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Abstract
Understanding mediation is useful for identifying intermediates lying between an exposure and an outcome which, when
intervened upon, will block (some or all of) the causal pathway between the exposure and outcome. Mediation approaches
used in conventional epidemiology have been adapted to understanding the role of molecular intermediates in situations of
high-dimensional omics data with varying degrees of success. In particular, the limitations of observational epidemiological
study including confounding, reverse causation and measurement error can afflict conventional mediation approaches and
may lead to incorrect conclusions regarding causal effects. Solutions to analysing mediation which overcome these problems
include the use of instrumental variable methods such as Mendelian randomization, which may be applied to evaluate
causality in increasingly complex networks of omics data.

Introduction

New technologies permit the genotyping and profiling of gene ex-
pression, epigenetics and metabolites, allowing the collection of
high-dimensional molecular phenotype data on a large number
of individuals. This “omics revolution” (1,2) offers the potential to
vastly improve the granularity of measurements related to the
processes of normal development and disease pathogenesis.

Recent applications of omics technologies within large-scale
population-based studies present new opportunities for identi-
fying novel biomarkers for both risk factors and disease.
Furthermore, different forms of omic data can be combined
with increasingly complex models (3) and may help to interro-
gate otherwise opaque networks in confirming observed risk
factor and disease associations from observational epidemiol-
ogy and identifying new ones (4) (Fig. 1).

However, as these molecular intermediates are influenced
by both endogenous and exogenous factors and by disease pro-
cesses, they are prone to the many limitations of observational
epidemiological study including confounding, bias and reverse
causation (Box 1) (5). We are therefore presented with the chal-
lenge of understanding the causal nature of correlations be-
tween measures of interest. Statistical methods are required to
dissect causal relationships and to construct a causal frame-
work involving molecular intermediates (6,7).

What Is Mediation Analysis and Why
Is Understanding Mediation Useful?
A mediator (M) is a variable that is on the causal path from an ex-
posure (E) to an outcome variable (Y). It causes the outcome and
is itself caused by the exposure. There are a variety of statistical
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methods that have been introduced for analysing mediation,
from simple regression-based systems and structural equation
models to more novel parametric and semi-parametric methods
(8), and these have been widely implemented (Fig. 2).

Understanding mediation is useful for identifying potential
modifiable risk factors lying between an exposure and an outcome
which, when intervened upon, will block (some or all of) the causal
pathway between the exposure and outcome. For example, ele-
vated levels of non-fasting remnant and LDL cholesterol levels are
modifiable intermediates of cardiovascular disease. These may be
intervened upon to alter the downstream risk of cardiovascular
disease, when underlying risk factors are either difficult, as in the
case of adiposity (9), or indeed impossible to alter, as in the cases
of the underlying genetic factors related to cholesterol levels (10).

Mediation approaches have been adapted to understanding
the role of molecular intermediates in causal pathways, using
high-dimensional omics data (4,11–18). However, these
approaches have been applied with varying degrees of success
as each approach has different strengths and challenges due to
their underlying assumptions.

Exposure – Outcome Mediation
One of the most widely cited approaches for evaluating media-
tion in an epidemiological setting is that originally outlined by

Baron and Kenny (19). This regression-based approach may be
applied to distinguish a mediated effect of the exposure (E) on
an outcome (Y) through an intermediate (M) from both a conse-
quential (reverse cause) effect and a common cause (confound-
ing) effect (Fig. 3), through the application of four tests:

1) E is associated with Y
2) E is associated with M
3) M is associated with Y after adjusting for E
4) E is independent of Y after adjusting for M

The Sobel test may then be used to indicate whether the de-
crease in the effect of E on Y after adjusting for M is “statistically
significant”. If this test provides evidence for mediation, the
proportion of the effect of E on Y that is mediated by M can be
calculated.

While this approach is widely implemented, it is known to
be problematic because it is highly dependent on a number of
strong assumptions, the measurement characteristics of the
variables and on reliable identification of causal effects. Some
such often overlooked assumptions are that (i) both Y and M are
continuous; (ii) there are no unmeasured confounders of E and
Y or of M and Y; (iii) E must not cause a confounder of the M-Y
association; (iv) the correct functional form has been specified
for each model (e.g. linearity); (v) there are no interactions be-
tween E and M on Y; and (vi) there is no measurement error (20).
Here, measurement error is the difference between a measured
value of E, M or Y and its true value, which could be due to ei-
ther imperfect measurement (e.g. measuring weight using a
standard set of scales) or fluctuating about an underlying “true”
value (e.g. day-to-day variation in weight about the individual’s
underlying average weight), or both. Furthermore, this method
can only be used under the assumption of complete mediation
as in a situation of partial mediation, the fourth condition will
not hold.

Further methods have been developed to allow much more
flexible modelling than the traditional Baron and Kenny ap-
proach and allow for a more general outcomes framework,
distribution-free estimates of mediated effects, interactions and
intermediate confounding (20,21). Such methods include linear
equations, structural equation models, marginal structural
models and G-computation. However, while these approaches
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Figure 2. A simplistic representation of mediation. (A) Complete mediation - M

is the only mechanism by which E can change Y. (B) Partial mediation - In prac-

tice, it is more likely that E has an effect on Y other than those operating by

changing M. Mediation aims to partition the total (causal) effect of E on Y into

mediated effects (effects that operate by changing the mediator, M) and non-

mediated effects.
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Figure 3. Distinguishing mediation from reverse causation and confounding In a

situation of mediation, the effect of the exposure (E) on an outcome (Y) is medi-

ated through an intermediate (M). In a situation of reverse cause, E influences Y

which then has an effect on M. In a situation of common cause (confounding), E

has an independent effect on both M and Y, so inducing a spurious association

between M and Y.

Gene products
e.g.  transcripts, 

proteins, metabolites

Epigenome
e.g. DNA methylation

Disease
or health-related 
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Figure 1. The interplay between genomics, other “omics” and environmental

factors in relation to disease or health-related outcomes.
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offer more flexibility (e.g. allowing non-continuous variables
and interactions between E and M in their effect on Y), they also
require strong assumptions, specifically related to no measure-
ment error or unmeasured confounding. If the assumptions are
not satisfied, these methods may also lead to incorrect infer-
ence (22–26).

Nonetheless, some of these approaches have been readily
applied in the setting of the molecular mediation without much
consideration being given to the underlying assumptions and
thus may have led to spurious results and interpretations. For
example, large epigenome-wide association studies (EWAS)
have identified associations between smoking and DNA methyl-
ation (27), and lung cancer and DNA methylation (15).
Interestingly, CpG sites in the AHRR region have shown the larg-
est signals of differential methylation in both these EWASs.
These findings have driven subsequent analyses to investigate
whether environmentally modified DNA methylation play an
important role in the aetiology of cancer, through the use of me-
diation analysis.

One recent study used a causal mediation technique of
G-computation to assert a mediating role of lower AHRR meth-
ylation in the association between smoking and lung cancer
(15). Strikingly, the mediation analysis applied in this study
identified that 32% of the total effect was mediated by differen-
tial methylation in the AHRR region. However, the study ana-
lysts also found that 31% of the total effect was mediated by
methylation in a CpG in F2RL3, another site implicated in both
smoking and lung cancer EWAS. Together, these two sites in
AHRR and F2RL3 explained a total of 37% of the total effect,
which is lower than the proportion anticipated, given that these
two genes are independent and act through different biological
pathways.

One potential explanation for these findings is that the asso-
ciation between methylation and lung cancer might just reflect
the known causal effect of smoking on lung cancer, as DNA
methylation is a strong biomarker for smoking (28). Mediation
analysis may lead to a spurious inference due to measurement
error, in this instance in the exposure, whereby self-reported
smoking is more error-prone than objectively-measured DNA
methylation, leading to residual confounding of the intermedi-
ate – outcome association.

Genetic Variant – Outcome Mediation
A widely-used approach for establishing causal relationships
with molecular intermediates is the causal inference test (CIT)
(29). This test builds on the ‘Causality Equivalent Theorem’ (30)
to infer causal indirect effects of a genetic variant on an out-
come. It is analogous to the Baron and Kenny approach in its re-
liance on a series of models to statistically test conditional
independencies between covariates in order to distinguish a
mediated effect of the genetic variant (G) on an outcome (Y)
through an intermediate (M) from a reverse cause and a com-
mon cause (pleiotropic) effect (7,29,31). Therefore, replacing E
(exposure) in the Baron and Kenny approach with G (genetic
variant), the required tests are:

1) G is associated with Y without adjusting for M
2) G is associated with M after adjusting for Y
3) M is associated with Y after adjusting for G
4) G is independent of Y after adjusting for M

This approach has typically been applied to understand the
extent to which molecular processes mediate the effect of

quantitative trait loci (QTLs) on the risk of a particular disease. By
focusing on the assessment of the genetic component of the mo-
lecular intermediate, this avoids limitations in the observational
epidemiology setting of potential confounding from environmen-
tal factors on the intermediate – outcome relationship and also
the influence of reverse causation, whereby changes in the out-
come may influence the intermediate factor. In addition, some
other qualities of genetic variants which make them useful in the
causal inference analysis are that they are not influenced by re-
porting bias and are subject to relatively little measurement error.

By using a genetic variant as a causal “anchor” to dissect
causal relationships, the causal inference test has close links
with Mendelian randomization (MR) (5,32), a method which will
be discussed in more detail later in this review, although with
the use of a different modelling approach. Given its ease of ap-
plication, the causal inference test has been used to evaluate
molecular mediation in a range of omics settings (6,11,16,33).
However, this test is limited by its emphasis on an “omnibus
statistical test” (29) which is reliant on a p-value for asserting a
causal effect, rather than providing an estimate for the magni-
tude and precision of the true causal effect (34).

Furthermore, this approach is also vulnerable to measure-
ment error, which can be in either the mediator or the outcome,
in those steps 2) to 4) of the causal inference test (see above)
which involve adjustment in the regression models.

In particular, the presence of measurement error can make
it hard to delineate a situation of true mediation from that of
horizontal pleiotropy (defined in Box 2), whereby the genetic
variant influences the outcome through pathways other than
those containing the mediator. The problem of incorrectly iden-
tifying pleiotropy can be illustrated with an example, whereby a
genetic variant associated with cholesterol levels is strongly as-
sociated with coronary heart disease even after adjusting for
measured cholesterol (35). While the causal inference test
would infer from this that cholesterol is not fully mediating the
effect of this genetic variant on risk of coronary heart disease, in
reality this situation probably arises because the genetic variant
represents a life-long elevated risk of cholesterol levels com-
pared with a single, poor measure of cholesterol acting as the
mediator in this situation (Table 1).

Measurement error can also lead to erroneous results from the
causal inference test due to reverse cause, whereby the genetic var-
iants influence the proposed mediated factor indirectly through an

Table 1. Causal inference test analysing the causal effect of total
cholesterol on coronary heart disease (CHD) using the rs72658867
LDLR splice variant SNP as a causal anchor

Condition P-value

CHD associated with LDLR 4.33x10�3

CHD associated with total cholesterol given LDLR <1.00x10�5

Total cholesterol associated with LDLR given CHD <1.00x10�5

LDLR independent of CHD given total cholesterol >0.99
Total cholesterol causes CHD (omnibus P-value) >0.99

Analysis was performed using cholesterol and CHD data from the Copenhagen

General Population Study using 95,275 individuals. Data described here http://www.

nature.com/nature/journal/v526/n7571/full/nature14962.html.(36) Analysis per-

formed using the R/cit package and the cit.bp function. P-values represent the

strength of evidence for each condition of the causal inference test. In this situation,

three of the four conditions of the causal inference test are satisfied although the

fourth is not (P>0.99), as LDLR is associated with CHD even after adjusting for total

cholesterol. The omnibus test therefore selects this largest P-value, which in this case

is used to reject the hypothesis that total cholesterol causes CHD.
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effect of the outcome (Fig. 3). This may occur in a situation where a
genetic variant is found to be associated with a proposed mediator
but is of unknown biology. Here it is possible that the genetic vari-
ant is directly related to the outcome and only indirectly to the pro-
posed mediator through the causal effect of the outcome on the
intermediate factor. For example, greater adiposity is known to
have a causal effect on levels of the inflammatory biomarker, C re-
active protein, but not vice versa (37,38). With adequate sample
size and measurement precision, any genetic variant related to
body mass index will be related to CRP because of this causal effect
(37,38). Furthermore, in the absence of knowledge about the func-
tionality of the genetic variants, true adiposity variants may be as-
sumed to be directly related to CRP levels, which may lead to
incorrect causal inference.

Use of Mendelian Randomization for
Mediation Analysis
Solutions to analysing mediation which overcome unmeasured
or residual confounding, reverse causation and measurement
error include the use of instrumental variable methods (8), of
which Mendelian randomization (MR) is a form. In MR, genetic
variants robustly associated with modifiable exposures are used
to infer causality (5,32,39) by serving as instrumental variables
which are not associated with various confounders of the
exposure-outcome association and are not directly influenced
by the outcome of interest (40,41) (Fig. 4).

The assumptions and application of Mendelian randomization
analysis were outlined in detail in a recent review (5). In addition,
this review outlined how the MR approach may be adapted to the
setting of appraising causality of molecular phenotypes. However,
with specific reference to gene-outcome mediation analysis, using
the MR approach has two potential advantages over the CIT: 1) it
allows for a formal test of the direction and magnitude of causal-
ity, rather than a p-value driven assessment, and 2) by using the
genetic variant as an instrumental variable for the mediator, the
correct direction of causality can be inferred even in the presence
of measurement error in the mediator, as genetic variants are

typically measured with high accuracy and will typically proxy for
lifetime differences in exposures (39).

Limitations of MR have been discussed in detail in a recent
review (5), which also highlighted some methodological devel-
opments to overcome these limitations. Specifically with re-
spect to using MR to assess mediation, the main limitations of
this approach are low power, potential pleiotropy of the genetic
instruments and reverse cause.

While genetic instruments for molecular phenotypes often
explain a large proportion of variance in these traits (Box 1), MR
studies involving such intermediates are often of low power be-
cause of the availability of biological samples and the relative ex-
pense of measuring these phenotypes in large enough numbers.
One recent means of enhancing power in Mendelian randomiza-
tion analysis is with the use of a two-sample approach (50,51).
This approach is particularly relevant for establishing the causal
effect of a molecular intermediate, which only needs to be mea-
sured in a subset of individuals with genetic data, and then inte-
grating these gene-exposure estimates with gene-outcome
estimates obtained from larger studies to harness power. With re-
spect to the latter, such estimates may be obtained from publicly
available summary measures which are increasingly available for
many large genome-wide association studies (51).

In situations such as that outlined with respect to evaluating
the role of a molecular intermediate (e.g. DNA methylation) in a
known exposure-outcome relationship (e.g. smoking-lung can-
cer), it may be possible to obtain causal estimates from MR stud-
ies for all steps in the chain, e.g. from smoking to DNA
methylation, and from DNA methylation to lung cancer, in a
two-step Mendelian randomization approach (Fig. 5). Here the
logic of MR can be extended to interrogate causality of a mediat-
ing effect using one genetic instrument to estimate the causal
effect of the exposure on DNA methylation, and a separate

M G Y 

C 

Figure 4. Schematic representation of Mendelian randomization to assess the

causal effect of a molecular intermediate Mendelian randomization can be used

to test the hypothesis that molecular intermediate M has a causal effect on out-

come Y, given that the genetic variant G is associated with the intermediate

phenotype of interest, has no association with the outcome except through the

intermediate phenotype and is not related to measured or unmeasured con-

founding factors (C).

Box 1. Identifying genetic proxies for ‘omics measures

Developments in genomics have driven the identification of many genetic variants associated with a wide range of exposures
which have potential utility in MR analysis (5,52). As molecular intermediates are more proximal to genotype than down-
stream phenotypes (53) this boosts the statistical power to detect associations compared to more complex traits, as exempli-
fied in genetic association studies.(54–56) Furthermore, studies have identified that many genetic effects on intermediates are
highly stable across the life course (55) and between tissues (56). Such stability is useful when these genetic variants (or
quantitative trait loci (QTLs)) are being applied as causal anchors. Catalogues of these QTLs are being made freely
available.(55,56)

G1

E M Y

G2

E M Y

Step 1

Step 2

Figure 5. Schematic diagram of two-step Mendelian randomization In Step 1, a

genetic variant, G1, is used to proxy for the environmentally-modifiable expo-

sure of interest, E, to examine how this exposure influences in the intermediate,

M, e.g. DNA methylation. In Step 2, a different genetic variant unrelated to the

exposure, G2 is used to proxy for this specific difference in the intermediate, M,

and relate this to the outcome of interest, Y.
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independent instrument to estimate the causal effect of DNA
methylation on the outcome. As variation in DNA methylation
is associated with widespread local (cis) genetic variation, this
provides the opportunity to use genetic proxies to probe causal-
ity between DNA methylation and particular outcomes using
MR (5,42–44).

While the two-step MR method was initially posed for the
delineation of mediation by specific epigenetic processes be-
tween environmental exposures and disease, it may equally be
applied to a full range of potential mediators, such as transcrip-
tomics, proteomics and metabolomics (45). In addition, while

evidence of association in both steps of the two-step MR frame-
work implies some degree of mediation, in its original form this
method did not give a quantitative contribution of the mediator
to the causal link explicitly. Extensions of network Mendelian
randomization (10,45) allow for the magnitude of the direct and
indirect effects to be estimated and can be used to obtain support
for a number of testable hypotheses and degrees of association
between increasingly complex networks. Such methods will be
particularly useful for integrating omics data and challenging the
“central dogma” of biological causation (46–49).

In addition, with regards to asserting mediation in an
exposure-outcome setting, the two-step MR approach could be
combined with the two-sample approach to powerfully and effi-
ciently examine the extent of mediation in causal networks (5).
First, the causal associations of both the exposure on the inter-
mediate and of an independent variant on the intermediate
could be established, and then in a larger population-based sam-
ple, the genetic associations with the disease outcome delineated
(Fig. 6). This gives two-step MR an advantage over traditional me-
diation approaches which require the exposure, mediator and
outcome to be measured in the same subset of individuals.

As with the causal inference test, complexity of associations
between omic level intermediates and inadequate biological
knowledge of the genetic variants associated with them pose a
challenge to Mendelian randomization. Arguably, the biggest chal-
lenge to overcome is that of potential pleiotropy of the genetic in-
strument (Box 2). Approaches which have recently been developed
to allow causal effect estimates in the presence of pleiotropy, and
which are also particularly relevant to causal inference for
molecular mediation, are described in more detail in Box 2.

In situations of reverse causation whereby a genetic variant
may be causing the outcome which in turn causes the molecu-
lar phenotype, rather than vice versa, bidirectional Mendelian
randomization using well characterized genetic variants for
both the molecular intermediate and the outcome may be used
to distinguish between these causal models (37,38).
Alternatively, the use of the Steiger test may be able to provide
evidence for the prevailing causal direction, based on the

                          Sample 1            Sample 2 

G1

E M Y

G2

E M Y

Step 1

Step 2

Figure 6. Schematic diagram of two-step, two-sample Mendelian randomization

In the smaller Sample 1, the association of the exposure to the intermediate is

established using an MR approach (using the exposure-related G1); and the asso-

ciation of an additional variant (G2, not related to the exposure) with the same

intermediate is established. G1 and G2 should be identified in an independent

study. In the larger Sample 2, the intermediate is shown to influence the out-

come through the use of G2, which is related to the outcome. N.B. the dotted ar-

rows represent the fact that these genetic variants, G1 and G2, influence the

intermediate or outcome indirectly through the exposure or intermediate,

rather than having a pleiotropic effect. In theory, G1 would also be found to

influence the outcome indirectly through both the exposure and intermediate.

Box 2. Consequences of pleiotropy and potential solutions for Mendelian randomization analysis

Pleiotropy is the phenomenon by which a genetic variant may affect more than one phenotypic characteristic (57–59). There
are two main mechanisms by which pleiotropy occurs: 1) a single locus influences a cascade of events e.g. a variant influ-
ences a particular molecular intermediate which causes perturbation in another phenotype (vertical pleiotropy) 2) a single lo-
cus directly influences multiple phenotypes e.g. via more than one post-transcriptional process (horizontal pleiotropy).
Vertical pleiotropy has also been referred to as ‘mediated pleiotropy’ (60) and is the very essence of the Mendelian randomi-
zation approach, in which the downstream effects of a phenotype are estimated through the use of genetic variants that re-
late to that phenotype. On the other hand, horizontal pleiotropy is more problematic as it violates the assumption that the
genetic instrument has no association with the outcome except through the intermediate phenotype being investigated and
its presence can bias Mendelian randomization effect estimates.

One potential means of investigating potential pleiotropy is with the use of multiple genetic instruments. With an amassing
number of independent instruments, it would be increasingly improbable that they would result in the same conclusion re-
garding a causal effect if they were all pleiotropic variants. In particular, the finding that all genetic variants have an effect
on the outcome to the extent expected given their effect on the exposure can be used to support an assertion of no horizon-

tal pleiotropy (5,61). If some variants deviate from this proportional effect, then the extent of directional pleiotropy can be in-
vestigated with the use of an approach known as “MR Egger” (62), and further derivatives including a weighted median ap-
proach (63), which can also be used to provide valid causal estimates even in the presence of pleiotropy.

A further approach used to separate independent effects of risk factors when multiple phenotypes are correlated with a particular
genetic variant or set of variants is with multi-variable Mendelian randomization analysis (64) which provides a more promising al-
ternative to analyses which attempt to isolate the effects of correlated phenotypes using regression-based approaches (65).
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estimated variance explained by the SNPs in the molecular phe-
notype and the outcome, as long as measurement error in the
molecular phenotype is lower than the product of the measure-
ment error in the outcome and the causal correlation between
the molecular phenotype and the outcome (66).

Conclusions
Mediation analysis and causation are linked concepts and the
former cannot be successfully applied without some consider-
ation given to the latter (67). Care must be taken when conduct-
ing mediation analysis in making sure that the assumptions
made in the causal model are justified (68). In particular, the
assumptions of no unobserved confounding and no measure-
ment error are often made in both conventional epidemiology
(exemplified in the Baron and Kenny approach) and computa-
tional systems biology (69) (exemplified in the Causal Inference
Test) which vitiate many of the models attempting to utilize
measured phenotypes and which therefore can lead to errone-
ous inferences or conclusions being drawn.

Mendelian randomization approaches hold promise for in-
vestigating mediation without relying on such strict assump-
tions (10,43,45). Furthermore, such techniques focus on
minimizing reliance on correlation statistics and maximizing
quantitative causal interpretation by using genetic variants as
causal anchors in situations of mediation. These approaches
are increasingly being used in an automated, hypothesis-free
fashion (51) and may be used to integrate multiple tiers of omics
data in a causal framework. This offers potential for identifying
novel risk factors and modifiable targets for intervention.

While MR is a helpful solution in some circumstances when
considering molecular mediation, it is not a global solution and
its application can be restricted due to the availability of genetic
instruments. In addition, while MR makes less strict assump-
tions about confounding and measurement error, it does make
other assumptions (39,70,71) which should be explored through
sensitivity analysis (62,63). We would also advocate an integra-
tion of causal inference approaches and the triangulation of
findings in the domain of high-dimensional molecular data to
improve the identification of causal mediating effects (6).
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