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not only in the formulation of the mathematical equations, but also in the setup definition of the prob-
lem which includes setting coefficients and boundary conditions. In this work we specifically consider
uncertainty associated to numerical simulations of patient-specific blood flow, however the methodology
can naturally be extended to other flow problems.

Another important technological development of the last few years has been in medical devices, in-
cluding medical imaging. Patient-specific studies using non-invasive clinical imaging data, that can be
acquired as part of current medical protocols, have become routine in the research community. Such
numerical simulations have played a part in further understanding many cardiovascular diseases due to
the accurate and high resolution computed solution. It has enabled researchers to probe, query and ob-
serve complex and coupled phenomena based on the mathematical models. The validation of numerical
simulations of patient-specific studies largely remains an open problem as there is no means for accurate
benchmarking for a given clinically acquired dataset. Hence, while the complexity of problems being
modeled has increased with greater sophistication in the mathematical description, used to build a more
realistic behavior of human physiology, the possibility of feasibly bracketing errors, due to model or setup
uncertainty, has grown more difficult and unattainable.

The imaging data, from which patient-specific studies are built upon, are acquired from non-invasive
(or minimally-invasive) medical imaging, such as magnetic resonance imaging (MRI) or computed tomog-
raphy (CT), with or without contrast. To some extent, also Doppler ultrasound can be used, though it
is generally of lower resolution. These data sets contain errors typically in the form of noise and limited
resolution, and a multitude of artifacts and signal degradation can occur (cf. [1, 28, 37]). Sophisticated
image processing may be used to reconstruct a 3-dimensional computational model. It has been seen
however, that a substantially different choice in the image processing method will give different results.
The reconstructed geometry hence varies, with no way of knowing what is the ground truth.

Several studies ([4, 14, 17, 25]) have looked at variability in the reconstructed geometry definition and
reported differences in physiologically relevant measures associated to disease (typically the wall shear
stress and derived measures). In a similar fashion, there is uncertainty regarding which rheological model
for blood to choose [16,23], appropriate inflow/outflow boundary conditions to set [26,30] and parameters
for the structural models describing the vessel lumen and surrounding tissue [24, 27, 35]. Uncertainties
can be mitigated by sampling the parameter space, estimating therefore error bounds. While this is
unfeasible for a general problem, due to high computational costs, a subset of relevant measures can be
investigated in order to obtain credible results and correlations to disease descriptors [14]. Such selective
sampling of the parameter space often requires human intervention and remains subjective. A preferred
approach would be to have an automatic method to obtain the unique solution that minimizes an error
cost function, based on some extra observations obtained from clinical imaging data. Such solution can
help setting the parameters for the numerical simulations.

We take this as our starting point and motivation for the current work. The simulation methodology
presented in this paper assures the minimization of error in the solution, that can be associated to any
form of uncertainty in translating the clinical data to a computational domain and setup. The approach
is suitable for patient-specific studies and needs two forms of data: i) a stack of medical images (e.g. CT
or MRI) from which to reconstruct an approximate computational domain; ii) and a few cross-sectional
velocity contours, that can be obtained from phase-contrast magnetic resonance imaging (PC-MRI), which
can be corrupted due to noise or limited resolution. Once we assume this, a misfit between the measured
velocity data and the computed solution is minimized. This implies a control of the velocity values at
the boundary of the approximated computational domain. Optimal control techniques in cardiovascular
modeling have been used recently in the frame of Data Assimilation (DA) (cf. [7, 8, 19]). Although
our approach allows the velocity profile reconstruction (the subject of DA), we are mainly interested in
reducing the uncertainty associated to the reconstructed domain.

The work presented in this paper outlines the methodology with application to 2-dimensional problems,
with more realistic 3-dimensional cases as scope for future work. For each case, a ground truth solution is
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generated in order to compare and evaluate the minimal error solution obtained from an optimal control
methodology. The cases studied are presented in order of increasing complexity.

The control parameters are the velocity Dirichlet conditions that describe both the truncated domain
inflow sections and the geometry wall. The outflows are given by a traction-free (Neumann) condition
and are not a parameter in the optimal control, but remain a solution of the Navier-Stokes equations. An
initial guess solution for the optimal control problem is arbitrary, and given here as an average velocity
flow field, however, other easily available options including a uniform zero-velocity field and the solution
of the flow field in the approximate computational domain, can also be tested.

The organization of the paper reads as follows. In Section 2 we briefly recall the mathematical models
commonly used to model blood flow in the vascular system and we introduce the boundary control
problem that we will use as a tool to reconstruct the blood profile in the approximated geometries. Next,
in Section 3, we describe the numerical approach to solve the optimal control problem. Finally, we present
in Section 4 the numerical results obtained for different idealized geometries.

2. Mathematical model and control problem

2.1. Mathematical model for blood flow

In this section we assume that Ω represents the fluid domain, which corresponds to the lumen of the
artery, as shown in Figure 1. The boundary of Ω consists of the artery interior wall, represented by Γwall,
and two artificial boundaries Γin and Γout to truncate the domain from the whole system. We also call
Γin the inlet which corresponds to the proximal section, where the average mean flow is negative with
respect to the section outward-pointing normal direction. As to Γout, we also call it the outlet which
corresponds to the distal section, where the average mean flow is positive with respect to the section
outward-pointing normal direction.

From the linear momentum and mass conservation equations we can derive the blood flow model. For
our purposes we assume blood to be an isothermal, viscous and incompressible fluid. Hence we obtain
the equations {

ρ
(∂u

∂t
+ (u · ∇)u

)
− div τ +∇p = f in Ω

div u = 0 in Ω
(2.1)

where the stress tensor τ is given by the constitutive equation

τ = 2µDu, where Du =
∇u +∇uT

2
.

The dynamic viscosity µ can be considered either as constant or as shear rate dependent. In fact, blood
may present a shear-thinning behavior which can only be accurately represented using a non-Newtonian

Figure 1. Representation of the domain Ω

3
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model in which the viscosity is no longer a constant; see for instance [31]. Since here our main focus is the
recovery of accurate boundary conditions and the vessel wall, to simplify, we assume that the viscosity is
constant and blood is modeled as a Newtonian fluid by the well known Navier-Stokes equations.

In order to close system (2.1) and obtain a well posed model, we fix the velocity to be zero at Γwall
and we impose the so-called homogeneous Neumann boundary conditions

(−pI + 2µDu) · n = 0 on Γout.

Here n represents the exterior unit normal vector to the surface and I the identity matrix. Finally, we fix
a velocity profile at the inlet Γin. The right hand side of the balance of the momentum is only composed
by the constant gravity force, which can be considered as part of the pressure p by a suitable change of
variables. Therefore, for simplicity, we can consider it to be f = 0. Furthermore, we will only deal with
the stationary model, neglecting therefore the time dependence. For more details on the mathematical
modeling of blood flow we refer to [29].

2.2. The optimal control problem

As mentioned in the Introduction, there is an inherent uncertainty when performing patient-specific
numerical simulations. In order to obtain some indicative measure of error bounds, one approach consists
in sampling the uncertainty parameter space to carry out the study. When dealing with the uncertainty
associated to the geometry reconstruction, the parameter space can be prohibitively large. Here we
propose a less computationally intensive approach based on an optimal control problem.

The inlet velocity profile at the artificial boundary condition Γin, and the location of the no-slip
boundary condition that defines the reconstructed wall Γwall, are often indicated as key measures that
propagate to the solution of equation (2.1). This is especially relevant when considering fluid mechanics
measures with physiological interest, such as the wall shear stress [13, 15]. A good criterion to set the
correct Dirichlet boundary conditions is therefore imperative.

In order to perform a comparison of different boundary conditions we must accept that some data of
the true solution itself is available (even if corrupted by noise). Here we assume to know the velocity
profile on some sections of the lumen, possibly obtained very close to the boundary wall. We take Ωobs
to represent the union of such observed sections, and ud the known velocity data on these sections. Let
us denote by Ω the reconstructed domain, obtained from medical images, which lies close to the true
domain Ω0. Let us represent the boundary for which we want to calibrate the velocity profile by Γc. In
practice this boundary may consist in part or whole of Γwall and/or the inlet Γin. This allows for a great
flexibility in the method.

We can now choose the uncertain velocity profiles as the solution of the optimal control problem

min
c∈A

J(c) = α1

∫
Ωobs

|u− ud|2 dx+ α2

∫
Γc

|∇sc|2 ds (2.2)

subject to 

−div τ + ρ(u · ∇)u +∇p = 0 in Ω

div u = 0 in Ω,

u = 0 on Γwall \ Γc

u = c on Γc

(−pI + 2µDu) · n = 0 on Γout.

(2.3)

The variable c stands for the control vector function, consisting in the unknown velocity profiles at
the different parts of Γc. The term α2 weighting the tangential gradient ∇sc is a regularization term
(see [21]). In practice, we can also choose c to have lower dimension than the velocity vector through

4
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a parametrization. Such parametrization could, for example, be a polynomial function, hence a spatial
correlation of the point values of Γc. We will give more details in Section 4. The admissible set A refers to
the admissible function space for the control function plus other bound type constraints for the control.
While the minimization of the first term in (2.2) clearly leads to an approximation of the computed
velocity to the data, the second term is no less important. Besides the contribution of this term to a
more regular solution, it suffices to ensure the uniqueness of solution for the optimal control problem
associated to the linearization of (2.3). Also, at the discrete level, it avoids the presence of spurious
minimum [3,20]. The weights α1, α2 should be positive and balanced in such a way that priority should
be given to minimizing the difference rather than obtaining a zero gradient of the control function.

With regards to the well-posedness of the control problem (2.2)-(2.3), it is not clear yet, with such a
general setting, if it is possible to prove the existence of solution. The main issue is the arbitrariness of
the sections composing Ωobs. This question was treated for similar problems, in [9–11], but for the case
Ωobs = Ω which cannot be applied to our case. We do not treat this important issue here, rather we
validate this approach with several numerical experiments.

3. Discretization and numerical approach

The solution of problem (2.2)-(2.3) can be obtained numerically. To this purpose we adopt a direct
approach also known as the Discretize then Optimize (DO) approach, consisting in two stages. First the
optimal control problem is discretized, then the resulting non-linear mathematical programming problem
is solved. To this end, we begin by writing the steady weak formulation of the state equation.

3.1. Galerkin formulation and discretization

Let us consider the classical variational formulation of problem (2.3): Find u ∈ V0 and p ∈ Q0 such that
∫
Ω

τ : ∇v +
∫
Ω

(ρ(u · ∇)u) · v −
∫
Ω

p div v = 0∫
Ω

q div u = 0
(3.1)

for all v ∈ V and q ∈ Q.
The function spaces V and Q depend on the Hilbert spaces V0 and Q0 where u and p are defined.

However the test functions should verify v = 0 on Γin∪Γwall. An example for those spaces is V0 = H1(Ω)
and Q0 = L2(Ω). For more details see for instance [18]. We then consider the finite dimensional subspaces
Vh ⊂ V and Qh ⊂ Q with h > 0, dim(Vh) = Nu, dim(Qh) = Np and take the finite dimensional
approximations

uh =

Nu∑
j=1

ujφj ∈ Vh, ph =

Np∑
k=1

pkψk ∈ Qh (3.2)

with φj ∈ Vh and ψk ∈ Qh. Again we refer to [18] for the choice of such spaces. In this work we adopt
the finite element method and typical spaces Vh and Qh corresponding to the Taylor-Hood elements
(P2-P1).

Let us now replace both u, p by their finite dimensional approximations in (3.1). Also we replace the
corresponding test functions by φi, i = 1...Nu and ψi, i = 1...Np. Starting with the convective term, we
obtain the vector ∫

Ω

ρ Nu∑
j=1

ujφj · ∇

 Nu∑
k=1

ukφk · φi

 , i = 1...Nu

that can be written as

N(U)U =

Nu∑
j=1

uj

Nu∑
k=1

uk

∫
Ω

(ρφj · ∇)φk · φi


i=1...Nu

5
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where U = (u1, ..., uNu
)T and

(N(U))i,j =

Nu∑
k=1

uk

∫
Ω

(ρφj · ∇)φk · φi .

As for the term corresponding to the viscous stress tensor τ , we obtainNu∑
k=1

uk

∫
Ω

2µDφk : ∇φi


i=1...Nu

= SU .

Similary, we discretize the pressure term as BTP , with P = (p1, ..., pNp)T , and we obtain the discrete
version of system (3.1), given by {

SU + N(U)U + BTP = 0
BU = 0 .

(3.3)

The cost function (2.2) can also be discretized using the same approximation spaces. Let us fix
(φi)i=1...No

to be the basis functions associated to the nodes in Ωobs. Similarly, let (φi)i=1...Nc
be the

basis functions associated to Γc and set the approximated control function as

ch =

Nc∑
j=1

cjφj .

We can now replace the functions in (2.2) by their approximations

uh, ch and uhd
=

N0∑
i=1

udiφi

obtaining

α1

∫
Ωobs

〈
No∑
i

(ui − udi)φi,
No∑
j

(uj − udj)φj

〉
dx+ α2

∫
Γc

〈
Nc∑
i=1

ci∇sφi,
Nc∑
j=1

cj∇sφj

〉
ds

=

No∑
i

(ui − udi)
No∑
j

(uj − udi)
∫
Ωobs

α1 〈φi, φj〉 dx+

Nc∑
i=1

ci

Nc∑
j=1

cj

∫
Γc

α2 〈∇sφi,∇sφj〉 ds

= (U − Ud)TM(U − Ud) + CTWC

=
〈
(U − Ud)T , (U − Ud)

〉
M

+
〈
CT , C

〉
W

= ‖U − Ud‖2Nu
+ ‖C‖2Nc

(3.4)

where the matrices M and W have dimension Nu ×Nu and Nc ×Nc, respectively, and Ud ∈ RNu is an
extension of (udi)i=1...No . Both M and Ud have zero components for the positions associated to elements
outside of Ωobs. The norm ‖ · ‖Nu

, is the norm induced by the inner product < ·, · >M and ‖ · ‖Nc
the

norm obtained from < ·, · >W.
Taking into account (3.3) and (3.4), the discrete version of the control problem (2.2)-(2.3) becomes

min
C∈A

J(U(C), C) = ‖U − Ud‖2Nu
+ ‖C‖2Nc

(3.5)

subject to {
S(Ū , C) + N(Ū , C) (Ū , C) +BTP = 0
B(Ū , C) = 0

(3.6)

6
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where we assumed U = (Ū , C) with Ū representing the non-controlled velocity coefficients and A repre-
sents the admissible set for the coefficients of C.

If we assume that A can be described using inequality constraints and take F (C) = J(U(C), C), then
problem (3.5)-(3.6) can be written as

min
C

F (C) (3.7)

H(C) ≥ 0 (3.8)

which is a non-linear mathematical programming problem.

3.2. Resolution of the non-linear optimization problem

When using the Discretize then Optimize approach, the main issue is the resolution of the non-linear
mathematical programming problem (3.7)-(3.8). To do this, we adopt the Sequential Quadratic Pro-
gramming (SQP) approach. It consists in two main stages. In the first one we need to approximate
the non-linear problem by a quadratic programming problem (QP). This is done by linearizing the con-
straints (3.8), around a fixed estimate for the control, and by obtaining a second order approximation to
the modified Lagrangian associated to (3.7)-(3.8). The second stage consists in solving (QP) to obtain
a descent direction for the non-linear problem and to use it, to obtain the next approximate solution,
after applying a line search method. Such solution satisfies the linearized constraints, and converges to
a solution satisfying the nonlinear constraints and the first-order optimality conditions for the nonlinear
problem, up to certain given feasibility and optimality tolerances, respectively.

We now describe the algorithm for the used SQP approach, which corresponds to the SNOPT imple-
mentation. The interested reader is referred to [22] for further details.

First let us assume that the solution Ĉ of (3.7)-(3.8) verifies the KKT optimality conditions


DH(Ĉ)Tλ = DF (Ĉ)

H(Ĉ)Tλ = 0

H(Ĉ) ≥ 0
λ ≥ 0

where DF and DH are the gradients of F and H, respectively, and λ is the vector of the Lagrange
multipliers.

We can then summarize the algorithm as follows:

1. Fix Ck as an admissible estimate for the minimizer, and λk as the corresponding vector of multipliers;
2. Determine Hk, the Hessian (or a quasi-Newton approximation) of the modified Lagrangian

L(C,Ck, λk) = F (C)− λTk [H(Ck)− Ck −DH(Ck)(C − Ck)];

3. Solve the Linear Quadratic problem

min
C
Q(C,Ck, λk) = F (Ck) +DFT (Ck)(C − Ck)− 1

2
(C − Ck)THk(C − Ck)

Ck +DH(Ck)(C − Ck) ≥ 0 (3.9)

to obtain the optimal (C̄k, λ̄k, s̄k), where ŝk is the vector of the slack variables associated to the linear
constraints in (3.9);

4. Find αk+1 ∈ (0, 1] so that the merit function

Mγ(C, λ, s) = F (C) + λT (H(C)− s) +
1

2

m∑
i=1

γi(Hi(C)− si)2

7
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decreases along the line

d(α) = (Ck, λk, sk) + α[(C̄k, λ̄k, s̄k)− (Ck, λk, sk)],

where si i = 1...m are the components of s and γ is a vector of penalty parameters (see [22] for details
on how to choose γ). Then set (Ck+1, λk+1, sk+1) = d(αk+1);

5. Check if the optimality tolerance is satisfied. If not, go to step one and repeat.

Remark 3.1. It is important to remark that during the procedure outlined above, every time that
F (C) = J(U(C), C) is evaluated, the vector U must be found by solving the discretized Navier-Stokes
equations given by system (3.6), where C corresponds to the discretized velocity profile on Γc. This can
be done by a Newton type method together with a suitable linear solver.

4. Numerical experiments

In this section we present the numerical results of the procedure introduced above. To this end we
considered several 2-dimensional idealized geometries representing longitudinal sections of blood vessels.
Before presenting the results, a summary of the procedure is detailed in order to emphasize the analogy to
data obtained from a practical clinical setting, and provide a step-by-step explanation of how the results
were obtained and how they should be analyzed:

i) Fix a domain Ωo and generate a solution which will be considered the reference true solution.
At the inlet of the vessel, we considered a characteristic radius of R = 0.31 cm. For the blood model
(2.1) we considered ρ = 1050 kg/m3, µ = 0.0036Pa · s. All the solutions, taken as reference solutions,
were generated by solving the blood model using a parabolic inlet profile corresponding to a flow rate
of Q = 1.95 cm3s−1. This results in Re ≈ 117. These parameters were used in [2] where Newtonian
and non-Newtonian effects were compared for blood flow. As to the boundary walls and the outlet,
we used no-slip and Neumann conditions, respectively, as described in Section 2.3.

ii) Record the solution at Ωobs ⊂ Ωo into a data vector ud.
It is likely that this data will include noise. We simulate this situation in one example (see Section 4.3).
Phase-contrast magnetic resonance imaging, that can provide velocity measurements of blood flow in
arteries non-invasively, is prone to noise and limited resolution.

iii) Consider an approximated geometry Ω as the reconstruction of Ω0, and rename Ωobs ∩Ω as Ωobs.
In current practices of performing patient-specific computational hemodynamics, the reconstructed
geometry from medical images, obtained by careful image processing and segmentation techniques,
would, in general, give more reliable approximations than the extreme cases that we analyze here. The
approximation Ω may not necessarily include nor be included in Ω0. We give an idealized example for
this case (see Section 4.4).

iv) Choose the boundaries to control, the corresponding control variables and its constraints.
This step depends on each situation. In particular, the a priori knowledge of some features about
the solution may help to define Γc, c and A. For instance, if we can assume that the velocity at
the controlled boundary follows a certain known profile P (x, y), then we can reduce the dimension
of the control variable to a set of control parameters. This is the case when we are trying to adjust
the velocity vector at the inlet where it is assumed to be a parabolic profile P (y). In this case, the
control variable reduces to parameter c adjusting the maximum velocity. In this case the corresponding
integral term in (2.2) vanishes.

v) Solve problem (2.2)-(2.3) numerically.
We discretize the optimal control problem to obtain a problem of the type (3.7)-(3.8). This was done
using the finite element discretization implemented in Comsol Multiphysics ([5]), based on the P2-
P1 elements. The values of the parameters α1 and α2 can be obtained by different techniques. A
possibility could be the discrepancy principle, which could be computationally expensive when applied
to problem (2.2-2.3). Here we took α1 = 106 and α2 = 10−3 based on the experiments made in [19],

8
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for similar approaches. We then use the SQP approach as described in Section 3.2. For that we used
the SNOPT implementation ([22]), with feasibility and optimality tolerances both equal to 10−6. As
to the computation of F (C) = J(U(C), C), we used the damped Newton method ([12]) together with
the direct linear solver PARDISO ([32]).

vi) Analysis of the results.
In the regions where the cross sections of Ω0 are fully contained in Ω we expect to see areas of small
velocity magnitude reproducing the no-slip conditions on Ω0. Beyond that, in Ω \ Ω0, the velocity
profile does not have any relevant physical meaning. As for the regions where the cross sections of Ω0

lie outside of Ω, we should expect the velocity profile to coincide, up to certain error, with the profile
at the corresponding regions of Ω0.

4.1. Wavy channel

Our first example consists in a simple case where we can test some features of our procedure. Let us
consider the geometry represented on the left of the top row of Figure 2. It represents a channel with
perturbed boundary, with the inlet Γin at the left vertical boundary and the outlet Γout at the right
vertical boundary. The wavy vessel walls that delineate the top and bottom of the domain, represent
a non-trivial idealization of a 2D section of an artery. We denote it as Γwall. As mentioned above, we
generate a solution with a parabolic profile on Γin corresponding to a flow rate of Q = 1.95 cm3s−1. The
streamlines and axial component of the velocity for this solution are represented on the left hand side of
the second row. We take this to be our true solution, and the channel as our true domain Ω0. We assume
a rough reconstruction of Ω0 and obtain Ω, the domain represented on the right hand side of the top
row. The true solution is only known by the velocity profile ud over the blue lines represented in both
domains in the top row of the figure. These sections correspond therefore to the observed domain Ωobs.
We also assume that the flow rate at the inlet boundary is known. Our first goal consists in adjusting the
velocity profiles on Γwall, and on the inlet, so that the corresponding solution minimizes the difference
with ud over Ωobs. We note that, since the observations were taken close to the wall of Ω0, and seeing
that Ω is larger than Ω0, it is likely that the velocity vectors in Ω should have small magnitude values
over the regions corresponding to the wall of Ω0.

In this case, Γc = Γc0 ∪ Γc1 ∪ Γc2 where Γc0 = Γin, Γc1 denotes the top wall of the vessel, and Γc2
the bottom one. In order to simplify the control variable c0, associated to Γin, we assume that the inlet
velocity profile fits the expression

u =

(
Pc0(y)

0

)
=

uav c0 + 1

c0

[
1−

( |y −R|
R

)c0]
0

 .

Keeping the average velocity uav fixed ensures that the flow rate Q is preserved on the inlet boundary,
with length L = 2R, for any positive parameter c0. We remark that the shape of the profile varies from
a piecewise linear non-smooth profile, when c0 = 1, to an almost flat profile, when c0 = 9. For more
details see [34]. The velocity profile at Γc0 is then fully determined by the control parameter c0 ∈ [1, 9],
and consequently, the part of the regularization term in (4), associated to Γc0 , is meaningless. As for the
control variables c1 and c2, we fix them to represent the velocity vector at the corresponding boundaries.
Therefore, the regularization term can be decomposed into∫

Γc1

|∇sc1|2 ds+

∫
Γc2

|∇sc2|2 ds . (4.1)

We also use a simple constant extrapolation of ud to constrain the wall controls on the outlet. These
constraints will restrict the admissible set A to a smaller, yet reasonable, set of solutions.

As initial guess, we consider the solution generated by solving the model with c0 = 1 and the control
functions c1 and c2 equal to an extrapolation of ud. This solution is represented on the right hand side
of the second row of Figure 2.

9
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True geometry and observation sections Approximated geometry

True solution Initial guess

True solution extrapolated Controlled solution

Zero contour for true solution extrapolated Zero contour of controlled solution

Figure 2. Top row left: original geometry with observed sections. Top row right: approximated geometry
with observed sections. Second row left: solution for the original geometry. Second row right: approximated
solution using constant average velocity. Third row left: solution extrapolated for the approximated geometry.
Third row right: controlled solution. Bottom row left: zero contour level in the approximated geometry.
Bottom row right: zero contour level of the controlled solution.

To solve the control problem we use 805 degrees of freedom (dofs) for the control variable approxima-
tion, 14498 dofs for the velocity and 1872 dofs for the pressure. The relative error measured over Γobs, for
the initial estimate, is 0.12826. In Table 1 we represent the computational output obtained for optimality
tolerances of 10−2, 10−3 and 10−4. It includes the number of major iterations of the SQP algorithm and
also the accumulated number of minor iterations needed to solve each QP (3.9).

Table 1. Outline of computational cost for the wavy channel example, for varying
optimal control tolerance.

Optimal Control Initial Final Relative Computational Major Accumulated Minor
Tolerance Cost Cost Error Time [/min] Iterations Iterations

10−2 4.69259 0.02958 0.00456 30 926 1724
10−3 4.69259 0.02792 0.00378 49 1353 2151
10−4 4.69259 0.02751 0.00374 61 1506 2303

The solution corresponding to the controlled boundaries is represented on the right hand side of the
third row. For comparison purposes we present, on the left hand side, the true solution on top of the
approximated domain, for which a simple constant extrapolation with no physical meaning is presented
when Ω is larger than Ω0. We can observe that the streamlines of the controlled solution behave as
the true solution. In the bottom row, we compare the zero-velocity magnitude contour level, for both
solutions. Since the zero contour level can indicate where the no-slip boundary conditions are verified by

10
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the true solution, we can see that the controlled solution gives a way to recover the location of the wall
boundary for the original domain Ω0.

4.2. Wavy channel - non-uniform sampling

9 equidistant sections 4 equidistant sections

7 sections more concentrated at the beginning 7 sections concentrated only at the beginning

6 sections concentrated only at the end 7 short sections concentrated only at the end

Figure 3. Effect of number and distribution of observed sections Ωobs. The sections and location of the
no-slip contour (i.e. where the velocity is zero) are shown. The true solution is presented in Figure 2.

The observations set Ωobs plays an important role. In fact, as we will see next, the number and
distribution of the sections where ud is taken have a large impact on the accuracy of the recovered
solution. In Figure 3 we present the results obtained for different Ωobs.

We take, as a reference for comparison, the solution using nine observation sections, that has been
previously computed as described above. As a measure of accuracy we focus on recovering the wavy wall
geometry, hence the zero-velocity iso-contour that is the no-slip boundary, which is a sensitive measure and
is used to evidentiate an important feature of the desired solution. On reducing the number of observation
sections to four, a loss of accuracy is noticeable. By adding a higher concentration upstream, the accuracy
is improved both in the region of increased number observations and downstream of it. Taking this idea
further we test only sampling the upstream portion of the section very finely, however we notice that the
while locally the solution has increased accuracy, elsewhere in the domain the solution is very poor. In
fact, the control acted to minimize the misfit at the beginning of the channel while remaining flat closer
to the outlet. This effect is independent of the region and similar results are obtained when the higher
sampling is located towards the outlet. Finally we test the effect of shorter sections and note that this
does not necessarily imply less accuracy.

We learn from these numerical experiments that it is important to sample the domain uniformly.
Increased spatial sampling can only improve the solution locally, and likely also in the regional neigh-
borhood. A partial set of samples, such as shorter observation cross-sections, does not directly imply a
reduced accuracy.

4.3. Wavy channel - noisy observations

Our next example investigates how the solution of the control problem can be affected by the presence of
noise in the data ud. Noise is added to the velocity profiles, and this corrupted data is taken as our initial
Ωobs. We use two intensity Gaussian white noise samples generated such that 99.7 percent (hence 3σ) of
the values lie on the (normalized) intervals uav× [−0.1, 0.1] and uav× [−0.2, 0.2], respectively. Depending
on the imaging modality, forms of noise will typically be Poisson or Gaussian, however artifacts may also

11
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Controlled solution without noise

Controlled solution with 10% of noise

Controlled solution with 20% of noise

Controlled solution vs Original Data at middle section

Initial section with 10% of noise Initial section with 20% of noise

Final section with 10% of noise Final section with 20% of noise

Figure 4. Top left: comparison of the recovered zero contour levels for the case without noise on ud and
with 10 and 20 percent, respectively. Top right: axial component of the velocity for the true and controlled
solutions on a section at the centre of the channel. Middle: comparison of the original solution with the
controlled one in a section close to the inlet. Bottom: comparison of the original solution with the controlled
one in a section close to the outlet.

be present and typically attributed to temporal variations. Gaussian noise is used here to represent an
unbiased degradation of the measured data. Since the physical problem is modeled by the Navier-Stokes
equations, which results in a smooth solution at low Reynolds numbers, it is expected that other similar
forms of local random perturbations will yield comparable results. However, noise or artifacts with large
spatial correlation or bias may affect the solution more than the Gaussian noise used here.

In Table 2 we show the relative errors obtained with 84614 dofs for the velocity vector and 2750 for the
control variable. The noisy data, when measured over Ωobs, adds a relative error to the original solution
of 4% in the first case, and 8% in the second one. Even though, the controlled solution approximates the
original data with a relative error smaller than 1.3% and 1.7%, respectively.
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Table 2. Outline of computational cost for the wavy channel with noisy measurements
example, for varying optimal control tolerance.

Noise Relative Error Relative Error Relative Error
Sample Added to Data of Initial Estimate of Controlled Solution

uav × [−0.1, 0.1] 0.04248 0.1292 0.0126
uav × [−0.2, 0.2] 0.08238 0.1292 0.0164

In Figure 4 we illustrate these results. We can see from the velocity cross-sections that the controlled
solution fits accurately to the true solution profiles, shown in the figure for proximal and distal sections
of the channel. The effect of the noise is more clear on the zero velocity isocontour, hence the no-slip
boundary of the geometry, for the whole controlled solution: the higher level of noise can reduce the
accuracy of the contour. In this example this effect is more marked on the bottom wall of the channel.
Overall, a higher level of noise corruption is not seen to have a greater influence on the computed solution,
with the most evident effect on the identification of the no-slip boundary, which is a sensitive measure,
as mentioned above.

4.4. Wavy channel - smaller computational domain

The last test case using the wavy channel geometry consists in assuming that the reconstructed geometry
Ω doesn’t include the top wavy wall, hence the assumed domain is smaller than the true domain. The
results for this case are shown in Figure 5. The right image in the top row shows the reduced size of
the computational domain used. The optimal control problem (2.2)-(2.3) produces an accurate solution
when compared to the true solution. The bottom no-slip boundary is well represented, however a way
to estimate the location of the top wall for the true domain still remains to be addressed. A possible
procedure to overcome this difficulty could be a sequential enlargement of Ω, until the full zero magnitude
contour could be determined. Alternative high-order extrapolation could be used to give a reasonable
estimate, such as using finite differences or radial basis function methods.

4.5. Stenosed channel

We now consider another simple, yet significant example. We consider a channel deformed by a stenosis
typically associated to atherosclerosis, a pathology of the cardiovascular system that affects part of the
population of industrialized countries. In these situations an accurate geometry definition is especially
important, since measures such as the wall shear stress (WSS) are indicators for the regions of possible
plaque formation (cf. [15,33]). Results for this case are presented in Figure 6. The observed domain Ωobs
corresponds to sections around the stenosed area to improve the local accuracy. As above, on the left hand
side the reference domain and solutions are given, while on the right hand side the computed solutions
using the optimal control method are presented. We can notice the increase of the velocity magnitude
at the stenosis. The zero contour levels for the x-component of the velocity, shown on the bottom row,
highlight how the procedure can be useful to recover the boundary in this type of geometries. The high
spatial gradients of velocity formed at the stenosis are well resolved and good accuracy in recovering the
no-slip contour is evident. Note that the x-component velocity is used to identify the no-slip domain,
since the absolute velocity gives a poor results. Alternatively, using the y-component would also yield
satisfactory results.

4.6. Wavy channel with aneurysm

We now consider a more complex example shown in Figure 7. It corresponds to a wavy channel and an
aneurysm that highly deforms its upper wall. The resulting flow field is complex, with a slow recirculation
region, that is in contrast to the large velocities and spatial gradients of the stenosis geometry example.
The reconstructed domain Ω is taken to be a rectangular channel and a larger aneurysm (shown in the
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True geometry and observation sections Approximated geometry

True solution Initial guess

True solution extrapolated Controlled solution

Zero contour for true solution extrapolated Zero contour of controlled solution

Figure 5. Top row left: original geometry with observed sections. Top row right: approximated geometry
with observed sections. Second row left: solution for the original geometry. Second row right: approximated
solution using constant average velocity. Third row left: solution extrapolated for the approximated geometry.
Third row right: controlled solution. Bottom row left: zero contour level in the approximated geometry.
Bottom row right: zero contour level of the controlled solution.

True geometry and observation sections Approximated geometry

True solution Initial guess

True solution extrapolated Controlled solution

Zero contour for true solution extrapolated Zero contour of controlled solution

Figure 6. Top row left: original geometry with observed sections. Top row right: approximated geometry
with observed sections. Second row left: solution for the original geometry. Second row right: approximated
solution using constant average velocity. Third row left: solution extrapolated for the approximated geometry.
Third row right: controlled solution. Bottom row left: zero contour level in the approximated geometry.
Bottom row right: zero contour level of the controlled solution.
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True solution Initial guess

True solution extrapolated Controlled solution

Zero contour for true solution extrapolated Zero contour of controlled solution

Figure 7. Top row left: original geometry with observed sections. Top row right: approximated geometry
with observed sections. Second row left: solution for the original geometry. Second row right: approximated
solution using constant average velocity. Note that the lines in magenta represent the zero contour of the
x-component of the velocity. Third row left: solution extrapolated for the approximated geometry. Third row
right: controlled solution. Bottom row left: zero contour level in the approximated geometry. Bottom row
right: zero contour level of the controlled solution.

left column on the second row, where the true solution is overlapped). Besides the streamlines we also
represent, in magenta, the zero contour for the x-component of the velocity. It corresponds to the no-slip
boundary condition, and in the interior of the aneurysm it indicates the location of the reversing flow.
The observation sections Ωobs (shown by the black vertical lines) are concentrated within the aneurysm
area, due to the big geometry change, the reversed flow and the low magnitude velocity. We also include
other sections, covering the full length of the channel, a need that was detailed in Section 4.2. We note
that the control function c1 also describes the velocity vector at the aneurysm wall, which is included in
the upper boundary Γc1 .

The optimal solution recovers the behavior of the true solution, in terms of the streamlines and also for
the zero contour of the velocity x-component. We note that the no-slip boundary is accurately recovered,
however the definition of the proximal region of the aneurysm neck performs worse due to the limited
resolution in distinguishing the geometry wall and the reversed flow boundaries. As noted in Section 4.2,
the use of extra observations in this region would yield more precise results.

4.7. A realistic geometry - saccular aneurysm

Finally, we apply our procedure to adjust a reconstructed geometry obtained from a 2D longitudinal
section of a saccular aneurysm, inspired from the work of [36] and generated using interpolating splines,
as shown in Figure 8. The computational domain involves a single inflow section (on the left) and two
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outflow sections (upper and lower). The problem set here is to concentrate on the shape and flow within
the aneurysm, since this is clinically the most important feature. The reconstructed geometry Ω matches
Ω0 on all boundaries except on the aneurysm dome, where it is inflated. The blue vertical lines represent
the observed sections Ωobs which are concentrated solely in the aneurysm. To recover the flow field in
the aneurysm and the no-slip boundary of the dome, we will control a portion of the dome boundary, as
highlighted in the bottom-right image, and also the inlet boundary Γin in a similar way to the example
of Section 4.1.

True geometry Approximated geometry oversizing the aneurysm

Approximated geometry with observed sections Controlled boundary

Figure 8. Top row left: original geometry. Top row right: approximated geometry. Bottom row left:
observation sections Ωobs. Bottom row right: the boundary to be controlled.

The resulting solutions are presented in Figure 9. As above, we use the x-component of the velocity
and the streamlines to describe the flow and the no-slip boundary. In this example, the magnitude does
not reach zero but rather an approximate value 2 × 10−5 which we use to estimate the location of the
no-slip boundary in that area.

Similar to the results in Section 4.6, improvement in the accuracy can be obtained with more obser-
vation data, especially near the wall. In fact, in the regions close to the controlled boundary, where the
velocity magnitude is very small and there are no observations, the no-slip boundary is not reproduced
accurately. This can be seen in Figure 10, where we represent the detail of the streamlines and the
magnitude contour for the true solution (left), initial guess (center) and controlled solution (right). We
note that the cost function given by equation (2.2) penalizes the misfit of velocities, however if these are
small as in a slow recirculating region of an aneurysm, this term has a smaller weight. A normalized
misfit cost function could improve the accuracy of the solution.
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True solution Initial guess

True solution extrapolated Controlled solution

Figure 9. Top row left: solution for the original geometry. Top row right: approximated solution using
constant average velocity. Bottom row left: solution extrapolated for the approximated geometry. Bottom row
right: velocity zero contour of the controlled solution.

Zero contour for the true solution extrapolated Zero contour for the initial guess Zero contour of the controlled solution

Figure 10. Left: streamlines and zero-magnitude velocity for original solution. Center: streamlines for
initial guess. Right: streamlines and zero-magnitude velocity for controlled solution.

5. Conclusions and remarks

We have presented an automatic procedure to minimize the difference between measured observations
and solutions to numerical simulations. With emphasis on patient-specific computational hemodynamics,
this tool has been used to correct approximate boundary conditions at the inflow and the definition of
the no-slip boundary. In practice, the method is used to minimize the uncertainty that arises due to: i)
the correct choice of the boundary conditions at the artificial truncation of the computational domain,
ii) the definition of the geometry caused by noisy and limited resolution medical image data.
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The measured observations used in the cost minimization are velocity data, that can be obtained from
non-invasive phase contrast MRI. These observations should adequately cover the computational domain.
They also suffer from artifacts, noise and limited resolution, however the procedure outlined in this work
is shown by means of example cases, to be robust to such noise. A strength of the method is that it is
automatic as it does not require any supervision, and guarantees minimal error solution.

The procedure has been validated with various 2D models through numerical tests. Particular attention
to the accuracy of the solution has been devoted to the recovery of the true domain’s no-slip boundaries.
These are sensitive measures of interest since many diseases have been correlated to the wall shear stress.
The test cases have included a stenosis geometry with high values of velocity and velocity gradients, and
aneurysm geometries, that contain regions of flow separation and flow recirculation. The simulations
have been performed for steady state which is often sufficient for practical clinical studies. The proposed
method can be extended to the time dependent case, however the computational cost will be greatly
increased. Current simulation time requires about 30 min to obtain a relative error smaller than 0.46%,
with 800 dofs for the control variable and 14500 dofs for the velocity vector.

At the current stage of the work, there is no criteria for an automatic choice for the location of the
observations in the true domain, that can greatly impact on the quality of the obtained results. This is
a subject of observability and controllability theory, that was not treated here. This important point,
together with exploring other cost functionals to be minimized and an extension to the 3-dimensional
case, should be covered in future work.

The proposed method has shown, through the set of numerical test cases, to be useful as an unsuper-
vised method to choose flow boundary conditions and identify a more accurate definition of the geometry
no-slip walls. The tools presented can be used to address current concerns in correct numerical simulation
definition setup.
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