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Abstract

Mechanical properties of blood flow are commonly correlated to a wide range of cardiovascular diseases. In this work
means to describe and characterise the flow field in the free-slip and no-slip domains are discussed in the context of
cerebral aneurysms, reconstructed from in-vivo medical imaging. The approaches rely on a Taylor series expansion
of the velocity field to first order terms that leads to a system of ODEs, the solution to which locally describes the
motion of the flow. On performing the expansion on the vessel wall using the wall shear stress, the critical points can
be identified and the near-wall flow field parallel to the wall can be concisely described and visualised. Furthermore
the near-wall expansion can be expressed in terms of relative motion, and the near-wall convective transport normal
and parallel to the wall can be accurately derived on the no-slip domain. Together, these approaches give a viable
and robust means to identify and describe fluid mechanic phenomena both qualitatively and quantitatively, leading to
feasible practical use in biomedical applications.

From analysis of steady and unsteady flow simulations in two anatomically accurate cerebral saccular aneurysm
cases, a set of measures can be readily obtained at all time intervals, including the impingement region, separation
lines, convective transport near the wall and vortex core lines or structures, which have all been related to diseased
states. Other fluid mechanic measures are also discussed in order to give further detail and insight during post-
processing, and may play an important role in the growth and rupture of the aneurysm.

Keywords: description of flow field, flow structures, cerebral aneurysm, computational haemodynamics, critical
points, vortex core extraction

1. Introduction

It is commonly accepted that certain fluid mechanic measures in arterial haemodynamics are linked to disease
formation such as atheroma and aneurysms, and play a role in vascular remodelling. While the relationship between
the flow field and disease is not fully understood, fluid mechanics parameters on and near the artery wall, such as wall
shear stress (WSS) and derived measures, residence times and region of flow impingement are among the most com-
monly sought correlators to disease. This is often discussed in relation to mechanotransduction and mass transport. In
this work some physical insight of these parameters is presented and then related to possible signalling mechanisms
that endothelial cells may be endowed with. In this work the flow structures for two patient-specific saccular cerebral
aneurysm, shown in Figure 1, are studied at steady-state and unsteady periodic simulations, identifying feasible means
to describe and extract relevant flow measures.

The non-planarity and tortuousity of vessels play a determining role in the human arterial system, resulting in
a strong influence of the local vessel topology on the flow field [1, 2, 3, 4, 5, 6]. An abnormal flow field, usually
described as complex and disturbed, is often related to the diseased states. Elevated WSS values have also been
associated with aneurysm formation [7, 8], while temporal and spatial gradients and temporal directional fluctuations
[9, 10, 11, 12, 13] of WSS have also been studied in relation to aneurysm initiation and rupture. Vascular remodelling
is thought partly as an adaptive response to alleviate undesired haemodynamic conditions, such as high WSS and
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spatial WSS gradients in aneurysm formation [8, 11], or low and disturbed WSS in anastomosis remodelling and
atherosclerosis [14, 15]. Flow structures and their stability within the cardiac cycle have also been associated to
aneurysm rupture [13, 16]. Despite the consensus that the haemodynamic and mechanical properties in relation to
aneurysms play a crucial role, there is still substantial debate as to the most appropriate measures to discuss patient
healthcare and risks of rupture; furthermore the pathophysiology of cerebral aneurysms includes considerations of
factors such as genetic predisposition and biochemical reactions [17, 18, 19, 20].

Often aneurysms are studied from a geometrical standpoint, since in effect the shape of the aneurysm and the parent
artery act as boundary conditions and will determine the flow field (as well as the fluid boundary conditions at artificial
sections). Among these studies the curvature of the parent vessel upstream to the aneurysm has been correlated to
aneurysm rupture [21] and often the shape of the aneurysm is the most used criterion for clinical decisions [22, 23].

In this work methods based on existing theory of critical points [24, 25, 26] are used to characterise concisely both
the free-slip (fluid away from the wall) and no-slip (fluid on or near the wall) domains. These methods are shown to
give a description of the flow field in a simple approach, both to implement and also as tools to analyse the data. These
methods are meant to complement and assist the current trend of studies of diseases of human physiology related to
haemodynamics.

The outline of the paper is as follows: a brief outline of the patient data sets and the approach of reconstructing
a computational domain from medical images is given in Section 2. The parameters for the numerical simulations
are detailed in Section 3. In Section 4 the outline of the theory on the Taylor series expansions of the velocity, the
wall shear stress and the relative position is presented, and related to critical point theory. The results are presented in
Section 5 and finally the conclusions are given in Section 6.

2. Patient data sets

In this work two patient-specific geometries were reconstructed from medical images obtained in vivo from rota-
tional computed tomography angiography (CTA), provided as volumetric data with voxel resolution of ∼0.4 mm on
a 5123 grid. The reconstruction procedure of the 3D geometry surface for numerical simulations consists in image
segmentation and surface extraction, followed by surface smoothing and identifying the region of interest, and finally
meshing.

A constant threshold value for segmenting the image data is initially used, followed by a manual refinement to
exclude the most significant noise and artefacts. The contrast of object to background using rotational CTA images
is sufficiently large to allow this approach to be reliable. A marching tetrahedra algorithm, with linear interpolation
of the greyscale, is used directly on the voxel data to extract the 3D surface to yield an initial triangulation. This is
admissible due to the voxel fine resolution and uniform size. Together, the approach described so far is relatively fast
and inexpensive, with little effective user intervention. Several other possibilities exist to reduce the user intervention
and adopt more automatic techniques, and the most popular of these is use of deformable models [27, 28], however
each method has it’s limitations and at times necessitates corrective user intervention or careful coefficient choice.
Ultimately there is a uncertainty in the segmented geometry that is limited by the acquisition modality, resolution,
contrast and noise.

The resulting virtual model of the vasculature is then prepared for the numerical simulations by identifying the
regions of interest and removing secondary branches that are located far from the aneurysm. Surface smoothing is then
employed to reduce small surface perturbations due to medical imaging noise and resolution in combination with the
segmentation approach. Smoothing is performed using the bi-Laplacian method, an iterative method which resembles
an explicit time marching scheme, and a final small inflation along the local normal by a constant distance in order
to minimise the volume alteration and surface distortion [29]. The intensity of the smoothing, hence the number of
iterations performed, is chosen to reduce the surface curvature variation with the constraint that the resulting surface
definition does not deviate from the original more than half the voxel size, which is the basic unit size of uncertainty
in interpreting the medical images.

Figure 1 shows the cerebral arterial geometry surfaces, with several secondary branches and the saccular aneurysms,
as well as the resulting region of interest that includes the aneurysm and is used in the numerical simulations. In the
models used as computational domain, any secondary branches far from the aneurysm were excluded and the parent
artery is truncated with sections locally perpendicular to the axis of the vessel and in a region where the vessel is rel-
atively straight. The secondary branches are removed to reduce computational cost, and since far from the aneurysm
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Case 1 Case 2

Figure 1: Top row: region of segmented cerebral vasculature and region of interest containing the aneurysm (flow is from bottom to top) for two
patient data sets. Bottom row: detail of region of interest used as computational domain (flow is from left to right).

they have a reduced effect on the flow field in the sac, with the error incurred comparable to other modelling uncertain-
ties. Furthermore a long upstream section was chosen in order to reduce effects of inflow boundary condition choice
on the resulting computed solution.

3. Parameters of the computational haemodynamics

The computations were performed using OpenFOAM software package [30] which relies on the finite volume
method. The simulations were run for steady-state for the two patient cases and unsteady for Case 1. These simulations
were chosen in order to be able to both emphasise the use of the proposed methods clearly with steady-state, as well
as demonstrate the relevance in more physiological scenario with the unsteady computations. The schemes used are
the well known SIMPLE method for the steady-state and PISO for the unsteady computations. Convergence criterion
was set to 10−8 on the residual.

The vessel wall was assumed rigid and the fluid boundary conditions were chosen to be no-slip for the vessel
wall, a zero pressure gradient was prescribed at the outflows (including for the secondary vessel for Case 2) and the
inflow flow rate was obtained using the relation Q = k · An (where k = 48.21 and n = 1.84) [31]. The cross-sectional
areas of both cases was found to be almost identical, resulting in a Q = 4 × 10−6m3/s, hence Re ≈ 260. The fluid is
modelled as Newtonian and incompressible, and the kinematic viscosity was chosen to be ν = 3.883× 10−6m2s−1 and
the density ρ = 1030 kg/m−3. The unsteady waveform was scaled from that provided in [13] and the time step was
chosen to be 0.0085 s, hence 100 steps for each heartbeat (0.85 s), and a total of fifteen heartbeats were simulated to
avoid transients due to the initial conditions (zero velocity and pressure).

The mesh was unstructured tetrahedral elements, created using the Gmsh software package [32]. Mesh conver-
gence studies were carried out on Case 1, using a 0.8M and 4.6M element meshes for the steady-state computations,
based on differences in the interpolated velocity field. The unsteady simulations were performed with the coarser
mesh size. The mesh for Case 2 comprised of 2.6M elements, since the length of the computational domain is less
than for Case 1.
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4. Methods for analysing the flow field

In this section methods for characterising the flow field are presented, based on truncated Taylor expansions of
velocity, wall shear stress or relative position. The free-slip and no-slip regions of the flow field are considered
individually. The free-slip domain description of the fluid mechanics is based on the velocity gradient tensor, while for
the no-slip region the wall shear stress gradient tensor is used and finally the local convective transport and momentum
transfer is described in terms of the wall shear stress gradients.

4.1. Invariants of the velocity gradient tensor
Vessel non-planarity and vessel curvature have long been acknowledged to play an important role in physiological

flows [1] and known to form vortical structures [33]. These tend to be the dominant structures in physiological
flows, which do not commonly exhibit turbulence, and affect the flow stability as well as mixing and other transport
properties [4, 3]. Vortices have been widely studied with a range of criterion to extract both the surface as well as the
core-line, with the most widely used in 3-dimensional studies being the λ2 criterion [34], the Q criterion [35], the ∆

criterion [36] which are based on the velocity gradient tensor or its symmetric and antisymmetric parts [34, 37], as
well as other measures such as the helicity [38] and the vorticity magnitude. Other notions of coherent structures are
defined by the finite-time Lyapunov exponent [39, 40] and the closely related Lagrangian coherent structures [41, 42].

In this work we will discuss the computed flow field using the velocity gradient tensor due to the simplicity, ease
of calculation and detail of insight that can be obtained. The analysis remains local however, such that time integrated
effects and structures should be described by particle tracking or other means.

Let us consider a flow field free of singular cases such as shocks and vortex sheets. A Taylor series can be used to
expand the velocity in terms of the spatial coordinate around an arbitrary point O in the flow field. This is equivalent
to performing a perturbation of the velocity field with respect to the spatial coordinates.

ui = ẋi = Ai + Ai jx j + Ai jk x jxk + . . . , i, j, k = 1, . . . , 3, (1)

where Ai j is the velocity gradient tensor given by

A = Ai j = (∇u) =
∂ui

∂x j
= ui, j, i, j = 1, . . . , 3. (2)

Note that the velocity gradient tensor can be written as A =
∂u j

∂xi
= u j,i elsewhere in the literature [43, 44].

If the coordinate system is assumed to translate without rotation, with the origin following a passive particle trace,
then the origin is a critical point location. In this frame of reference Ai = 0, and if O is on a no-slip boundary, then
also Ai j = 0.

Truncating second and higher order terms in equation 1 results in a linear system of ODEs, hence ẋ = A · x, or
explicitly  ẋ1

ẋ2
ẋ3

 =

 u11 u12 u13
u21 u22 u23
u31 u32 u33


 x1

x2
x3

 , (3)

whose solution involves either real or imaginary eigenvalues (λi, i = 1, . . . , 3):
x1(t) = x1(0)eλ1t

x2(t) = x2(0)eλ2t

x3(t) = x3(0)eλ3t
,


x1(t) = x1(0)eλ1t

x2(t) = eλ2t[x2(0)cos(λ3t) + x3(0)sin(λ3t)]
x3(t) = eλ2t[x3(0)cos(λ3t) − x2(0)sin(λ3t)]

. (4)

These are the local instantaneous streamlines, hence describing locally the motion of the flow. In unsteady flow, the
expansion in equation 1 is applied at a moment in time, such that the solution trajectories correspond to particle paths,
which do not generally coincide with streamlines except at an instant. These analytic solution trajectories have been
used in particle tracing for linear tetrahedral elements [45] and tracing stream-surfaces [46].

For clarity we will order the eigenvalues such that, if they are all real then λ1 ≥ λ2 ≥ λ3, while if the solution
comprises of a real and complex conjugate pair then λ1 is real and the complex conjugate pair is given by λ2 ± iλ3.
The corresponding unit eigenvectors are denoted by ζ1, ζ2, ζ3. The eigenvectors indicate the principal directions of

4



(a) (b) (c)

Figure 2: (a) Solution trajectories can be either node-saddle-saddle or focus-stretching, as well as either stable or unstable. The axes are the
eigenvectors of the velocity gradient tensor. (b) Sample trajectory for steady-state computations of patient Case 1 and (c) region detail of trajectory
in a vortical structure showing the plane of swirling and the axis of stretching, given by the eigenvectors of the velocity gradient tensor.

motion of the flow surrounding the critical point, hence they define the planes in which the solution locally osculates,
see Figure 2. In the case of three real eigenvalues, the solution trajectories osculate three distinct planes, while if the
solution involves a complex eigenvalue, only one plane exists, given by the eigenvectors of the complex conjugate
eigenvalues. In this case the plane defines the plane of rotation, while the eigenvector associated to the real eigenvalue
indicates the local axis of swirling. It is important to note that the eigenvectors need not be orthogonal except in the
case of irrotational flow.

In the case of an incompressible flow, the trace of the velocity gradient tensor is tr(∇u) = ∂u1/∂x1 + ∂u2/∂x2 +

∂u3/∂x3 = 0 = λ1 + λ2 + λ3 (= λ1 + 2λ2 if complex). Furthermore the ratio of the eigenvalues, if real will indicate
the level of stretching and compressing of the flow along the eigenvectors, and if complex provide the spiralling
compactness by λ2/λ3, since from equation 4 the time period of one revolution in the spiralling plane is given by
2π/λ3 [37].

By tracking a passive particle path and plotting the associated eigenvectors, one can perceive the local dynamics
surrounding the trajectory. In Figure 2 detail of a passive particle trajectory is shown in the region of a vortex structure
such that there is a real and complex conjugate pair of eigenvalues. The local osculating plane and axis of swirling
are superposed on the detail of the particle trajectory.

Given eigenvalues λ1, λ2, λ3 of the velocity gradient tensor A = ∇u, the eigenvalue problem [A − λiI]ζi = 0,
i = 1, . . . , 3, where ζi is the eigenvector associated to λi, can be determined solving the characteristic equation det[A−
λiI] = 0. For a 3 × 3 matrix as is our case, this can be written as

λ3
i + Pλ2

i + Qλi + R = 0, i = 1, . . . , 3, (5)

where P,Q and R are the invariants

P = −(u11 + u22 + u33) = −tr(A),

Q =

∣∣∣∣∣∣ u11 u12
u21 u22

∣∣∣∣∣∣ +

∣∣∣∣∣∣ u11 u13
u31 u33

∣∣∣∣∣∣ +

∣∣∣∣∣∣ u22 u23
u32 u33

∣∣∣∣∣∣
R =

∣∣∣∣∣∣∣∣
u11 u12 u13
u21 u22 u23
u31 u32 u33

∣∣∣∣∣∣∣∣ = −det[A]

(6)

The surface that divides the real from complex solutions of the eigenvalues can be shown to be 27R2+(4P3−18PQ)R+

(4Q3 − P2Q2) = 0 [47]. For incompressible flow however P = 0 and the divisory line in the Q − R plane becomes
27
4 R2 + Q3 = 0, as shown in Figure 2. In this way the invariants Q and R can be used directly to describe the flow field.

The velocity gradient tensor can be split into a symmetric and antisymmetric part, corresponding to rate-of-strain
and rate-of-rotation tensors, hence ∇u = ∂ui/∂x j = S i j + Wi j, i, j = 1, . . . , 3, where S i j = (∂ui/∂x j + ∂u j/∂xi)/2 and
Wi j = (∂ui/∂x j − ∂u j/∂xi)/2. Following the analysis above, the invariants of S i j are QS and RS , while the invariant
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(a) (b) (c)

Figure 3: Detail of distal aneurysm neck region of steady-state computations for Case 1. The images show surface shear lines and WSS critical
points, which are coloured such that green indicates a complex conjugate pair solution (spiralling motion), blue indicates real solutions and red
are locations a small distance along the eigenvectors (hence principal directions. (a) Passive particle streamlines in the fluid domain indicate flow
separation (red) and vortex cores touching the wall (blue) which are also identified by the WSS critical points. (b) Plot of TR (/Pa m−1) as the
convective transport normal where positive values indicate flow movement to the wall and negative is movement away from the wall. The region
of flow separation is marked as strong movement away from the wall for example. (c) Plot of WSS (/Pa) and describes the convective transport
parallel to the wall.

of Wi j is QW , noting that P, PS , PW and RW = 0 for an incompressible flow. Physical meaning to these invariants
is briefly given as follows [48]: Q = QS + QW is a measure of the rate of rotation over strain rate; QS ∝ rate of
viscous dissipation of kinetic energy, QW ∝ vorticity intensity, positive RS is associated with sheet-like structures, and
negative RS to tube-like structures. These invariants are widely used in the study of fluid mechanics and turbulence,
see [48] and references therein.

Other measures of describing the flow field are varied, including vorticity stretching [49] or lumped vorticity rings
[43]. Since the circulation is constant for a closed curve group of fluid elements in the absence of rotational external
forces, from Kelvin’s law, a corollary from Helmholtz second law, and also from Helmholtz first law stating that the
strength of a vortex filament is constant along its length then, tracking the lumped vorticity ring over limited distances
(before large distortions occur) will allow for a qualitative representation of the flow dynamics with respect to the
vortex structure. As stated in [43] the tracking of this lumped vortex ring (or set of rings) of iso-vorticity at the inlet
allows for a clear identification of rapid stretching and hence the behaviour of the vorticity and the vortex structures.

It should be noted that in the case of linear tetrahedral elements, the velocity gradient tensor is constant over the
element, and facilitates the post-processing considerably. It is in fact this property that is often used in extracting the
vortex cores. A number of methods exist in extracting the vortex cores, however the most popular are based on the
reduced velocity in the element [50, 51] and the higher order method approach [52]. Here we introduce a further
method that is less computationally expensive and is based once again on the velocity gradient tensor [25, 46]. In
[25], the set of possible solutions of the eigenvalues for a linear tetrahedral element is presented, with a corresponding
discussion of existence of a unique critical point and degenerate cases. In the case of a swirling flow such that the
dynamics involves an osculating plane and an axis of rotation, the eigenvalues of the velocity gradient tensor are
λ1, λ2 ± iλ3. Two solutions are admissible, λ1 = 0, λ2 ± iλ3, λ3 , 0 for which no unique critical point exists and the
motion is circular around the axis, and λ1 , 0, λ2 ± iλ3, λ3 , 0 in which the motion is spiralling about the axis and
a critical point does exist. The identification of the vortex core relies on noting if the axis of rotation passes through
the tetrahedron element under consideration, which can readily be performed based on barycentric coordinates or
intersection with the tetrahedral’s four planar triangle faces. The result is a set of points (at least one per tetrahedron)
that can be connected based on the existence of a point in a neighbouring tetrahedron element, though this has not
been performed in the current work. This method is sensitive to noisy data (since the gradients of velocity are obtained
from a piecewise linear field) and certain spurious disconnected points can be obtained.

4.2. Invariants of the wall shear stress gradient tensor

A similar analysis can be performed using the wall shear stress on the walls of the domain instead of the velocity
field [53]. This is performed by firstly projecting the magnitude and direction of the wall shear stress onto two or-
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Figure 4: Surface shear lines, obtained by integrating the traction force components on the wall, coalesce (or diverge) and due to continuity the
fluid moves away (or towards) the wall gradually, such that a ∝ (bτw)−1/2, from equation 7, where τw is the wall shear stress magnitude.

thogonal directions (hence local 2-dimensional coordinates) for each triangle mesh element that defines the bounding
geometry. Considering now this projected wall shear stress field for each element, a similar Taylor expansion as in
equation 3, truncated to include only the first term, can be used to obtain a set of two first-order ODEs. Since the
triangle elements are piecewise-linear and hence planar, the analysis is essentially two-dimensional. The critical point
analysis can be then performed and a full description of the permissible sets of eigenvalues for a 2-dimensional case
of a linearly varying field is also discussed in [25]. The critical points can be either foci or saddle configurations,
where the foci can have two real eigenvalues or a complex conjugate pair.

In doing so the near-wall flow parallel to the wall can be described concisely and elegantly. For critical points with
a real set of eigenvalues, a point a small distance along the eigenvectors can also be plotted in order to identify the
principal directions of the motion visually. These points can be used as seeding locations for integration of the wall
shear stress on the surface to obtain surface shear lines (sometimes termed ‘limiting streamlines’, ‘surface streamlines’
or ‘skin-friction lines’ elsewhere in the literature), hence the lines that are aligned to the tangential component of the
viscous traction exerted by the flow on the wall. This leads to a minimal set of surface shear lines (since they must
start and end at a critical point, principal directions bound a region, and the lines cannot cross each other) that describe
the tangential components of the flow near the wall, and are important in identifying features such as regions of flow
separation and impingement.

It should be noted that this wall shear stress critical points analysis in the 2-dimensional case on the wall is a
simpler approach to discuss the 3-dimensional flow field close to the wall. For example a complex conjugate pair of
eigenvalues identifies where a vortex structure is rooted at the wall, a set of real positive eigenvalues indicates a point
of flow impingement (and point flow separation if both negative, though this is in practice not common) and a saddle
configuration (one positive and one negative real eigenvalues) often indicates a point on a line of flow separation.
Examples of separation schematics can be found in [54, 55, 56, 57]. Figure 3 shows detail of steady-state simulations
of Case 1 at the distal region of the aneurysm neck. Critical points of the wall shear stress are identified and surface
shear lines are plotted, which together map clearly the near wall fluid dynamics tangential to the wall.

4.3. Near-wall convective transport
The above discussion has looked at describing the free-slip flow field and the tangential component of the flow

field near the wall. In this section we discuss the near-wall transport perpendicular to the wall, that is of importance in
physiological flows from the stand point of exchange processes and interactions between flow and wall. The near-wall
convective transport normal to the wall discussed here describes how the flow moves from or returns to the surface
gradually. The method follows the work of [26], in which the values of low WSS and transport to the wall were
correlated to inwards vascular remodelling for two post-operative peripheral bypass grafts.
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For gradual convective transport normal to the wall, a measure of the strength is given by the surface shear line
convergence (or separation) [56]. This observation was first explained in [57, 58] by considering Figure 4 as follows:
let the flow be steady and incompressible, then mass flux is constant and is given by ṁ = ρabū, where ū is the mean
velocity of the cross section. Considering the cross section to be small such that the wall shear stress magnitude is
given by τw = µ

(
2ū
a

)
, where µ is the dynamic viscosity, and substituting we obtain:

ṁ = constant =
a2bτwρ

2µ
(7)

Rewriting this we find that a ∝ (bτw)−1/2; hence for a constant wall shear stress magnitude, the convective transport
normal to the wall is inversely proportional to the root of the distance between the surface shear lines. The coalescence
or separation of the surface shear lines can therefore be an indication of flow moving from or returning to the surface.
This approach is difficult to use quantitatively in practice as it requires information of relative position of traced points
along the surface shear lines.

A different approach to describe the near-wall convective transport is derived by considering a series expansion of
Lagrangian dynamics of a fluid. The approach used follows closely that of [26] and is presented in terms of the wall
shear stress gradients. Near wall residence times and convective transport parallel to the wall are also linked to the
wall shear stress. A brief derivation is now given.

Imagine a flow with velocity u(x, t) = (u(x, t), v(x, t),w(x, t)) over a wall and let (i, j, k) denote the unit vectors in
the (x, y, z) directions respectively. Let us consider a point on the wall with position vector x0w = (0, 0, 0) and select a
particle at time t = t0 released from an initial position x0 = (δx, δy, δz), then after a short time δt the separation of the
particle from its initial position can be expressed by a Taylor series expansion in time, given by

x(t0 + δt) − x(t0) = δt
(

dx
dt

) ∣∣∣∣∣∣∣
x0,t0

+
1
2
δt2

(
d2x
dt2

) ∣∣∣∣∣∣∣
x0,t0

+ O(δt3) (8)

where (
dx
dt

) ∣∣∣∣
x0,t0

= u(x0, t0)(
d2x
dt2

) ∣∣∣∣
x0,t0

=
(

du
dt

) ∣∣∣∣
x0,t0

=
(
∂u
∂t + u · ∇u

) ∣∣∣∣
x0,t0

(9)

To simplify the expansion further we now consider the wall to be in the x− y plane such that the surface normal is the
z direction. The velocity at a point near the wall x0 = x0w + δx can be expanded using a Taylor series expansion in
space. Remembering that the velocity components at the wall are zero, the spatial gradients in the plane of the wall
are zero, from continuity ∂u/∂x + ∂v/∂y + ∂w/∂z = 0, and hence also ∂w/∂z = 0, then we obtain

u(x0, t0) =

(
δz

(
∂u
∂z

) ∣∣∣∣
x0w,t0

+ 1
2δz

2
(
∂2u
∂z2

) ∣∣∣∣
x0w,t0

)
i

+

(
δz

(
∂v
∂z

) ∣∣∣∣
x0w,t0

+ 1
2δz

2
(
∂2v
∂z2

) ∣∣∣∣
x0w,t0

)
j

+

(
1
2δz

2
(
∂2w
∂z2

) ∣∣∣∣
x0w,t0

)
k

(10)

Making one final substitution by rewriting the velocity derivatives for a Newtonian flow in terms of the wall shear
stress components

τx

µ
=

(
∂u
∂z

) ∣∣∣∣
x0w,t0

;
τy

µ
=

(
∂v
∂z

) ∣∣∣∣
x0w,t0

(11)

we can then expand x(t0 + δt) − x(t0) from equation 8 in its terms of the Taylor series expansion up to second order
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terms, distinguishing the components in the direction parallel and normal to the wall

x(t0 + δt) − x(t0) =

O(δt · δz) :
(
τx
µ

)
i +

(
τy

µ

)
j

O(δt · δz2) : 1
2µ

( ∂τx
∂z

)
i +

(
∂τy

∂z

)
j

 − 1
2µ

(
∂τx
∂x +

∂τy

∂y

)
k

O(δt2 · δz) : 1
2µ

( ∂τx
∂t

)
i +

(
∂τy

∂t

)
j


O(δt2 · δz2) : 1

2µ

(
τx

∂τx
∂x + τy

∂τx
∂y + ∂2τx

∂z∂t

)
i

+ 1
2µ

(
τx

∂τy

∂x + τy
∂τy

∂y +
∂2τy

∂z∂t

)
j

+ 1
2µ

(
∂2τx
∂x∂t +

∂2τy

∂y∂t

)
k

(12)

From this the dominant component parallel and normal to the wall are time independent and given by

(x(t0 + δt) − x(t0))i = (δt · δz)
(
τx
µ

)
(x(t0 + δt) − x(t0)) j = (δt · δz)

(
τy

µ

)
(x(t0 + δt) − x(t0))k = − 1

2µ (δt · δz2)
(
∂τx
∂x +

∂τy

∂y

) (13)

Equation 13 states that the steady state near-wall convective transport parallel to the wall is proportional to the tangen-
tial wall shear stress components, while the transport normal to the wall is proportional to the spatial gradients of wall
shear stress in the plane of the wall. Together, the directional components give an indication of the local near-wall
residence times.

Studies on flow-mediated mechanotransduction suggest that sensed haemodynamic stresses generate signals and
responses from a biochemical perspective, indicating an adaptive auto-regulation to local factors [18, 19, 59, 60, 11].
The sensory mechanisms are usually attributed to the endothelial cells typically concerning changes in the flow or
abnormal flow patterns, discussed commonly in terms of wall shear stress and derived parameters (such as WSS
spatial and temporal gradients), which can stimulate proliferation, permeability and migration. Sensory mechanisms
for the endothelial cells to feel these alteration in the wall shear stress and the spatial gradients of wall shear stress
have long been sought, however from equation 13 these are easily identified physically from the components of the
near-wall velocity: the tangential component is related to shear while the vertical to a change in momentum. A greater
number of parameters are feasibly detectable by the endothelial cells (even if currently the mechanisms and pathways
may still be unknown), such as the temporal gradients of wall shear stress, and importantly these can be related to
near-wall transport mechanics from equation 12.

In the results discussed below, the strength of the near-wall convective transport normal to the wall is identified by
the quantity

TR =
∂τζ1

∂ζ1
+
∂τζ2

∂ζ2
(14)

where τζ1/µ = −→n · ∇(u · −→ζ1) and τζ2/µ = −→n · ∇(u · −→ζ2), with −→ζ1 and −→ζ2 as the perpendicular unit tangent vectors and −→n
as the unit normal vector to the individual triangular surface elements. In this way the triangular faces are considered
individually to calculate the WSS gradients as a post-processing step, and an average at the element vertices is then
performed considering all adjacent elements since the spatial gradients will be discontinuous across the elements. In
this work the convention of negative values of TR indicates convective transport from the wall, and positive values
indicate transport to the wall. The results of TR can be used in conjunction to the surface shear lines coalescence or
separation for easy of interpretation if required, however this is valid in regions of relatively constant wall shear stress.
Example of the use of TR is shown in Figure 3, in which region of flow separation at the distal region of the aneurysm
neck is identifiable easily, as well as other flow features.
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An important feature of this analysis is that, using derivatives of the fluid mechanic properties on the wall and
relating them to the transport, near-wall free-slip flow field can be approximated by integrating the derivatives, and
examples of this are shown in [26].

5. Results

Applying the above methods to the steady-state simulations for both patient Cases and the time-periodic simulation
of patient Case 1, the free-slip and no-sip regions are now analysed. We first present the steady-state solutions using
the methods discussed above to describe the key flow features in the free-slip domain and importantly how these are
related to the no-slip domain. The results of these steady-state simulations are shown in Figure 5 for both Cases and
those of the unsteady simulations are shown in Figure 6. The vortex core points appear unaligned and some single
dispersed points are identified in the flow field erroneously; this has been identified to be due to the interpolation
of cell-centered data obtained from the finite volume computations onto a node-centered data used in the analysis,
and from the numerical accuracy of the computational result from which the post-processing of derivatives leads to
additional errors.

Two important points are first addressed from the results of Figure 5: firstly the use of streamlines to describe the
flow field, as discussed in [16] with relation to correlation to aneurysm rupture, can be rather difficult to discern and
classify and a less cluttering approach is needed; secondly the λ2 criterion for vortex structure identification does not
align in fact to the vortex cores. This second point can lead to misleading conclusions about the flow structures, the
reason for this is due to the viscous terms in the Navier-Stokes equations, and discussed in greater detail in [36], such
that a pressure minimum in the plane (which is the basis of the λ2 criterion [34, 43]) may not be appropriate.

The surface shear lines and the critical points of the WSS, in conjunction to plots of the WSS and TR, can be
used to describe the no-slip domain entirely. The critical points of the WSS act as dividing lines to the surface shear
lines, bounding these to common regions. The critical points furthermore identify locations of flow separation and
impingement, and the type, i.e. if a vortex is rooted at the wall or a simpler arrangement is present. The WSS and TR
locally identify the velocity of the fluid near the wall, in the tangential and normal directions. In this way a complete
description of the no-slip domain is presented in a concise and physically intuitive form. The vortex core points on
the other hand act as skeletonisations of the free-slip domain by identifying the axes of rotation (not always part of
a vortex therefore), as well as other measures such as the rate of stretching, spiralling intensity and local osculating
planes, if desired. The strongest vortex cores, that leave the aneurysm through the side branch or the main arterial
vessel, in fact appear to be anchored to the vessel wall, as seen from the critical points of the WSS. It is further
possible to identify from the values of TR and the critical points of WSS the effect of the swirling motion in the flow
field around the vortex cores; for example in the case of a vortex lying adjacent to the wall a net division of sign of
TR is observed, while the surface shear lines would be at an angle to this division.

In Figure 6 snapshots of the solution at three time intervals are presented. The interest is to identify clearly and
easily the characteristics of the flow field. An interesting result that emerges is the relative constancy of TR during
the cycle, while the WSS is seen to vary more noticeably. A further distinguishing feature is the persistence of the
vortex core anchored to the proximal portion of the aneurysm dome (identified easily from the WSS critical points)
and continues to the distal parent artery. During diastole the flow field in the aneurysm becomes more complex due
to the fluid deceleration, as seen by an increased number of WSS critical points and vortex cores, however by the
end of the diastolic phase (at the end of the heartbeat) the flow field has again become relatively simplified. A more
in-depth analysis of the time snapshots will be interesting to identify the change in the WSS critical points and the
vortex cores, the behaviour and stability of which may lead to correlation and classification of aneurysm rupture or
growth directions.

6. Conclusion and future work

The local dynamics for both the free-slip and near-wall flow regions can be studied using the Taylor series ex-
pansion of the velocity, wall shear stress or relative position. This leads to a detailed local information of the flow
field that can aid the discussion of fluid dynamic phenomena concisely. The use of these methods has been shown to
provide a clear and in-depth description of the flow in two patient-specific geometries of saccular cerebral aneurysms.
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(a) (b)

(c) (d) (e)

(a) (b)

(c) (d) (e)

Figure 5: Steady-state computations for Case 1 (top) and Case 2 (bottom). (a) Streamlines and vortex core points coloured by the magnitude of the
complex eigenvalue (λ3) of the velocity gradient tensor, hence the rate swirling. (b) Vortex core points and iso-surfaces of λ2 = −104 for vortex
identification [34]. Plots of surface shear lines and WSS critical points (same colouring scheme as in Figure 3) and (c) plot of WSS (/Pa), (d) TR
(/Pa m−1), (e) vortex core points.
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Figure 6: Top row: cardiac cycle and the three locations for which the results are presented. Plots of surface shear lines and WSS critical points
(same colouring scheme as in Figure 3) and (a) vortex core points, (b) TR (/Pa m−1), (c) WSS (/Pa).
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The description is similar to other works involving vortex stability during the cardiac cycle, wall shear stress magni-
tude and impingement size areas, however the approaches of extracting these results provided in this work have the
advantage of being simple to calculate, provide a clear physical basis to the measures, are robust and avoid a large
amount of clutter in the analysis that is otherwise inevitable.

The unsteady simulations and use of the above described methods, have identified that the WSS critical points
(hence also the surface shear lines) alter noticeably during the cardiac cycle, however the transport normal to the wall
and the dominant vortex core remain largely unaltered. The deceleration phase of the cardiac cycle causes a larger
number of smaller vortices to be formed in the aneurysm. The region of flow separation at the aneurysm neck is not
seen at the peak systole. Other flow features that can concisely describe the flow have also been discussed.

An important physical analysis of the WSS spatial and temporal gradients from equation 12 sheds light on widely
used fluid dynamic parameters correlated to disease. These are related to the near-wall transport, and this physical
interpretation can be linked to possible sensory mechanisms of the endothelial cells, and hence mechanotransduction
and related biochemical signalling.

The analysis has been performed on cerebral aneurysms and can foreseeably be extended to study a greater number
of geometries and applications to provide a more learned understanding of human physiology in normal and diseased
states. Future work would primarily be use of a larger number of data sets in order extract correlations and statistical
measures related to aneurysm growth and rupture.
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