
                          Li, Y., Jiang, J. Z., & Neild, S. A. (2016). Inerter-based configurations for
main landing gear shimmy suppression. Journal of Aircraft. DOI:
10.2514/1.C033964

Peer reviewed version

Link to published version (if available):
10.2514/1.C033964

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via American Institute of Aeronautics and Astronautics at http://arc.aiaa.org/doi/full/10.2514/1.C033964. Please
refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

http://dx.doi.org/10.2514/1.C033964
http://research-information.bristol.ac.uk/en/publications/inerterbased-configurations-for-main-landing-gear-shimmy-suppression(f3f5a82b-b3e5-43b2-8da9-17d899acaffc).html
http://research-information.bristol.ac.uk/en/publications/inerterbased-configurations-for-main-landing-gear-shimmy-suppression(f3f5a82b-b3e5-43b2-8da9-17d899acaffc).html


Inerter-based Con�gurations for Main Landing Gear

Shimmy Suppression

Yuan Li∗, Jason Zheng Jiang† and Simon Neild‡

University of Bristol, Bristol, BS8 1TR, United Kingdom

The work reported in this paper concentrates on the possibility of suppressing

landing gear shimmy oscillations more e�ectively using a linear passive suppression

device incorporating inerter. The inerter is a one-port mechanical device with the

property that the applied force is proportional to the relative acceleration between its

terminals. A linear model of a Fokker 100 aircraft main landing gear equipped with

a shimmy suppression device is presented. Time-domain optimizations of the shimmy

suppression device are carried out using cost functions of the maximum amplitude

and the settling time of torsional-yaw motion. Applying two types of excitations which

trigger the shimmy oscillations, performance advantages of inerter-based con�gurations

for suppressing main landing gear shimmy, together with corresponding parameter

values, are identi�ed.

I. Introduction

When an aircraft is operating on the ground, the landing gear may experience a kind of self-

induced oscillatory motion, which is well known as shimmy. Under certain operation conditions,

such phenomenon can result in instability of the system and impact various components, reducing

the fatigue life or in some extreme cases, leading to severe structural failure [1]. In most shimmy

analysis work, the landing gear designers and researchers were more interested in forecasting the
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occurrence of shimmy instability and investigating how to avoid it. However, even when the system

does not encounter an instability, severe transient response can still cause component degradation

or passenger discomfort. The main interest of this work is to investigate the vibration suppression

of these transient oscillations.

The earliest work on shimmy phenomenon was conducted on automotive industry by Broulhiet

[2] who included the tire dynamics in shimmy analysis. This is still used in the shimmy analysis of a

wide range of wheeled vehicles now and much e�orts have been made to model tire-ground contact

dynamics accurately (examples can be found in [3�6]). In the 1930s, aircraft nose landing gear

shimmy triggered signi�cant research work with the development of tricycle landing gear. Fromm

[7] presented the similarities between shimmy in cars and aircraft and led the shimmy analysis into

the aerospace �eld. Even though shimmy oscillations are more oftenly observed on nose landing

gears [8], the main landing gears of some types of aircraft, such as Douglas DC-9, Fokker 28, BAC

1-11 and Boeing 737, still su�ered from shimmy oscillations [9]. Examples of shimmy events in main

landing gears can also be found in [10, 11].

Various control methods have been used for solving the shimmy instability problem, such as

the shimmy damper [12�15]. Speci�cally, the damping e�ect seems to be of particular signi�cance

in the shimmy damper design [14, 15]. More recently, some simple control methods, such as PD

control [16] and adaptive control [17], have been used to control shimmy oscillations. It is worth to

keep in mind that such control methods may require increased maintenance costs and result in less

reliability. Apart from the controllers, the in�uence of the gear structural characteristics [8, 15] also

plays an important role in stabilizing the shimmy-prone gears.

In this work, we propose the use of the inerter in shimmy suppression devices and consider

the potential bene�ts of the inclusion. The inerter is de�ned as a one-port mechanical element

with the property that the applied force is proportional to the relative acceleration between its

two terminals, i.e. F = b(v̇2 − v̇1) [18]. With the introduction of the inerter, a complete analogy

between mechanical system and electrical system can be achieved. Thus, a much wider range

of passive absorber structures can be realized by mechanical networks. Bene�cial con�gurations

have been identi�ed for various mechanical and civil systems, including vehicle suspensions [19�21],
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motorcycle steering systems [22, 23] and building suspensions [24, 25]. A parallel inerter-spring-

damper suspension system has been successfully deployed in Formula One racing since 2005 [26].

Such a parallel layout is also proposed as one of the candidate shimmy suppression device layouts

in this paper.

This paper is organized as follows. A model of the Fokker 100 main landing gear (MLG) is

presented in Section II. In addition, three candidate shimmy suppression layouts are introduced. In

Section III, eigenvalue optimization has been carried out to illustrate the limitation of frequency-

domain analysis for this problem. Two time-domain performance measures representing the MLG

shimmy motion are proposed in Section IV. Bene�cial shimmy suppression con�gurations are iden-

ti�ed based on optimization results. Conclusions have been drawn in Section V.

II. A main landing gear model and candidate shimmy suppression layouts

In this section, a model of the Fokker 100 MLG equipped with a shimmy suppression device was

presented based on the work by Van der Valk and Pacejka [11]. Three candidate layouts of shimmy

suppression devices are also introduced.

A. Description of the dynamic system

a) b) c)

Fig. 1 Schematic view of the dual-wheel Fokker 100 MLG geometry.
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a) b)

Fig. 2 a) Torsional-yaw ψ DOF, b) lateral de�ection of A ya and roll φ DOF (a modi�ed version

of Figs. 2 and 3 in [11]).

The geometry of the Fokker 100 MLG is illustrated in Fig. 1 through di�erent views. The

structure consists of a main �tting, side-stay, sliding member, axle assembly, etc. The side-stay

laterally supports the main �tting and is �xed on the pintle. The sliding member allows both

translational and rotational motions with respect to the main �tting. The two wheels are connected

by the wheel axle which is o�set from the main �tting axis via a mechanical trail bar of length e.

The shimmy suppression device, conventionally a shimmy damper, is installed at the torque link

apex point (as shown in Fig. 1b). A global coordinate frame (XYZ) is considered and its origin is

�xed to the pintle axle. The X axis points in the direction of aircraft forward direction, the Z axis

vertically downwards, and the Y axis completes the right-handed coordinate system. The wheel axle

of the MLG is allowed to rotate torsionally about the centre line of the main �tting by the angle ψ

(torsional-yaw DOF) and to de�ect laterally by the displacement y. Modal coordinate η is used to

indicate the MLG lateral DOF and will be discussed later. In addition, the wheel axle is allowed to

rotate about an axis �xed along the trail bar by the angle φ (torsional-roll DOF). These three DOFs

represent the MLG motions and are coupled via the tire lateral deformation. Figure 2 illustrates

the sign conventions of these DOFs and the tire lateral deformation. In Fig. 2a the two wheels are
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collapsed into one plane with respect to the point A. Note that in this model, the fuselage dynamics

are ignored and a tire-ground contact constraint is assumed. The interaction between the landing

gear shimmy modes and the fuselage dynamics is considered in [27]. Moreover, no axial compression

of the strut is considered in the model.

In this model, cψ,φ, kψ,φ are introduced to represent the damping and sti�ness of the ψ and φ

DOFs. Note that in this study we use the conventional noti�cation k for spring and c for damper,

di�erent from the ones used in [11] (c for spring and k for damper). Due to the o�set between the

strut axis and the wheel axle, along with the coupling e�ects of rolling wheels, the total torsional-yaw

moment of inertia is

Iψtot = Iψ +m1e
2 +

1

2
Iyb(

l

r
)
2

, (1)

where the lengths of l and r are de�ned in Fig. 1, Iψ is the moment of inertia of the wheels, axle

and brake assembly, m1 the unsprung mass and Iyb polar moment of inertia of the wheels, axle and

brake. As for the MLG lateral motion, the gear lateral bending de�ection is expressed by

y(z, t) = f(z)η(t), (2)

where f(z) denotes the approximate mode shape belonging to the �rst mode of the freely hanging

landing gear. The landing gear is regarded as a beam with two concentrated masses: unsprung mass

m1 and the main �tting m2 (see Fig. 2b) with their mode shapes, f(z1) and f(z2), respectively.

Thus from Rayleigh's method, the energy terms representing the lateral mode can be expressed in

terms of the corresponding modal mass mf , which can be written as

mf = m1f
2(z1) +m2f

2(z2). (3)

The lateral de�ection and slope at the shock strut bottom point A, ya and ya
′
, are speci�ed by the

following equations:

ya = f(z1)η, (4)

ya
′

= f
′
(z1)η, (5)

where f
′
(z1) is the modal slope of A. For the purpose of comparison, it is convenient to consider ya

to represent the MLG physical lateral de�ection, instead of η DOF. Moreover, as shown in Fig. 2b,
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both φ and ya
′
contribute to the overall roll de�ection angle of A, φ

′
, giving

φ
′

= φ+ f
′
(z1)η. (6)

To illustrate the physical e�ects of this angle, the roll stroke δ at the ground level is considered, as

given by

δ = r tanφ
′
. (7)

 

!
"
#$%

2&

'

Fig. 3 Schematic of the straight tangent tire model.

The wheel rolling e�ects are considered in this model. With the assumption of zero tire longi-

tudinal slip, the angular velocity of the wheel Ω is given by the expression

Ω =
V

Re
, (8)

where Re is the e�ective radius of the tire and V is the aircraft forward speed. For the expression

of Re, the empirical equation

Re = R− 1

3
d (9)

can be used, where R is the tire unloaded radius, d = R − r is the tire de�ection, see Currey [28].

In this study, the straight tangent tire model is used to describe the tire-ground contact dynamics.

The reaction forces produced by the tires can be modelled by the tire lateral deformation. These

forces are the lateral force Fy and the tire self-aligning moment Mz, as shown in Fig. 2a, and may

be expressed as

Fy = CFαα
′
, (10)

Mz = −CMαα
′
, (11)
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where α
′
is the lateral de�ection angle of the leading point of tire-ground contact edge, as shown in

Fig. 3. The lateral displacement of the leading point of contact edge, v1, is considered to represent

the tire lateral deformation when investigating the physical shimmy motion. It can be expressed as

v1 = α
′
σ, (12)

where σ is the tire relaxation length, as illustrated in Fig. 3. Note that if the MLG is in its

undisturbed state, the tire slip angle α is equal to α
′
.

Fig. 4 View of ψ, ε DOFs and kψ, where at equilibrium, ε = ψ = 0 and Fd = 0 (inspired by

[11]).

Table 1 Some system parameter values used in the analysis

Parameter Name Value

cψ Torsional-yaw damping value for the gear 1.06 × 103 N·m·s/rad

cφ Torsional-roll damping value for the gear 5.4× 102 N·m·s/rad

kv Tire vertical sti�ness 8.64× 105 N·m/rad

kψ Overall torsional-yaw structural sti�ness for the gear 6.45× 105 N·m/rad

kφ Torsional-roll structural sti�ness for the gear 2.15 × 106 N·m/rad

fη First natural frequency of hanging landing gear 72.0Hz

ζn First relative damping coe�cient for the lateral mode 0.05

The shimmy suppression device is �tted in the apex location which is between the upper and

lower torque link. To capture both the structural sti�ness of these two parts, an e�ective torsional-

yaw sti�ness kψ is considered connecting the shimmy suppression device and the unsprung mass as

shown in Fig. 2a. The compression of the shimmy suppression device is represented by the torsional

DOF ε, see Fig. 4. The force generated by the shimmy suppression device is denoted as Fd. It is the
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dynamics of the device, which are captured by the relationship between Fd and ε, and their e�ects

on shimmy oscillations are of primary interest here.

B. Equations of motion

Similar to [11], using Lagrange's method, the corresponding equations of motion for the MLG

can be written as

Iψtotψ̈ −m1ef(z1)η̈ + cψψ̇ + 2IybΩ(f
′
(z1)η̇ + φ̇) + kψ(ψ − ε) − 2(eCFα + CMα)α

′
= 0, (13)

(mf + Iφf
′2(z1))η̈ −m1ef(z1)ψ̈ + Iφf

′
(z1)φ̈− 2IybΩf

′
(z1)ψ̇ + 2mfζnfη η̇

+fη
2mfη + 2CFα(f(z1) + rf

′
(z1))α

′
+

1

2
kvl

2f
′
(z1)(f

′
(z1)η + φ) = 0, (14)

Iφ(φ̈+ f
′
(z1)η̈) − 2IybΩψ̇ + cφφ̇+

1

2
kvl

2(f
′
(z1)η + φ) + kφφ+ 2rCFαα

′
= 0, (15)

σα̇
′
+ V (ψ + α

′
) − (f(z1) + rf

′
(z1))η̇ − rφ̇+ (e− a)ψ̇ = 0, (16)

Fd − kψ(ψ − ε) = 0. (17)

Here, Eqs. (13-15) govern the MLG dynamics and (16) the tire dynamics. Eq. (17) represents the fact

that the force across kψ equals the force across the shimmy suppression device. The mathematical

expression for Fd depends on the layout of shimmy suppression device and will be presented in

Section II.C.

In summary, there are 5 DOFs in the equations of motion, which are ψ for the MLG torsional-

yaw motion, η for the gear lateral motion, φ for the torsional-roll motion, α
′
for the tire dynamics

and ε for the shimmy suppression device motion. The states we actually consider as physical shimmy

motions are ψ, ya, δ and v1, which are the torsional-yaw de�ection, the lateral bending de�ection

of the point A, the roll stroke of A on the ground and the tire lateral deformation, respectively.

The parameter values used in this study are consistent with [11] (with a 0.25m shock absorber

de�ection). Several parameters that are not speci�ed in [11] are summarized in Table 1. Note that

the aircraft operation condition considered in this study is V = 50m/s.
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C. Optimization procedure and candidate shimmy suppression layouts

The introduction of an inerter alongside the conventional spring and damper guarantees that any

positive-real frequency transfer function can be realized by a network layout consisting of springs,

dampers and inerters [29]. The force-displacement relationship of the candidate shimmy suppression

devices can be represented by general positive-real functions, Y (s), satisfying

Fd(s) = Y (s)ε(s), (18)

where s is the Laplace variable and Fd(s) and ε(s) represent the force and the relative displacement

of the device in Laplace domain respectively. For example, the transfer function of the default

shimmy damper in the Laplace domain may be written as

Y (s) =
Fd(s)

ε(s)
= k + cs. (19)

The approach we use to select Y (s) is to select a general transfer function form and then optimize

its parameters. Network synthesis theory [30, 31] can then be used to identify the speci�c layout

which can realize the optimized Y (s). For all the optimizations carried out in the present work, we

used the Matlab command patternsearch �rst and then fminsearch for �ne-tuning of the parameters.

As patternsearch tends to �nd local minima, the best solutions have been veri�ed using a range of

initial starting points.

 ! ! "

!#

!$

"

 

S1 S2 S3

Fig. 5 Three low-complexity layouts of the shimmy suppression device

Since low-complexity networks are more preferable due to the weight and space limit of the

landing gear system, a biquadratic function (where both the numerator and denominator are second
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order functions of the Laplace operator)

Y (s) =
As2 +Bs+ C

Ds2 + Es+ F
(20)

is considered. Applying relevant network synthesis techniques, such as results presented in [32, 33],

bene�cial layouts can be identi�ed. In this way, we guarantee that a wide range of low-complexity

layouts is considered. For most cases, the optimum parameter values (A, B, · · · , F ) do not equal

zero. The corresponding network normally contains at least �ve elements. A simpli�cation procedure

is then used, to check whether reducing the number of elements results in signi�cant deterioration of

performance. A similar procedure can be found in, for example, [34]. A simpler hence more realistic

structure can possibly be obtained through this process. A second round optimization of the element

values is then performed for the simpli�ed network layout. According to the optimization results,

it is interesting to see that layout S2 shown in Fig. 5 is capable of providing promising performance

advantages. Even though other more complicated layouts can provide slightly better performances,

we take the view that this does not justify the extra complexity of the device. Layout S1 in Fig. 5

represents the conventional shimmy damper layout. Layout S3 is the layout obtained through the

eigenvalue optimization of Eq. (20), which will be discussed in Section III. It will be shown that

while this layout can signi�cantly increase the least damping ratio, the overall physical response is

not signi�cantly improved. Consequently, discussions will focus on layout S2 in Section IV.

III. Limitation of eigenvalue optimization

As the dynamic model is linear, eigenvalue analysis can be carried out. The equations of motion

shown in Eqs. (13-17) can be expressed in the following state-space form,

Ẋ = TX, (21)

where X = (ψ̇ η̇ φ̇ ψ η φ α
′
ε)
T
and T is a 8 × 8 matrix. Applying the Laplace transformation to

Eq. (21), the system characteristic equation can be written in terms of the Laplace variable.

It can be checked that using the default shimmy damper parameters taken from [11], with

V = 50m/s, the least damping ratio ζmin amongst all the modes equals 4.4%. Optimization

is carried out to maximize the least damping ratio ζmin with Eq. (20) representing the shimmy
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suppression device. The optimization results are given in Table 2. Layout S3 in Fig. 5, with

parameter values in row 2 of Table 2, is obtained via network synthesis to realize the speci�c

biquadratic function identi�ed by optimization. It can be seen that that a 77.3% improvement on

ζmin can be achieved.

Table 2 Optimization results for maximising ζmin

Layouts ζmin, % Improvement, % Parameter values, N·m/rad, N·m·s/rad, N·m·s2/rad

Default 4.4 - k = 1.9 × 105, c = 7.4 × 103

S3 7.8 77.3 k = 1.5 × 105, c1 = 4.9 × 103, c2 = 1.0 × 103

b = 13.3
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Fig. 6 Comparison of time-domain oscillations achieved by the default and S3 con�gurations

(φ(t = 0) = 0.1 rad).

It is worth to check the physical behavior employing the two con�gurations in Table 2. An

initial perturbation to the torsional-roll DOF (φ(t = 0) = 0.1 rad) is used to excite the transient

response of the gear. Fig. 6 illustrates the response in torsional-yaw de�ection ψ, lateral bending
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displacement ya, torsional-roll de�ection δ and tire lateral de�ection v1. It can be observed that

while the frequency-based optimization suggests a signi�cant improvement in the least damping

ratio with S3, this does not result in an improved transient response due to a larger response to

a lower-frequency mode. This suggests that the convenience of the frequency-domain analysis is

limited for this problem, as the mode shapes are signi�cantly altered when certain suppression

devices are added.

IV. Time-domain optimization results

In this section, time-domain optimization results relating to the performance bene�ts of shimmy

suppression devices incorporating inerters are presented. Two perturbations, which are applied to

the tire and can trigger shimmy oscillations, are used to excite the transient response. There are a

wide range of cost functions that could be used in the optimization. To demonstrate the potential of

an inerter-based device we select the peak amplitude and settling time of the torsional-yaw response

as the cost functions. However we recognize that for a full design study a more complex optimization

with multiple performance criteria would be used.

A. Initial operation conditions and time-domain performance criteria

Two types of initial conditions are considered in this study. Firstly, we assume the tire travelling

direction is disturbed suddenly, causing a corresponding initial input to the tire slip angle α. As

presented in Section II, α = α
′
when the MLG is in undisturbed state. Hence, α(t = 0) = α

′
(t =

0) = 0.1 rad is used as the �rst type of excitations to the system. This input will be referred to as

the `slip input'. The second input, the `side force input', is an initial side force Fy
′

= 1.0 × 107N

applied in the Y direction to the wheel axle for 1ms. Note that all the states, except for the excited

one, are set to zero initially.

The torsional-yaw motion is oftenly regarded as of signi�cant importance for the gear fatigue

life [35]. Therefore, the time-domain optimization focuses on investigating the e�ectiveness of the

proposed device on the torsional-yaw motion. The performance measures are de�ned as i) the peak

magnitude and ii) the settling time of the torsional-yaw motion. As the transient response to a

perturbation is considered, the maximum amplitude of the torsional-yaw response, ψpeak, is an
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important measure of the response. Also the time during which the vibration is above a certain

threshold, the settling time tsettle, gives a measure of the duration of undesirable behavior following

a perturbation. In this paper, tsettle is de�ned as the time duration spent when the amplitude of

the response exceeds ±10% of ψpeak1,2
∗, where ψpeak1,2

∗ is the peak response amplitude for the

system with the default shimmy damper under the initial tire slip angle input and side force input,

respectively. It can be calculated that ψpeak1
∗ = ψpeak2

∗ = 1.5 rad. Note there are a number

of ways in which such performance could be addressed such as setting an acceptable threshold

amplitude of vibration. However such a criterion would be perturbation amplitude dependent,

giving rise to the challenge of selecting a �reasonable� size of perturbation. Instead we adopt the

more general, and amplitude independent, settling time criterion which can be regarded as a measure

of e�ective damping in the linear system analysis. Each of these two measures, peak amplitude and

settling time, will be used as a cost function with the constraint that the other measure must be no

worse than the value achieved with the default shimmy damper.

B. Baseline improvement by geometric modi�cations

From the existing literature, the gear geometry plays an important role in stabilizing shimmy-

prone gears (see [36] for example). In order to have a benchmark with which the improvement

of inerter-based shimmy suppression device can be compared, two key MLG geometry parameters,

wheel distance l and mechanical trail e, are varied. Default shimmy suppression device and its

parameter values are used. The two geometry parameters are varied by ±30% from their nominal

values.

The slip input is �rstly considered. The time-histories of the torsional-yaw motion are plotted

for the o�-nominal wheel distance cases in Fig. 7. It is observed that the variation of corresponding

transient responses is very limited even when large changes in l are applied. Decreasing the wheel

distance results in marginally smaller magnitudes of torsional-yaw motion and the response decays

more quickly. The biggest improvements on ψpeak and tsettle obtained are 2.0% and 14.5%, respec-

tively. Similar trends can be observed for the case that the mechanical trail is varied. With a 30%

reduction of e leading to improvements in both performance measures � 11.3% for ψpeak and 14.4%
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for tsettle. This suggests that improvements obtained by modifying the shimmy suppression device

in the order of 10% or more for either performance measure may be thought of as signi�cant.
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Fig. 7 Comparison of ψ time series varying l for the system with a default shimmy damper

con�guration.

C. Optimization results and bene�cial shimmy suppression con�gurations

By using the optimization and simpli�cation procedures discussed in Section II.C, layout S2 has

been identi�ed as with promising bene�ts. For clarity, the subscripts α and F are used to specify

the optimization results obtained for the slip input and side force input, respectively. Also, the

subscript p (s) is used to represent the optimization results using the peak amplitude (the settling

time) as cost function.

1. Slip input

Rows 2 and 3 of Table 3 summarize the optimal results for improving ψpeak. It can be seen

that taking the traditional layout S1, and optimizing the spring and damper for this performance

criteria results in a 16.7% reduction of ψpeak over the default shimmy damper. With the layout S2,

the improvement increases to 28.0%. This signi�cant improvement can be observed from the time

series responses illustrated in Fig. 8a.

However, note that the second peak magnitude of the yaw response is increased signi�cantly

compared with the default response, especially with the S2αp con�guration. Hence, an extra re-
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striction is included where the second peak amplitude should be no bigger than that for the default

shimmy damper. Here a subscript p∗ is used to denote this new optimization. The p∗ optimiza-

tion cases are presented in rows 4 and 5 of Table 3 and the improved responses are illustrated in

Fig. 8b. It can be seen that the second peak amplitude is noticeably smaller than that in Fig. 8a.

As expected, the trade-o� between ψpeak and the second peak amplitude leads to slightly smaller

improvement in ψpeak. However, the improvement by the inerter-based scheme S2αp∗ , 26.7% over

the default system, is still signi�cant. Note again that the peak amplitude optimization problem

can be re�ned in di�erent ways, while maintaining the emphasis on minimizing the peak amplitude.

Here we choose to limit the second peak so that it is no larger than that for the default response,

an alternative approach could be to look at the peak-to-peak amplitude, although this would not

necessarily result in a maintained or reduced second peak.

Table 3 Optimization results and involved parameter values for the slip input case§

Layouts Performance Optimum parameter values

ψpeak tsettle k c b

× 10−2 rad × 10−1 s × 105 N·m/rad × 103 N·m·s/rad N·m·s2/rad

Default 1.5 1.1 1.9 7.4 -

S1αp 1.25(16.7%) 1.08 1.1 14.4 -

S2αp 1.08(28.0%) 0.96 3.1 1.5 341

S1αp∗ 1.3(13.3%) 1.01 1.4 11.8 -

S2αp∗ 1.1(26.7%) 1.04 7.2 13.0 145

S1αs 1.5 0.93(15.5%) 1.1 8.2 -

S2αs 1.25 0.47(57.3%) 2.4 8.2 50

§ % improvements are given in bracket for the criteria being optimized.

Rows 6 and 7 of Table 3 present the settling time improvements provided by S1αs and S2αs.

A considerable improvement in tsettle, 57.3%, is achieved with S2αs scheme while S1αs can only

achieve 15.5% improvement. The time series for the torsional-yaw response are shown in Fig. 8c.

Note that the response achieved with S2αs decays more quickly and at the same time has a good

ψpeak performance. It can be noticed that S2αs can lead to a 16.7% improvement of ψpeak. Taking
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this into consideration, it could be argued that S2αs is more bene�cial over other schemes in Table

3.
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Fig. 8 Comparison of ψ time series for the default and bene�cial schemes excited by the slip

input.

2. Side force input

Similar to the slip input case, the optimization will be performed for the two cost functions

separately when the system is excited by an impulsive side force. The optimization results when

minimizing ψpeak are summarized in rows 2 and 3 of Table 4. Arguably the con�guration with a

parallel inerter-spring-damper layout is bene�cial when compared with the optimal S1 con�guration,

with a 32.0% improvement over the default device. The responses provided by two optimized

schemes are shown in Fig. 9a. As before, an increased second peak is observed when optimizing

the S2 layout. To address this, further optimization is performed in which the second peak of the

response is restricted to be no greater than that for the default system. The results have been shown

in rows 4 and 5 of Table 4 and the torsional-yaw response is shown in Fig. 9b. Here, by limiting

the second peak of ψ response the improvement of ψpeak is reduced, but still signi�cant � 16.7% by

S2Fp∗ .

16



Table 4 Optimization results and involved parameter values for the side force input case¶

Layouts Performance Optimum parameter values

× 10−2 rad × 10−1 s × 105 N·m/rad × 103 N·m·s/rad N·m·s2/rad

Default 1.5 1.22 1.9 7.4 -

S1Fp 1.4(6.7%) 1.22 3.5 8.6 -

S2Fp 1.02(32.0%) 1.22 3.9 16.2 388

S1Fp∗ 1.4(6.7%) 1.22 2.5 9.4 -

S2Fp∗ 1.25(16.7%) 0.97 4.5 10.0 84

S1Fs 1.4 1.22(0.2%) 1.2 10.3 -

S2Fs 1.5 0.85(30.3%) 1.6 62.8 19

¶ % improvements are given in bracket for the criteria being optimized.
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Fig. 9 Comparison of ψ time series for the default and bene�cial schemes excited by the side

force input

The improvements of tsettle achieved by S1Fs and S2Fs are summarized in rows 6 and 7 of

Table 4, along with the optimized parameter values and the response illustrated in Fig. 9c. It

can be seen that the tsettle achieved using the optimal S1 is close to that for the default system
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with only 0.2% improvement. For the parallel inerter-spring-damper con�guration, S2Fs, a 30.3%

improvement is obtained. On the other hand, it can be observed that S2Fs does not provide any

improvement of ψpeak, while both performance measures are improved with S2Fp∗ , 16.7% improve-

ment on ψpeak and 20.5% improvement on tsettle. Arguably, here the S2Fp∗ is the most bene�cial

preferable suppression con�guration in Table 4.

D. Overall bene�cial con�gurations

Based on the results presented in Section IV.C, S2αs and S2Fp∗ are proposed as the bene�cial

con�gurations for the slip input and the side force input, respectively. It is still worth to check

the performance with the slip input and side force input for S2Fp∗ and S2αs, respectively. Table 5

summarizes the improvements of the two performance measures provided by S2αs and S2Fp∗ along

with the two optimal spring-damper con�gurations, S1αs and S1Fp∗ . The percentage improvements

are compared with the default shimmy damper and both initial conditions are considered. The

table shows that the inerter-based con�gurations provide larger bene�ts over the two optimal spring-

damper con�gurations. Moreover, when applying the other input, both schemes still provide bene�ts

using either performance measure. Figure 10 illustrates the comparison of ψ time series produced

by the four bene�cial schemes when the system is excited by the slip input and the side force input.

From the time-domain response, it can be seen that with both kinds of inputs, S2αs and S2Fp∗

are always capable of providing performance advantages: experiencing smaller peak amplitudes and

quicker settling.

Table 5 Improvement achieved by four optimal con�gurations under two initial inputs

Con�gurations Slip input Side force input

Impro. of ψpeak, % Impro. of tsettle, % Impro. of ψpeak, % Impro. of tsettle, %

S1αs 0.7 14.9 0 0

S2αs 16.7 57.3 9.1 1.0

S1Fp∗ 8.7 0.36 6.7 0.08

S2Fp∗ 24.5 33.8 16.7 20.5
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Fig. 10 Comparison of ψ time series excited by a) the slip input and b) the side force input.
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Fig. 11 Comparison of v1 time series excited by a) the slip input and b) the side force input.

Since the tire motion plays an importance role on tire-ground contact dynamics, it is worth to

check the e�ect of the proposed con�guration on the tire lateral motion. Figure 11 illustrates the
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comparison of the tire lateral response v1 for the default and the bene�cial con�guration (using S2αs

as an example). It can be seen that the responses are almost the same compared with the default

shimmy damper, which re�ects the fact that the torsional-yaw motion is to a large extent decoupled

from the tire lateral motion in this model. Hence, the modi�cation of the shimmy suppression device

has minimal impact on this motion.

V. Conclusions

The main focus of this study is the potential bene�ts of the shimmy suppression devices incorpo-

rating inerters. Apart from the shimmy suppression device motion, the MLG torsional-yaw, lateral,

torsional-roll motions and the tire dynamics are all taken into consideration. Results of eigenvalue

optimization are presented to demonstrate the limitation of frequency-domain analysis for this prob-

lem. Hence time-domain optimization is proposed. Using the maximum amplitude and the settling

time of the torsional-yaw motion as cost functions, optimization procedure is carried out. When

the slip input is applied, a 16.7% improvement on the peak amplitude and 57.3% improvement on

the settling time are obtained using a parallel inerter-spring-damper con�guration. If the system is

excited by the side force input, the parallel inerter-spring-damper layout with optimized parameter

values provides 16.7% improvement on the peak amplitude and 20.5% improvement on the settling

time. These bene�ts exceed those obtained by making signi�cant changes to the gear geometry. It

needs to be emphasized that the two bene�cial con�gurations also provide performance advantages

when the other non-optimized input is applied. Based on the optimization results, it can also be

seen that the identi�ed inerter-based con�gurations are more bene�cial than the optimized paral-

lel spring-damper con�gurations. In general, the aim of this paper is to show the potential of an

inerter-based device. This has been achieved using the two example optimization criteria. For a full

optimization study as part of a landing gear design process, the criteria would need to be adjusted

based on the performance requirements drawn up by the aircraft manufacture. In the future work,

the nonlinearities, including the nonlinear tire model, could be considered since it may lead to more

coupling between di�erent modes. It would also be interesting to include the nonlinear damping

into the suppression device due to its superior energy dissipation characteristics.
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