetheless, we specify
three distinct licensing models and provide constructions that
enforce them.

Licensed use is closest to the licensing model many pro-
grams use today. Once a user has purchased a program, he
is allowed to run it an unlimited number of times and on an
unlimited number of machines. Although legal restrictions that
impose additional limitations might exist, they are not directly
enforced by the licensing system.

Limited use imposes restrictions on the number of times a
specific application can be run. This is commonly used in trial
versions, where the application requires the user to purchase
the complete version after a specific number of application
starts have been counted. Having an application that can be
executed at most 10 times can be used to rapidly implement
trial versions, but it can also be used to sell cheaper rights
of use for enterprise applications. For example, a casual user
might be interested in processing a home made video using
professional level tools, but finds the cost of a full purchase
prohibitive. The application vendor might be interested in
selling its processing tool for a discounted price, while limiting
its number of uses. In a different scenario, one may also use
this licensing model to delegate signing/decryption rights for
a limited time.

Limited machines states that an application cannot be ex-
ecuted on more than a specified number of processors. Soft-
ware vendors use this model for applications where limiting
processing power is desirable, for example when licensing
network services such as firewalls and instrusion detectors,
or for commodity applications where the end-user pays on a
per-installation basis.

CONSTRUCTIONS. We propose schemes that implement the
three previous licensing models; for each scheme, we provide
proofs of correctness and security, and identify the class of
programs to which they apply. Our first scheme (Privacy
Preserving Licensing) provides privacy of code, while allowing
users to only execute the licensed application if they have
a secret token received from the software vendor (typically
following a purchase). Our second scheme (Run Count Li-
censing) builds upon the first one; in addition to privacy of
code, it also allows the software vendor to restrict the number
of program executions (and the total information users obtain
about program functionality). We also show that some classes
of programs cannot be licensed under the limited use licensing
model. Our third scheme (Machine Count Licensing) provides
privacy of code and allows software vendors to restrict the
number of machines on which a program can run. This type
of license is commonly used in virtualization, where vendors
lock the number of processors that a virtual machine can run
on in order to throttle performance.

II. RELATED WORK

Depending on the type of information, there are two cat-
egories of protection algorithms: data protection (e.g. books,
music, video) and code protection (e.g. programs). Although
some overlap exists between the two, technologies in the
former typically only restrict access to static content; examples
include Apple FairPlay [12], Microsoft Protected Media Path
[13], and the AACS standard [14]. Our framework targets the
latter application domain. Here, the protection mechanism —
usually a secure licensing infrastructure — must allow the
user to interact with the protected code. Most prior work is
described in patents [15] [16] [17]. However, these solutions
take a best effort approach, and do not provide any formal
guarantees of security. Existing implementations that do not
rely on special hardware on the client’s part (e.g. licensing
with online activation requirements or install keys) have shown
that most licensing schemes are only a deterrent, and not a
guarantee of security.

Program obfuscation has been studied in the literature as a
means to protect code privacy. The notion essentially demands
that no information about the original code can be obtained
besides what one can deduce from its functionality. Barak
et. al formalized obfuscators as virtual black-boxes [10] and
proved that general obfuscation in this sense is impossible.
Later contributions built obfuscators for specific classes of
circuits, such as conjunctions [18] and point functions [19].
Our notion of privacy is essentially the one proposed by [10],
and we bypass the impossibility result through the use of



trusted hardware. We remark that obfuscation goes only some
way towards secure licensing (e.g. one can control the input
output behavior of a program) but cannot prevent, for example,
that the program is run on two different machines.

More recently, customizable hardware with cryptographic
capabilities opened a path toward secure software licensing; as
opposed to obfuscation, program code can be stored encrypted,
and is only decrypted during execution. There are applications
which rely on the Trusted Platform Modules (TPMs) to
implement this idea. For example, TrInc [3] implements a
secure monotonic counter, kept on a tamper-proof device;
user programs can then request unique attestations from the
device. Memoir [4] uses secure hardware to implement state
continuity, while Pasture [5] proves whether a user has ac-
cessed a resource. These solutions require persistent state
on client hardware, which is achieved by having access to
secure non-volatile RAM (NVRAM) in custom hardware (thus
increasing costs). Other limitations include: the small size of
the NVRAM (which limits extensive use); only pieces of data
or functionality are protected, not entire programs; applications
and protocols need to be redesigned to use the new secure
functions.

More recent hardware such as TrustZone [1] or SGX [2],
offer improved capabilities [20] that can be used to create
an all-around solution. Haven [8] is built on top of SGX
and protects the runtime of entire legacy applications without
changes to the code base. Our constructions are similar to VC3
[7], which allows users to run encrypted MapReduce functions
over untrusted clouds running trusted hardware. As opposed
to obfuscation, such hardware allows the implementation of
virtual black-boxes for general purpose applications. Our con-
structions share with VC3 the basic idea to protect programs
by encryption which is then only removed inside an isolated
environment. Our overall goal is to enforce restricted use for
these programs.

Our models and constructions rely on trusted hardware
which we view as an abstract machine with strong guarantees,
and our proofs rely on the validity of this abstraction. Side-
channel attacks and controlled-channel attacks [21] against
code executed inside trusted environments provide additional
information to the attacker. However, measuring their impact
and providing countermeasures is orthogonal to our problem,
as these additional attack vectors do not invalidate our defini-
tions and constructions.

III. NOTATION AND DEFINITIONS

We use calligraphic uppercase letters (e.g. M, K) for
unordered sets, and notations such as

−→
M or uppercase greek

letters to refer to vectors or associative arrays, respectively.
Specific elements can be accessed either via integer indices
(
−→
M [2]) or key lookup in the case of associative arrays (Λ[M1]).

The notation a ← b represents assignment, while a
$←− K

where K is a set represents random sampling from the el-
ements of the set according to the uniform distribution. We
write Exp ⇒ x or A ⇒ x when an experiment or adversary

outputs value x. We say that two circuits C1 and C2 are
equivalent, if ∀x, C1(x) = C2(x).

For procedure calls where the behavior is influenced by
some variable x not passed as a parameter, we explicitly spec-
ify the dependency within square brackets: Procedure[x](a, b).

Given a stateful algorithm A, the notation stA always refers
to the current state of the algorithm. If an algorithm is marked
as stateful within the text, then the state is implicitly updated
during algorithm execution and persists through iterations of
the same algorithm. When referring to variable x contained in
the pseudocode of algorithm A from outside the pseudocode,
we write stA.x.

BASIC CRYPTOGRAPHIC PRIMITIVES. For a public encryption
scheme pke we write Kpke, Encpke and Decpke to mean the
key generation, encryption and decryption algorithms respec-
tively. The notation K+ is used for public keys, while K− is
used for private keys. We write c← EncpkeK+(m) for the process
of encrypting message m under public key K+ and obtaining
ciphertext c. We write m← DecpkeK−(c) for obtaining m as the
result of decrypting c using decryption key K−. We require
that pke satisfy DecpkeK−(EncpkeK+(m)) = m for any message
m. We use similar notation for symmetric encryption, with K
for the shared secret key. For both symmetric and asymmetric
schemes we use (and assume familiarity with) the standard
notion of indistinguishability under chosen-ciphertext attacks
(IND-CCA security) [22].

IV. MACHINES, PROGRAMS, AND PROCESSES

MACHINES. Our machine model is heavily inspired from [23].
We define a machine as a computing abstraction with memory,
central processing unit and input and output devices, capable
of running interactive programs. The term program refers to a
well-formed collection of code detailing the behavior of some
algorithm.

Programs communicate with the outside world using the
following set of instructions:
• Send(x). On Send(x), the value x is transmitted on the

network. Execution continues until a Receive or Return
instruction is received.

• x← Receive(). On Receive(), the process blocks waiting
for input. When input is received, it is parsed and stored
in x.

• Return x. On Return, the process immediately terminates
with output x.

We write P = P1‖P2‖ . . . ‖Pk for a program composed of
sections P1 through Pk. We describe sections either through
their raw representation (when dealing with data or code) or
through high level pseudocode descriptions (only when the
section contains plaintext code). External code can also call a
specific section with a set of arguments and obtain the output
(similarly to a procedure).

We use the term process to refer to one specific instance of
program execution. Once a process starts, we assume the code
is loaded into memory in its entirety, and thus consider it to
be a part of process state. Processes are identified via handles



— unique global identifiers. Handles are generated at process
creation, and are used to both differentiate between processes
on the same machine and on different machines.

ISOLATED PROCESSES AND TEES. We require that machines
be able to create and run processes in complete isolation.
An isolated process does not allow read or write access
to its internal state, either by outside observers or other
processes running on the same machine. Isolated processes —
or, more precisely, parts of processes — can be implemented in
practice using Trusted Execution Environments (TEEs); secure
hardware enforces integrity and confidentiality of state [2].
When refering to TEEs, we refer strictly to the process running
within them.

MACHINE INTERFACE. Similarly to [23], we define a small
machine interface consisting of three calls:
• Init(1λ) is the machine constructor. It takes as input some

security parameters and outputs a vector of machines
−→
M .

This procedure models the production of TEE capable
machines; cryptographic keys are stored on each con-
structed machine (similarly to how a processor vendor
burns keys on a chip). These keys are assumed secret and
programs gain access to the keys through a restricted set
of privileged instructions to hardware components. Public
parameters are assumed to be available to all parties.
To simplify notation we do not show these parameters
and simply write

−→
M ← Init(1λ). We assume that each

machine is identified by some unique integer ID.
• M.Load(P ) takes as input a program P , and outputs

a handle δ. The handle δ is a reference to a newly
created process on machine M , running inside a TEE.
M.Load(P ) is an abstraction of all steps executed by the
hardware and operating system of a physical machine
M to create a new process for program P . We write
δ ← M.Load(P ) for the action of initializing a new
process on machine M (with process handle δ) running
an instance of program P .

• M.Run(δ, i) takes as input a process handle δ and input i
and models sending the input i to the process identified by
δ. The process runs until it encounters Receive or Return;
the output of Run consists of the sequence of values sent
on the network using Send and to the user using Return.

PRIVILEGED INSTRUCTIONS. We allow for processes runing
inside TEEs to make a set of privileged calls to gain access to
secret keying material, stored on machine hardware during Init.
Although the procedures are based on the features provided by
SGX, our definitions are compatible with any hardware plat-
form that implements calls satisfying the security guarantees
outlined at the end of this section. Only TEEs are given access
to these calls; external users are unable to call them directly.

This restricted set contains the following instructions:
• MSign[P ](m): given some bit string message m, the

machine uses secret keying material stored within it to
return a signature on m. Signatures can be verified using
MVerify, with the property that if σ ← MSign[P ](m),

then MVerify[P ](m,σ) = 1. As opposed to MSign,
MVerify is a public algorithm and can be executed
anywhere, with the public keys used by the verification
assumed to be known.

• MKeyGen[P ](m): deterministically computes a secret
key for use by the calling process, depending on P ,
m, and the secret keys stored within the machine. The
deterministic nature gives processes sharing the same
code (i.e. instances of the same program) access to the
same key, thus enabling a program to store encrypted data
for future runs. We require that MKeyGen operate in a
similar way to pseudorandom functions.

• MRand(): outputs any requested number of random bits.
When a program needs access to randomness to sample
value x from distribution D, we write x MRand←−−− D.

P represents the code of the entire program, received by
Load when the process was created. The value is used as
an internal seed within MSign and MKeyGen; if a forged
program P ′ attempts to sign the same message, the verification
procedure for it would fail, since the verifier checks the
signature MSign[P ′](m) against the expected program P .

Currently, randomized programs are not modeled1. How-
ever, the model can be easily extended to support such oper-
ations by defining a random tape on each machine; programs
would receive data from both the random tape and standard
input. Since the policy enforcing constructions do not look at
input and output, they are compatible with this extension.

We assume that i. no adversary can produce a signature on
behalf of TEE’s that holds some program, unless this signature
has been obtained from an instance of such a TEE, ii. no
adversary can distinguish keys generated via MKeyGen and
bitstrings generated via MRand from uniformly random strings
(of appropriate size and structure). Formalizations for these
properties are standard [24].

V. LICENSING SCHEMES

We define licensing as an interaction between two parties:
the software vendor and the software user. The former intends
to publish a piece of code which enforces restrictions on
how it can be executed, and which encodes some specific
functionality. The latter purchases tokens from the vendor,
thus unlocking the functionality of the software. We model
the parties as two efficient and stateful algorithms: Vendor
and User.
Vendor runs within the trusted zone of the software vendor

(i.e. on some hardware within the vendor’s network) and does
not need access to machines with TEE capabilities. Vendor
receives a program (modeled as a circuit2) and outputs a
protected version which is subject to some desired restric-
tions. The algorithm executes indefinitely (similar to a server

1Programs have access to randomness for the purpose of network ex-
changes; however, the final output of the program must be deterministic.

2We use circuits as computational abstraction for programs to stay close to
existing obfuscation literature on which we build upon. Any other formalism
such as Turing machines, RAM machines, or even a detailed machine model
may be used.



Fig. 1. Overview of interactions between Vendor and User. Vendor takes as
input circuit C, license specification L and outputs protected program P and
use-token T . User takes P , T and some input i and computes o = C(i), if
the license permits.

listening for requests), and maintains a persistent internal state
which tracks licensing related data.

User runs on remote hardware and has access to machines
capable of initializing TEEs through the interface in Sec-
tion IV. User is stateful, and updates state object stUser with
each execution. Future iterations of the algorithm use the state
to make correct licensing related decisions (for example, to
maintain a list of usable machines).

The scheme is used to license circuits that belong to some
arbitrary set of circuits D.

The interaction between User and Vendor is shown in Fig. 1.
The complete syntax is defined as follows:

• P, T ← Vendor(C,L, 1λ). Vendor takes as input a circuit
to protect C, a licensing compliance predicate L and
security parameter 1λ and outputs a protected version of
the program P and use-token T . The token is used to gain
access to the functionality of C. Licensing compliance
predicates are defined in the following section.

• o← UserM (P, T, i). User receives protected program P ,
license token T and input value i, and is given access
to machine M ∈

−→
M , capable of running TEEs. User

outputs value o, where o is either the evaluation of C
over input i (and correctly recovering functionality) or is
⊥ (signifying that all valid executions have already been
used). User is stateful, and the state is stored internally
in stUser.

LICENSE COMPLIANCE PREDICATES. Licensing compliance
is a desirable property of licensing schemes, which states that
users can never obtain more information about the behavior
of a licensed program than the amount allowed by the license.
For example, if a software vendor licenses a program for one-
time use, then the user can never obtain knowledge about valid
outputs for two different inputs. Licensing restrictions may
refer to the number of machines on which the program is

executed, or the number of times the user should be able to
execute the licensed program.

We define licensing compliance using predicates over exe-
cution traces. For each machine, we record the traces of local
processes together with a unique integer timestamp describing
the time of execution. The structure containing the traces
for all machines forms the execution transcript, which we
formally define as the map τ : ID → (N × I × O)∗, where
I is the set of valid inputs and O is the set of valid outputs.
The function maps machine identifiers to lists of tuples, each
pair containing the timestamp and input and output trace of a
single process.

We define T to be the set of all possible transcripts. We
write (i, o) ∈ τ(id) if there exists some machine identifier id
such that τ(id) contains the tuple (t, i, o), for some value of
t. We also write (i, o) ∈ τ if we know at least one machine’s
trace contains some tuple (t, i, o).

We model licensing compliance using licensing predicate L,
where L : D×T → {0, 1}. For example, consider a licensing
restriction where the licensed program can only run once. L
in this case is defined as:

L(C, τ) =


1, if |{(i, o)|i ∈ I, o ∈ O,

(i, o) ∈ τ, C(i) = o}| = 1

0, otherwise
(1)

In this example, if the adversary could run the program
twice, then they would obtain a transcript containing two valid
pairs, and the licensing predicate would evaluate to 0. Note
that the adversary also has other ways of breaking the license;
if they could somehow obtain the code (the description of C),
or guess the behavior of C, they could write an identically
behaving program themselves, obtain multiple valid input and
output pairs, and thus create a transcript on which L evaluates
to 0. This highlights the fact that our transcript definition also
accounts for any code extraction or guessing capability the
computationally bounded adversary might possess; licensing
schemes that are compliant with a predicate in our model
are guaranteed to protect their behavior against all such
adversaries.

CORRECTNESS. Licensing schemes take as input the program
of the software provider, formally modeled as a circuit. Re-
gardless of any transformation the circuit suffers, a licensing
scheme must offer a means to compute the same function as
the initial circuit, for all valid inputs. If this is the case, we say
that the scheme preserves the functionality of the program.

Let u be this predicate, where u : ΣU ×ΣV ×M→ {0, 1}.
The predicate equals 1 while the scheme still allows the user
to correctly execute the program (and obtain valid output),
and equals 0 otherwise. The sets ΣU and ΣV consist of the
possible states of User and Vendor, respectively, while M is
the set of machines the user has access to.

Using u, we now define the property of functionality
preservation:



Definition 1 (Functionality preservation). Let λ be a se-
curity parameter, L a licensing compliance predicate and
S = (User,Vendor, uL) a licensing scheme with algorithm
states stUser and stVendor, both initially empty. S preserves
functionality with respect to L if for any circuit C ∈ D, any
transcript τ ∈ T , any input value i, any machine M ∈M and
for:

P, T ← Vendor(C,L, 1λ) (2)

then it holds that UserM (P, T, i) = C(i) if and only if
uL(stUser, stVendor,M) = 1.

The circuit to license is C, which is first passed to the
vendor algorithm Vendor, thus obtaining the protected version
P . The definition states that if the license permits more
executions on some machine M , then the user algorithm User
is able to recover the initial functionality of C. Otherwise, the
behavior is undefined. User is stateful, and its future iterations
are able to use the information obtained from previous ones.
When Vendor executes, the state of User is considered empty
(the user does not have any information before the protected
version of C is constructed).

VI. SECURITY FOR LICENSING SCHEMES

ADVERSARIAL MODEL. We assume the communication chan-
nel between the users and the vendor provides confidentiality,
authentication and integrity (for example, using TLS tunnels).
The licensing scheme is a two party protocol, where one of the
parties is untrustworthy; Vendor runs in a trusted environment,
while the user is malicious and might deviate from its normal
operation described in User. For example, the user might
attempt to bypass licensing restrictions by exploiting faults
in the licensing scheme implementation. To distinguish from
the fair user algorithm User, we assume a computationally
bounded adversary A directly interacts with Vendor instead of
User. The adversary has acceess to an arbitrarily large set of
machines that support TEE, and may run the licensed program
on any number of these machines.

Secure licensing schemes guarantee that licensed program
code remains secret, and that program functionality can only
be recovered if the license allows it. We formalize these
concerns in two definitions: circuit privacy and licensing
compliance.

A. Circuit privacy

Notice that even if executed under license, some information
about the program (e.g. its behavior on some inputs) is
unavoidably leaked. Our first notion demands that a good
licensing scheme should only leak whatever information an
adversary can obtain by observing the input/output behavior
of the licensed software, and nothing more. In particular, it
follows that a good scheme should protect the program in
transit to the user’s machine and should ensure that when
executed on the remote machine information like the control
path followed by the execution is kept private. Our definition
is based on virtual black-boxes (VBB), as introduced in

obfuscation literature. First we give the formal definition and
then we discuss it.

Definition 2 (Circuit privacy). Let λ be a security param-
eter and L a licensing predicate. Licensing scheme S =
(User,Vendor, u) provides circuit privacy if for all efficient
adversaries A, there exists an efficient algorithm S s.t. for all
C ∈ D and for all functions π, π : D → {0, 1}∗, then there
exists a negligible function f in λ s.t.:

∣∣Pr[AM(P, T )⇒ π(C)]− Pr[SC (|C|)⇒ π(C)]
∣∣ ≤ f(λ)

(3)

where the first probability is taken over the choice (P, T ) ←
Vendor(C,L, 1λ), the internal coin tosses of Vendor, A and
machines in M, and the second probability is taken over the
internal coin tosses of S.

The definition states that the operation of licensing scheme
S leaks no information about circuit C, with the exception
of information leaked by its black-box behavior. First, Vendor
is called to build P , the protected version of the circuit. The
protected version ensures confidentiality of the code during
transfer to the user. The scheme gives active adversary A
access to the existing runtimes, and allows the adversary to
take an active part in the network communication performed
by the scheme. Function π represents some property of the
input circuit C, expressed as a sequence of bits of finite length.
The value π(C) quantifies the knowledge that an algorithm is
able to obtain about the circuit, and the definition states that
the adversary would not be able to obtain signifcantly more
information about C than a simulator with only black box
access.

We consider the length of the circuit to be unimportant
information, and leak it to the simulator. If the length is
critical, an alternative definition could be considered which
would only include circuits up to some predefined length; for
shorter circuits, schemes could pad the circuit’s description up
to maximum length and thus hide the true value.

We note that the above definition does not reflect and is not
concerned at all with any limitations that licensing may impose
on how the adversary accesses P (in particular the simulator
has no constraints on how it accesses C). In this sense, the
definition provides an upper bound on the information learned
about the program.

VBB might seem too strong in the context of licensing
(because it does not account for access controls that licensing
may impose), but this notion is very close to what SGX-like
hardware provides and we can comfortably demand it from a
good licensing scheme.

A possible alternative to the VBB definition is an in-
distinguishability based one; in this variant, an adversary
chooses two different circuits and submits both to an oracle
implementation of the protocol. Similarly to a cryptographic
indistinguishability game, the oracle chooses one of the cir-
cuits at random and proceeds to execute the rest of the protocol
accordingly. The adversary can then attempt to execute the



protected circuit on any input for which both circuits would
obtain the same output (as otherwise it would be trivial to
distinguish them). Such a definition provides similar security
guarantees to our VBB version – indeed, an indistinguisha-
bility game is used in the proof of Theorem 1 to construct a
simulator for the black box.

Choosing between the VBB style definition and the indistin-
guishability one becomes similar to choosing between seman-
tic security [25] and indistinguishability for encryption [26].
We settled on the VBB-style definition due to its simplicity
and because it captures the intuition that the adversary does not
learn anything except what the functionality of the program
allows him to learn. Future work could investigate in more
depth the relationship between the two possible definitions, to
evaluate their influence on the final security guarantees.

Circuit privacy is weak on its own; however, circuit privacy
for licensing schemes is always paired with an additional
licensing compliance property. The VBB functionality cap-
tures circuit privacy, while a separate, trace-based definition,
provides access control to the licensed program. Licensing
compliance models the progression of adversarial knowledge
throughout license usage, and at the same time enforces access
restrictions to impose a restriction on the knowledge gained
by the adversary. It is possible to merge the two; however,
this leads to a definition that is unnecessarily complex and
unintuitive, as it is no longer clear when we are protecting
code and when we are protecting functionality.

B. License compliance

From the perspective of software vendors, licensing compli-
ance provides a rigorous model of the additional security re-
strictions that a scheme supports. For example, schemes where
the licensed program’s functionality can only be unlocked a
limited number of times, or where the licensed program can
only run on a limited number of machines. The restrictions are
expressed using licensing predicates. A scheme satisfies secure
license compliance with respect to a licensing predicate L if
it satisfies L-Compliant licensing, which we define as:

Definition 3 (L-Compliant licensing). Let L be a licensing
predicate. Licensing scheme S = (User,Vendor, u) provides
L-compliant licensing for circuits in D if for all efficient
adversaries A there exists a negligible function f in λ s.t.
the following statement holds:

Pr[AM(P, T ) s.t. L(C, τ) = 0] ≤ f(λ) (4)

where the probability is over C
$←− D, P, T ←

Vendor(C,L, 1λ), the internal coin tosses of A, Vendor, and
machines in M.

A remark that explains our definition is that it is moot to
securely license programs that are known to the adversary. Our
definition models the idea that the adversary may not have all
of the information about programs by selecting the program
at random from some class D of programs.

For some licensing scenarios, proving compliance with a
single licensing predicate L is not sufficient. Examples include

licensing restrictions which depend on additional parameters,
such as running a specific program at most n times. In
these cases, we expand the definitions to a set of licensing
predicates, with one specific predicate for each value of n. To
simplify notation, we use a single predicate in our definitions
and proofs, with the mention that the algorithms we describe
can be easily expanded to support classes of predicates.

Depending on their needs, software vendors might be inter-
ested in various licensing models. Restrictions are contained
within the licensing compliance predicates defined in Sec-
tion V. We define three predicates, designed to meet common
licensing requirements: licensed use, limited use and limited
machines.

Licensed use states that, in addition to circuit privacy, no
other guarantees are provided by the scheme. The circuit
privacy aspect is not included in the predicate; instead, it
is included in the VBB definition, which each scheme must
satisfy separately.

Definition 4 (Licensed use compliance). Consider the nota-
tions and initial setup from Definition 3. Scheme S satisfies
licensed use compliance for circuits in D if it provides L-
compliant licensing for circuits in D, with L defined as:

∀τ ∈ T and ∀C ∈ D: L(C, τ) := 1 (5)

Limited use guarantees that there is an upper bound on the
number of valid circuit input-output pairs that can be obtained;
this licensing model can be used when a limited number of
executions is desirable, e.g. trial versions of applications.

Definition 5 (Limited use compliance). Consider the notations
and initial setup from Definition 3. Scheme S satisfies limited
use compliance for circuits in D if it provides Ln-compliant
licensing for circuits in D, for all Ln, n ∈ Z≥1, where Ln is
defined as:

Ln(C, τ) := |Y| ≤ n,
Y = {(i, C(i))|(i, C(i)) ∈ τ} (6)

The predicate states that an adversary attacking a licensing
scheme which allows at most n executions is unable to create
an input/output transcript τ containing more than n valid
elements.

Limited machines guarantees that there is an upper bound
on the number of machines that can reveal new information
about the functionality of a licensed program.

We define a function First that takes as input a transcript
τ and an input/output pair (i, o), and outputs a machine M
such that (i, o) ∈ τ [M ] with timestamp t and there exists no
other machine M ′ where (i, o) ∈ τ [M ′] with a timestamp
of lower value than t. In other words, the function returns the
first machine that ran a process with trace (i, o). If no machine
exists, the function returns φ.

Definition 6 (Limited machines compliance). Consider the
notations and initial setup from Definition 3. Scheme S



satisfies limited machines compliance for circuits in D if it
provides Ln-compliant licensing for circuits in D, for all Ln,
n ∈ Z≥1, where Ln is defined as:

Ln(C, τ) := |Y| ≤ n,
Y = {M |∃(i, C(i)) ∈ τ : First(τ, (i, C(i))) = M} (7)

In machine oriented licensing, once a specific processor is
licensed it can be used any number of times to process data.
Once the licensed program is executed on an input, its behavior
is no longer secret and can be emulated on any number of
other machines (e.g. by writing a new program implementing
the same function for that exact input). In other words, only
the first run is interesting (by revealing new information) and
thus can be restricted. Limited machines states that at most n
machines can be used to reveal this new information.

We define the template for a valid licensing as a scheme S
simultaneously satisfying:
• Preserve functionality (Definition 1)
• Circuit privacy (Definition 2)
• L-compliant licensing (Definition 3), for some class of

licensing predicates

VII. CONSTRUCTIONS

A. Privacy Preserving Licensing

We introduce a licensing scheme that satisfies functionality
preservation (Definition 1), circuit privacy (Definition 2) and
licensed use compliance (Definition 4). Such a scheme is of
interest to vendors that wish to give their users unlimited
access to the software, as long as they purchase a secure use-
token first.

CONSTRUCTION. Let Sppl = (User,Vendor, u) be our
scheme, where User and Vendor conform to the syntax de-
fined in Section V and u is the utility predicate defined for
correctness purposes.

Vendor takes input C and outputs a program P for the
user. Let P = P1‖P2 be the format of this program. P1

contains the implementation of various licensing-related tasks,
such as communicating with the server or generating keys. P2

is the encrypted circuit we intend to protect and is subject
to execution restrictions. The pseudocode description of P1 is
listed in Fig. 2.

The high level descriptions for User and Vendor can be
found in Fig. 3. The scheme operates as follows. First, the
software vendor algorithm takes the circuit to protect C, and
obtains its ciphertext using symmetric key encryption under
some randomly generated secret key KC . Vendor uses a
compiler to obtain a runnable program P , which consists of
licensing scheme related code P1, listed in Fig. 2, and the
ciphertext. Afterwards, the vendor algorithm blocks to wait
for licensing authorization requests received from users.

User takes input P and the secret use-token T . The user then
executes Load(P ) on machine M and starts the execution of
P1. The licensing authorization procedures in P1 run inside the

Procedure P1(P)
i, T ← Receive()

(K+
E ,K

−
E )

MRand←−−− Kpke(1λ)
Send(MSign[P ](T‖K+

E ), T,K+
E)

µ← Receive()
if µ 6= ⊥ then

KC ← Decpke
K−

E

(µ)

C ← DecskeKC
(P2)

return C(i)
else

return ⊥

Fig. 2. Pseudocode for licensing-related code within programs protected by
scheme Sppl. P1 is the first code that executes when protected programs start,
and is responsible for communicating with the licensing server.

Procedure UserM(P , T , i)
δ ←M.Load(P )
Send(M.Run(δ, T, i))
o←M.Run(Receive())
return o

Procedure Vendor(C, L, 1λ)

KC
$←− Kske(1λ); T $←− {0, 1}λ

P2 ← EncskeKC
(C); P ← P1‖P2

Send(P , T)
while 1 do

K+
E , σ ← Receive()

if MVerify[P ](T‖K+
E , σ) = 1 then

Send(Encpke
K+

E

(KC))

else
Send(⊥)

Fig. 3. Pseudocode for User and Vendor from scheme Sppl. Vendor
generates the protected program and waits for licensing requests, while User
acts as an intermediary between the processes and the server. Predicate L is
never used because it always evaluates to 1 for licensed use compliance

TEE environment built on the machine, using the arguments
received on the first call to Run (with P , T and circuit
input i). On execution start, P1 generates a pair of public-
key cryptography keys (K+

E and K−E ) using MRand for the
necessary randomness. Then, MSign is called to create a
secure signature on the newly generated key K+

E and the
authorization token T . P1 runs inside a TEE, thus keeping
value K−E secret. P1 outputs K+

E and the signature, which
User takes and forwards to Vendor.

Once Vendor receives a public key K+
E together with

the signature, it checks whether the signature is valid using
MVerify. The verification is possible because MVerify uses
only public knowledge internally and Vendor also knows P
and T since it created them earlier. If the check is successful,
then Vendor uses K+

E to encrypt the key KC it used to
create P2 and sends the result back to User. User forwards the
encrypted KC to the running process, which recovers KC by



decrypting the received message using K−E . The recovered KC

is used to decrypt P2, thus obtaining the code of C. Execution
is then passed to C, together with input i, thus obtaining C(i).
Finally, User takes the output of the terminated process and
returns it.

For the purpose of functionality preservation, the utility
predicate u required by Definition 1 always returns 1. In other
words, by executing User with token T , the initial functionality
of C can always be recovered.

All functionality and security definitions state that circuits
belong to a predefined set D. To prove that schemes satisfy
these definitions, we first define the set and afterwards build
the actual proof for the circuits within. Let Dppl be the set
of acceptable circuits for Sppl. We define Dppl as the set
of deterministic circuits of size up to k, where k is some
polynomial function of scheme security parameters.

We summarize the guarantees provided by the implementa-
tion in Theorem 1.

Theorem 1. Let ske = (Kske,Encske,Decske) and pke =
(Kpke,Encpke,Decpke) be the schemes used to implement
Sppl. If ske and pke are IND-CCA secure, then scheme Sppl
satisfies functionality preservation, circuit privacy and licensed
use compliance for circuits in Dppl.

PROOF SKETCH. Since u always evaluates to 1, the proof for
functionality preservation is trivial, as it simply follows the
explanation of scheme operation above.

For circuit privacy, we build simulator S and show that for
any adversary A, S can simulate the entire scheme given only
black box access to C, for any C ∈ Dppl. In the simulated
world, S operates both the machines A has access to and
Vendor. The adversary assumes the role of the User, and
receives a protected program P from the simulator. We prove
that the adversary cannot distinguish between the real world
and the simulated world.

The simulator randomly chooses a circuit C∗ from Dppl and
creates its own encrypted program P ∗, which it supplies to the
adversary instead of P . When the adversary reaches the point
where C∗ is evaluated in i, the simulator queries black box C.
The adversary sees the same behavior in the real world and the
simulated world. The adversary can only detect that P ∗ is fake
by finding some inconsistency between P ∗ and the behavior
of black box C. We compute a bound on the probability of
distinguishing.

We use a second indistinguishability game, set in the
simulated world, to show that A cannot find a contradiction
for the first one. In this second game, adversary A2 chooses
two possible values for C∗: C∗0 and C∗1 . The simulator chooses
to use C∗b to build P ∗ depending on some secret preselected
random bit b. The adversary must guess the value of bit b.
Like in the first game, correctly following the protocol leads
to queries to C, so this does not actually leak information
about C∗0 and C∗1 to help A2 decide.

Program P ∗ operates in a simulated TEE, which keeps its
internal state secret from the adversary. The simulated TEE

operates in exactly the same way as the real one. The process
associated with the program uses the true randomness output
by MRand to run the key generation algorithm Kpke, thus
creating the pair of keys K−E and K+

E . From the security
assumptions regarding MSign and MVerify, the signature over
T and K+

E is accepted by Vendor only if it was created
by P ∗, thus guaranteeing that the associated private key
K−E is secret. Based on the secrecy of the pke private key,
unforgeability of the signature and IND-CCA property of pke,
we deduce that A2 cannot extract any information about KC .
From this and the IND-CCA property of ske, we obtain that
A2 cannot extract any bit from P ∗. Additionally, due to the
non-maleability of ske, A2 cannot force the execution of
some C̃ where there exists some relationship between C∗

and C̃. Therefore, we conclude that A2 cannot determine b
with reliable probability. From this, it immediately follows
that A cannot extract any meaningful information about C∗ to
distinguish between the real world and the simulated world.

The proof for licensed use compliance is immediately
evident, as the associated compliance predicate is always true.

B. Run Count Licensing

The second licensing scheme we describe satisfies function-
ality preservation (Definition 1), circuit privacy (Definition 2)
and limited use compliance (Definition 5). This type of scheme
operates in a similar way to the previous one, except the
use-token no longer has unlimited uses. Each time the user
executes the software, a licensing server is contacted which
tracks the number of times the token has been used. Vendors
can use the scheme to provide limited access evaluation
versions of the application or pay-per-use products to users.

CONSTRUCTION. Let Srcl = (User,Vendor, u) be the scheme
we describe in this section. As opposed to Sppl, in this case
the protected circuit can only be executed a limited number of
times. The restriction is implemented by changing the behavior
of Vendor, with User and P1 remaining the same as in Fig. 2
and Fig. 3. The new version of Vendor is included in Fig. 4.

We now give an overview of the differences introduced in
the Srcl version of Vendor. Vendor defines an internal counter
−→γA[T ] which tracks the number of times use-token T has
been successfully used to perform licensing. When Vendor is
executed it takes input L, where L is an object containing
parameters required to evaluate the predicates defined by
limited use compliance (specifically, use limit n). As opposed
to the Sppl version which on successful token validations
always outputs the encryption of KC , S checks whether the
counter for the token is less than the limit authorizations L.n.
Depending on the result of the comparison, either the counter
is incremented and the encryption of KC is sent, or a failure
message is returned.

Given states stUser and stVendor, the utility predicate for
some machine M ∈M is defined as:



Procedure Vendor(C, L, 1λ)

KC
$←− Kske(1λ); T $←− {0, 1}λ

P2 ← EncskeKC
(C); P ← P1‖P2−→γA[T ]← 0

Send(P , T)
while 1 do

K+
E , σ ← Receive()

if MVerify[P ](T‖K+
E , σ) = 1 then

if −→γA[T ] < L.n then
−→γA[T ]← −→γA[T ] + 1

Send(Encpke
K+

E

(KC))

else
Send(⊥)

else
Send(⊥)

Fig. 4. Algorithm Vendor for Srcl limits the number of times a program
can be executed. It is similar to the algorithm in Sppl, except it only provides
KC on requests if the token has uses left.

u(stUser, stVendor,M) :={
1 if stVendor.−→γA[T ] < stVendor.n

0 otherwise
(8)

Let Drcl be the set of acceptable circuits for Srcl. While
functionality preservation and circuit privacy can be satisfied
for any deterministic circuit, limited use compliance requires
introducing some restrictions on the set.

Limited use compliance states that an adversary with access
to a black box that can be queried a limited number of times
can gain no more information about the circuit within, other
than the information explicitly output by the black box. In
other words, the adversary cannot guess anything about the
circuit, which includes guessing unseen output values for new
inputs. Building practical licensing implementations on this
model guarantees to the vendor that users are not able to
reverse engineer their work, and must unlock functionality by
requesting access each time.

For certain circuits it is impossible to prove limited use
compliance (e.g. for the circuit implementing the identity
function). We therefore restrict Drcl to only a subset of Dppl.

We build Drcl by looking at the hardness of guessing input
and output pairs, which we formalize in Definition 7.

Definition 7 (One-more hardness). Consider the one-more
hard game in Fig. 5. Set F is one-more hard (OMH) if for
any efficient adversary A, there exists negligible function g in
λ s.t.:

Pr[Expomh
A,F ⇒ 1] ≤ g(λ) (9)

We let Drcl be the set of circuits implementing functions
from sets that are one-more hard according to Definition 7.

Procedure Compute(i)
nc ← nc + 1
return f(i)

Experiment Expomh
A,F

f
$←− F

O ← ACompute()

return |O| > nc ∧ ∀(i, o) ∈ O, f(i) = o

Fig. 5. One-more hard game for F .

The restriction to one-more hard functions is necessary
to satisfy restricted executions, as we show in the following
theorem.

Theorem 2 (Hardness assumption necessity). Let F be a
set of functions. If there exists an efficient adversary A1 that
breaks the one-more hardness game for F , then there exists an
adversary A2 that breaks limited use compliance for circuits
implementing functions from F .

PROOF SKETCH. Let A1 be the adversary against the one-
more hardness property of F . The experiment samples a
random function f from F . For any integer nc, A1 wins
the game by receiving nc input and output pairs for f ,
and independently guessing a new pair with non-negligible
probability p. Adversary A2 against Limited use compliance
license Ln (for some value of n) receives a protected program
P , a licensing token T and access to a set of secure machines
M. Limited use licenses state that A2 can use the secure
machines to create a transcript containing at most n valid input
and output pairs. A2 runs the program legitimately n times,
and feeds the input and output to A1, which eventually outputs
a new pair (i, o). A2 implements a program that takes input i
and outputs o, and runs the program on a secure machine, thus
creating a transcript that violates the license. The probability
that A2 breaks the license is lower bounded by the probability
p of A1 succeeding.

The above theorem shows that if F is not one-more hard,
then it is impossible to prove that usage restrictions, built
according to our formal definitions, can be enforced. Although
the restriction to one-more hard functions may seem pro-
hibitive, it still allows for interesting applications. For example
the class F may consist of signing algorithms (with signing
keys hardwired), and secure licensing would allow delegating
signing rights for some fixed number of times. Security of the
digital signature scheme would essentially mean that the class
of functions is one-more hard.

We summarize the properties of Srcl in Theorem 3.

Theorem 3. Let ske = (Kske,Encske,Decske) and pke =
(Kpke,Encpke,Decpke) be the schemes used to implement
Srcl. If ske and pke are IND-CCA secure, then scheme Srcl
satisfies functionality preservation, circuit privacy and limited
use compliance for circuits in Drcl.



PROOF SKETCH. Functionality preservation is easily proven
by first looking at the state of the system when u = 1,
and following the implementation of the scheme to see that
C is evaluated correctly. For the reverse direction of the
equivalence, we follow the implementation when u = 0.
In this case, C is no longer evaluated, and the equivalence
immediately follows.

The additional behavior coded into Vendor only serves to
restrict the number of executions, which has no impact on
privacy. Thus, the proof for circuit privacy remains unchanged
from Sppl.

Let A be our adversary for limited use compliance. We
prove that for any circuit C randomly selected from Drcl and
for any predicate Ln specified in Definition 5, Ln applied on
the transcript created by running the scheme evaluates to 1.
We use the simulator from our proof for circuit privacy, and
first note that each access to the functionality of circuit C is
tied to the simulator issuing a query to the black box. The
proof for functionality preservation states that functionality
is preserved a maximum of n times, where n is specified
by Ln. Therefore, the simulator needs to perform at most
n queries to C, and the transcript contains at most n pairs
of input and output for C. The predicate evaluates to 0 if
the transcript contains more than n valid input/output pairs,
and A must create a new pair without access to the black
box. This is exactly the one-more hardness game from Fig. 5.
Since the function is randomly sampled from Drcl which is
a union of sets satisfying Definition 7, it follows that the
adversary cannot find a pair with sufficient probability. Thus
the predicate evaluates to 1 with very high probability and the
proof is concluded.

C. Machine Count Licensing
The final licensing scheme we present satisfies functionality

preservation (Definition 1), circuit privacy (Definition 2) and
limited machines compliance (Definition 6). The scheme is
built on top of the previous one, but instead of counting each
execution it only counts the first one for each machine. This
allows vendors to sell software on a per-processor payment
model, with the user purchasing use-tokens in order to activate
the application on a limited set of machines.

CONSTRUCTION. Let Smcl = (User,Vendor, u) be a scheme
satisfying the above. This scheme only allows the protected
circuit to be executed on a limited number of machines.
Smcl implements this restriction by using an approach sim-

ilar to Srcl to limit the number of executions of a reencryption
function. This function first decrypts the protected circuit the
same way the previous schemes do, but instead of evaluating
the circuit on some input, it returns its reencryption under a
different key. In an actual implementation, the output is then
saved on persistent storage for future use. The reencryption
takes place in P1, outlined in Fig. 6.

Depending on the input (specifically, argument P̃ ), P1

performs either of two operations.
The first operation runs when P̃ is equal to 0, and consists

of the reencryption step. P1 initially communicates with the

Procedure P1(P)
KS ← MKeyGen[P ]()

T, i, P̃ ← Receive()

if P̃ = 0 then
(K+

E ,K
−
E )

MRand←−−− Kpke(1λ)
Send(MSign[P ](T‖K+

E ), T,K+
E)

ψ ← Receive()
if ψ = ⊥ then

return ⊥
KC ← Decpke

K−
E

(ψ)

C ← DecskeKC
(P2)

return EncskeKS
(C)

else
C ← DecskeKS

(P̃ )
return C(i)

Fig. 6. In the case of Smcl, depending on argument P̃ , P1 either creates a
reencryption of the licensed circuit, usable only on the current machine, or
executes the circuit contained in the reencryption on some input i.

licensing server to recover the key to decrypt P2 and obtain
C, and then uses MKeyGen to generate a secret symmetric
key. The generated key is then used to reencrypt C. Finally,
the new encryption of the circuit is returned.

The second operation runs when P̃ is different from 0. In
this case, P1 expects the argument to contain an encrypted
program to execute. Because program P is actually the same,
MKeyGen returns the same key it generated during the reen-
cryption operation. This allows P1 to correctly decrypt P̃ and
obtain circuit C. Finally, the circuit is evaluated in i and the
result is returned.

Note that in order to run C, P1 did not contact the server
once it had the correct value for P̃ . Another aspect which
differs from previous licensing schemes is that if reencryption
took place on a certain machine, then it can only be opened by
running P again on that exact machine. Users cannot migrate
the encrypted code to another processor, as MKeyGen() would
generate a different decryption key.

The implementation of User and Vendor for Smcl is de-
scribed in Fig. 7. Similarly to the previous schemes, Vendor
initially builds P containing stub licensing code P1 and
the encrypted circuit P2, and then blocks while waiting for
messages from users. The behavior of User differs slightly.
User is stateful, and keeps track of information across multiple
calls. Specifically, User tracks a set of encrypted circuits in Λ,
indexed using the numerical ID of existing machines. Initially,
User has no knowledge of any valid ciphertexts, and Λ contains
null values for each machine.

When User is called to run the protected circuit on a
specific machine M , it first checks whether it knows the
proper ciphertext. If the check fails, User executes program
P on M without specifying any extra arguments. In this
case, P behaves similarly to Srcl, and performs licensing
while communicating with the server. The difference occurs



Procedure UserM(P , T , i)
if Λ[M ] = 0 then

δ1 ←M.Load(P )
Send(M.Run(δ1, T, 0, 0))
Λ[M ]←M.Run(Receive())

δ2 ←M.Load(P )
o←M.Run(δ2, T, i,Λ[M ])
return o

Procedure Vendor(C, L, 1λ)

KC
$←− Kske(1λ); T $←− {0, 1}λ

P2 ← EncskeKC
(C); P ← P1‖P2−→γA[T ]← 0

Send(P , T)
while 1 do

K+
E , σ ← Receive()

if Verify[P ](T‖K+
E , σ) = 1 then

if −→γA[T ] < L.n then
−→γA[T ]← −→γA[T ] + 1

Send(Encpke
K+

E

(KC))

else
Send(⊥)

else
Send(⊥)

Fig. 7. Implementations for the Smcl version of User and Vendor. User
stores Λ containing encryptions of the licensed circuit for specific machines.
Once the encryption is known, the circuit can be run any number of times on
that machine only.

when returning the final value, where instead of outputting
C(i), it outputs the encryption of C under key KS . User
receives this encryption, and stores it in Λ[M ]. If the check for
Λ[M ] succeeds, User immediately proceeds to the final circuit
evaluation phase.

Circuit evaluation takes place after Λ[M ] is known. The
user algorithm runs the same program P , providing the actual
circuit input i and Λ[M ] as arguments. In this case, P
generates the secret key KS , uses it to retrieve the circuit by
decrypting Λ[M ] received as argument, and finally evaluates
the circuit contained within on input i.

For Smcl, u is defined as:

u(stUser, stVendor,M) :={
1 if stVendor.−→γA[T ] < stVendor.n ∨ stUser.Λ[M ] 6= φ

0 otherwise
(10)

Let Dmcl be the set of circuits accepted by the scheme.
The hardness requirements of Definition 7 also apply here.
Therefore, we define Dmcl to be equal to Drcl.

Theorem 4 below states the guarantees of Smcl.

Theorem 4. Let ske = (Kske,Encske,Decske) and pke =
(Kpke,Encpke,Decpke) be the schemes used to implement
Sppl. If ske and pke are IND-CCA secure, then scheme Smcl

satisfies functionality preservation, circuit privacy and limited
machines compliance for circuits in Dmcl.

PROOF SKETCH. The equivalence relation in functionality
preservation immediately follows from the implementation, as
circuit functionality is recovered when u = 1, and when u = 0
this is no longer the case.

We prove circuit privacy by starting from the simulator
proof for Srcl. The simulator again implements the whole
world, including machines and Vendor, in a similar way to
the previous proofs. The simulator is given access to a black
box implementation of C and chooses a circuit C∗ at random
to forge P ∗. We consider an adversary A2 that submits values
C∗0 and C∗1 to the simulator, and needs to decide whether
the simulator chose the former or the latter. The proof from
the previous sections holds up to the reencryption step in
exactly the same way, with A2 unable to decide based on
the information up to that point.

We look at the implementation after, and see that P1

performs an encryption of C∗b under a key generated by
MKeyGen. From our assumptions regarding machine opera-
tion, we know that MKeyGen generates a key that cannot be
guessed. Therefore, A2 has no knowledge about the key, and
from the IND-CCA property of ske it follows that A2 cannot
distinguish based on the output of the reencryption. We end
the proof by looking at how P1 operates when receiving the
reencryption of C∗b . In this case, if the simulator decides that
A2 followed the entire algorithm correctly, it queries the black
box it has access to and provides the actual functionality of
C. If A2 submitted something else, it simply decrypts and
evaluates the result on the input received from the adversary.
Since ske provides non-maleability, the output is not related
to either C∗1 or C∗2 . In both cases, A2 does not gain sufficient
information to decide, thus implying that the initial adversary
is also unable to differentiate between the real world and the
simulated world.

For limited machines compliance, we base the proof on
the compliance proof for Srcl. First, note that the simulator
in the circuit privacy proof above only queries black box C
when the adversary follows the protocol accordingly. From the
functionality preservation proof for Smcl we obtain that when
following the protocol we only recover functionality while
u = 1. It can be easily seen by inspecting the implementation
and the definition of u that an adversary cannot infringe
on limited machines compliance by not deviating from the
protocol. If the adversary chooses to deviate, the simulator for
circuit privacy shows that no information about the circuit can
be extracted.

The adversary up to this point only has access to outputs
obtained while following the protocol correctly. Additionally,
similarly to limited runs compliance we can deduce that the
adversary knows the reencryption of C for at most n machines,
where n is defined by the licensing predicate. LetM∗ be this
set of machines. First, note that due to the IND-CCA property
of ske and the security guarantees of MKeyGen, the adversary
cannot derive a valid encryption of C for a different machine



outside M∗. To infringe on limited machines compliance as
stated in Definition 6, the adversary needs to discover a new
input/output pair, without obtaining it by running the circuit
on machines in M∗. This is actually the one-more hardness
game from Definition 7 which we know the adversary cannot
win, thus concluding the proof.

VIII. EXTENSIONS

Our formal model is inspired by the current version of
SGX, which does not provide secure client side storage.
Implementations have existed for some time [3] [4], and others
have been proposed that specifically address the case of SGX
[6]. It may be possible that secure hardware will eventually
be enhanced with additional features.

For the area of secure licensing, the presence of secure
storage on the client side could be used to simplify the
communication protocol between client and server. For ex-
ample, communication costs can be reduced by authorizing
executions in bulk; the licensing server authorizes a large
number of executions in a single communication session, with
usage statistics tracked on secure storage. However, this only
improves the constructions — which are already intuitive
— and does not impact the formal definitions and caveats.
Care must still be taken to ensure executing code works as
a virtual black box, and the licensed functions must remain
one-more hard to prevent unlicensed retrieval of functionality.
Our formal model can easily include these extensions by
reflecting the additional capabilities of the trusted hardware
in the interface exposed to licensing schemes.

Theorem 2 shows that the restriction of licensing scheme to
one-more hard functions is necessary, for reasonably realistic
licensing models. This restriction is satisfied by some crypto-
graphic software (e.g. signatures or authenticated encryption)
and can already serve as a bridge towards licensing the more
typical commercial applications3. A more direct bridge to-
wards licensing more common commercial applications would
require changes that invalidate the hypothesis of that theorem.
For example, an interesting extension to our framework is
to identify weaker assumptions that model that (much of)
the functionality of the licensed program is expected to stay
hidden. Conversely, an extension could also consider the
possibility that some partial information about the program
may be leaked.

One licenseable aspect of programs which is not covered
by functionality or code privacy is efficiency. For example, a
vendor might design an algorithm that performs some known
function faster than its competitors. In this case, the output
can be computed by the adversary using publicly known
but slower algorithms. Although this is a perfectly legitimate
licensing scenario, it is not currently covered by our proposed
predicates. A possible extension of the model could include
efficiency as a desirable metric, and describe it in a formal
manner.

3E.g., by only executing this software if accompanied by a signature with
a time-stamp.

An aspect not currently covered in our model is the issue
of side-channels. At a minimum, the proposed schemes leak
information about running time and an upper bound on circuit
size. Additionally, depending on architectural features, timing
attacks or controlled channel attacks [21] might leak informa-
tion. Our definition of secure licensing (and our constructions)
relies on a model for machines with access to SGX-like secure
hardware. While this model does not account for side-channels
in SGX, our definitional framework could easily include it in
a modular way, by enhancing the attacker’s knowledge of the
program. Our constructions would then need to be adapted to
include defences against relevant leaks.

IX. CONCLUSION

In this paper we initiate a rigorous study of secure software
licensing. We formalize security guarantees for protecting both
the confidentiality of the code base and its behavior, define
three models that match current licensing use cases, and show
that some classes of functions cannot be licensed.

We leverage recent advances in secure hardware platforms
to design three practical licensing protocols, answering various
software vendor needs such as limiting the number of execu-
tions for a particular application, or restricting the number of
machines on which it can run. For each scheme, we proved
compliance with the security definitions in our models.

Our contribution provides a foundation for future work
such as expanding the model to account for other sources of
information leakage such as side-channels, or exploring the
extensions discussed in Section VIII.
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