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ABSTRACT 

The growing demand for carbon fibre reinforced polymers (CFRP) has led to a significant 

increase in the amount of carbon fibre waste generated. This paper investigates the reuse of in-

process waste as a non-woven complex for use in energy absorbing applications. Composite 

sandwich coupons were manufactured and tested in quasi-static edgewise compression. Three 

laminate configurations were used, a continuous fibre unidirectional layup, a fully reclaimed 

layup and a hybrid of the two. The unidirectional material showed the most efficient energy 

absorbing performance, with the fully reclaimed showing the lowest. The hybrid laminate 

displayed traits of both the material types, whilst also showing a more consistent performance 

across each of the coupons tested. 

1. INTRODUCTION 

The growing demand for carbon fibre reinforced polymers (CFRP) has led to a significant 

increase in the amount of carbon fibre waste generated [1]. Up to now the primary solution to 

this is to send the waste to landfill, which is both costly and harmful to the environment [2]. As a 

result, a need has  been created for manufacturers to develop methods of recycling [3]. Whilst the 

technology for recycling end-of-life (EOL) carbon fibre already exists, it has seen very limited 

application to date due to the slow rate of recycling currently possible, as well as doubts of the 

mechanical performance attainable. At the moment, applications of recycled carbon fibre are 

limited to only non-critical structures, where low strength materials can be used. 

Another significant issue is the waste produced during the manufacturing process. This waste is 

created from expired or off-spec material as well as cutting and trimming operations, and can 

contribute as much as 50% of the total CFRP waste generated [4]. One method for reclaiming the 

scrap is to collect it, break it down into small pieces and reform the fibres into a discontinuous 

random mat.  Provided the scrap material is not mistreated once it is separated from the cut 

preforms, it will not require any additional cleaning and will therefore potentially be more 

valuable than material recycled from end-of-life composites [5].  

Limited applications currently exist for recycled CFRP, but those that do can be broadly 

classified for use in one of three categories of application: semi or non-structural; structural; and 

novel. The non-structural material is usually produced by grinding or shredding the waste 

material into a particulate or very short fibre state [6-7], which can then be further processed into 

a Sheet Moulding Compound (SMC) type material [8]. While it is possible to process waste to 

recycle material for these applications quickly and relatively inexpensively, the mechanical 

properties of the original material are lost. Therefore in order to retain the value of the original 



fibre, the scrap must be reformed into a structural material or used in other high value 

applications. Several high value applications have been investigated, such as antistatic flooring, 

industrial paints, cement and road surfacing [9], and in electromagnetic interface shielding [10]. 

These applications are relatively niche compared with quantities of scrap that require recycling, 

therefore a solution that produces a reformed material that can be used in structural applications 

would be desirable in both financial and environmental aspects.  

Little research into recycling processes that produce a reformed material with high retention of 

properties have been reported to date. One study undertaken has shown that it is possible to 

produce tapes of highly aligned reformed material in a continuous process that will have vastly 

superior mechanical properties to the SMC type materials other processes produce [11]. This 

method however requires substantial processing [12], which would increase costs and rate at 

which the reformed material is produced. An advantage of this method however is that since the 

fibres are short and cleaned, the quality of the recyclate has little effect on the performance of the 

reformed material, something that has been shown to be an issue with other recycled materials 

[13-14]. 

Whilst ideally it would be possible to use recycled composites to replace virgin feedstock, it is 

clear that other applications must be investigated since recycled carbon fibre strengths will never 

reach or exceed those of virgin material. It has been shown that continuous fibre composites can 

be highly efficient energy absorbing structures [15-17], dissipating energy through frictional 

losses at ply interfaces as well as the overall deformation of the structure [18]. Composites 

containing reclaimed carbon fibre seem to be good candidates for energy absorption as they 

show potential in having a high inter-laminar shear strength due to their random fibre orientation 

[19]. Reclaimed fibres may be also more suited because the random fibre orientation will 

naturally offer progressive slipping at ply interfaces to absorb additional energy when compared 

to continuous fibre composites. An additional benefit of energy absorption as an application is 

that static strength is not usually the primary driver in the design of the component, instead the 

specific energy absorption (SEA) of the material combined with the deceleration times required 

will dictate the design requirements. 

The aim of this research was to test the energy absorbing capability of reclaimed carbon fibre 

materials and compare them to more prevalent continuous fibre materials. The potential of 

having reclaimed carbon fibre in a hybrid structure will also be observed in this to attempt to 

combine useful properties from the two different architectures.  

2. MATERIALS AND METHOD 

2.1 Coupon Design 

No standardised test methodology currently exists to test the energy absorption of sandwich 

structures under edgewise crushing loads. Sample geometry, crush initiation mechanism design, 

stacking sequences and test conditions greatly affect the measured SEA of the material tested, 

therefore comparing different testing conditions is difficult. Regardless of the test chosen, the 

specimen must have a trigger mechanism to initiate stable progressive crushing in a quasi-static 

compression test [20]. The trigger mechanism tends to be of a geometric nature where stress 

concentrations would occur, such as a sharp discontinuity found in the vertex of a triangle. It has 

been shown that even with a trigger mechanism, a specimen with a constant cross sectional area 



could still become unstable, yet in the trigger region the test revealed progressive crushing [20]. 

This was further explored by increasing the size of the trigger region and considering it as the 

new test region. From the success seen in [20], the same geometry with slightly different 

dimensions was used in this project. The chosen coupon geometry is shown in Figure 1.  

 

Figure 1. Coupon geometry and dimensions. 

2.2 Materials 

The sandwich panels used for testing were manufactured using the Vacuum-Assisted Resin 

Transfer Moulding (VARTM) method. A total of three carbon sandwich preforms were created, 

one using only unidirectional material, one using only reclaimed material and a third which was 

a hybrid of the two materials. The layups of the three panels are shown in Table 1. The 

unidirectional material was a uniweave carbon fibre fabric from SGL Automotive (300 g/m2), 

whilst the reclaimed material was a RECATEX™ type 62 nonwoven complex (300 g/m2), also 

from SGL. The reclaimed material is processed using a carding technique, therefore the material 

supplier indicated that better in-plane properties would be found along the roll. The roll direction 

was therefore aligned with the loading axis, resulting in the lay-ups indicated in Table 1. The 

core material was a Rohacell® 110 IG-F closed-cell foam by Evonik, with a density of 110 

kg/m3. The preforms were infused at 40 °C using EPIKOTE® resin RIM 935 and EPIKURE® 

curing agent RIM 936 from Momentive Speciality Chemicals, Inc. The cure cycle was two hours 

at 60 °C, followed by two hours at 90 °C. The test specimens were machined using a water jet 

cutter. 

Table 1. Laminate Configurations for Coupon Skins 

Laminate Skin lay-up sequence Average specimen thickness (mm) 

Unidirectional [45/0/-45]s 14.5 

Reclaimed [0RE/0RE/0RE] 13.5 

Hybrid [0RE/0/0RE] 13.5 
RE – Reclaimed layer (0 indicates roll direction) 



2.3 Test Method 

Static testing was carried out using a Zwick 1466 test machine. Coupons were clamped into an 

end support at the base and positioned at the centre of the loading plates. Figure 2 shows the 

positioning of the specimen within the test machine. A displacement control programme was 

used to provide a constant quasi-static crushing rate of 6 mm/min. Testing was terminated after 

approximately 40 mm of displacement. A total of five samples were tested for each 

configuration. A Dantec digital image correlation (DIC) system was used to obtain the strain 

field within the coupons during crushing.  

 

Figure 2. Experimental test setup. 

3. RESULTS AND DISCUSSION 

3.1 Static Testing 

Different failure mechanisms were observed during testing, as presented in Figure 3. The 

unidirectional coupons failed in a stable manner, with progressive peeling and delamination of 

the skins as they separated from the core. The fully reclaimed coupons failed in a much different 

manner, with fracturing and fragmentation of the skins as the dominant failure mechanism. In a 

number of the reclaimed coupons, disbonding of the skins was also observed away from the 

crush zone. Figure 4 shows some examples of these failure mechanisms. The hybrid coupons 

showed a combined failure behaviour, with both the progressive folding of the unidirectional 

material and fragmenting of the reclaimed material observed in Figure 3c.  



 

Figure 3. Pictures showing crush front after test showing a) mostly delamination in fully 

unidirectional specimens b) fragmentation in fully reclaimed specimens c) on a combination of 

the two mechanisms in hybrid specimens. 

 

Figure 4. Possible failure mechanisms: a) skin to core de-bonding b) core compression failure 

and c) skin compressive failure. 

Representative load-displacement traces of the three material configurations are shown in Figure 

5. As with the failure mechanisms, this plot indicates different behaviours for the three 

configurations tested. The unidirectional material showed a relatively smooth load increase, 

whilst the hybrid and fully reclaimed coupons showed a more unstable behaviour, with several 

dramatic drops in the load carried by the coupon. By comparing the loads carried by the coupons, 

the unidirectional coupon clearly sustained the highest load of the three configurations, followed 

by the hybrid, with the fully reclaimed sample sustaining the lowest. 

 



 

Figure 5. Representative load-displacement results for each coupon configuration. 

Figure 6 shows representative strain patterns obtained from the DIC imaging. In the 

unidirectional material shows the highest strain values located right at the crush zone where 

failure occurs. Within the hybrid specimens the strain distribution is expanded, with the highest 

strain located over a slightly larger area in front of the crush zone. Within the reclaimed material 

this change is even more significant. The area of highest strain takes up a significant part of the 

test coupon, and higher strain values are observed in the constant width base of the test coupon.  

 

Figure 6. Representative strain distributions obtained using DIC. 

By comparing the data presented in Figures 3, 4, 5 and 6, the highest performing material was 

the reference unidirectional material. The unidirectional coupons showed the most stable failure 



mode through a progressive folding mechanism, and also showed the highest forces sustained 

during crushing. On the other hand, the reclaimed specimens, mostly failed by fragmentation. 

This was demonstrated by the big, mostly undamaged, pieces that broke off in Figure 4. This is 

also shown in the Figure 5 where there are regular substantial drops in the sustained load as the 

skin fractures. The reason behind this unstable fragmentation mode could arise from the high 

inter-laminar shear strength. Delamination and fragmentation are competing failure mechanisms 

[21], and due to the higher interlaminar strength of the reclaimed material, attributed to the 

random fibre orientations, fragmentation was the more dominant failure mode.  

The hybrid coupons behaved in a more complex manner, displaying several different failure 

modes. Some fluctuation in the load was observed, similar to the fully reclaimed samples, albeit 

at a higher load level. However the connection between skin and core was maintained ahead of 

the crush site, which meant these fluctuations were simply fracturing of the skins rather than the 

disbonding observed in the reclaimed coupons. These results indicate that the additional 

unidirectional layers within the skin were supporting the structure to maintain stability during 

failure. 

The DIC results within Figure 6 show that the material choice significantly effects the strain 

distribution with the test coupon. The unidirectional coupons showed an almost constant strain 

distribution across the entire specimen, except at the crush zone where failure is occurring. 

Within this localised region the strain is at its highest as the material is being crushed. The 

addition of reclaimed layers with the hybrid begin to shift this high strain region away from the 

failure zone over a greater part of the specimen. This becomes even more significant within the 

fully reclaimed samples, where this region covered a significant portion of the test coupon.  

3.2 Energy Absorption 

To further compare the different test configurations, the specific energy absorption (SEA) values 

were approximated using Equation 1: 





A

Fdx
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W
SEA


 0

 

[1] 

where W is the work done on the structure during crushing (force × displacement), and ρAδ 

defines the mass of the crushed material. The energy absorbed by the coupon was found by 

taking the area under the force-extension graph shown in Figure 5. The crushed mass of each 

coupon was approximated by assuming a constant density across the coupon and thus using the 

crushed area of the material to predict the mass. Due to some tests ending at different crushing 

distances it was decided to cap the distance over which the energy was measured to 35 mm. 



 

Figure 7. Averaged SEA results. 

Figure 7 shows a comparison of the averaged SEA results from the different test configurations. 

As a result of the stable failure mode and relatively high load level sustained during testing, the 

unidirectional coupons showed the most efficient energy absorption of the three configurations 

tested. Due to the unstable failure mode of the reclaimed material, the performance was much 

lower, showing a 40 % drop in performance compared to the unidirectional material. The 

addition of unidirectional material to the reclaimed mat improved the performance, and partially 

restored the SEA to the level of the unidirectional material. The hybrid coupons showed a 31 % 

increase over the reclaimed material, reaching a level that was effectively an average of the other 

two configurations. 

Also displayed within Figure 7 is the variation within the results. The hybrid coupons showed the 

most consistent results, whereas the unidirectional and reclaimed coupons showed relatively high 

variation. This difference in consistency may partly arise from the stability of the failures. As the 

fully reclaimed coupons failed by disbonding and fragmentation of the skins at various locations 

away from the crush area the energy absorption varied more significantly. The assumption used 

in the calculations also only considered the mass of the specimen inside the crush zone. If failure 

occurred away from the crush zone it could give rise to inaccuracies because only a portion of 

the failed material was considered when calculating the SEA.  

The high variation in the unidirectional specimens appeared to be due to sensitivities to 

discontinuities in the material. Small defects such as voids or fibre misalignment would 

significantly reduce the load carrying ability of the skins and thus result in less energy 

absorption. The hybrid coupons appeared to overcome this, by stabilising the failure mode and 

smearing the effect of any defects. This occurs because the reclaimed layers are effectively 

adding localised defects through short fibres at the crush zone. The random fibre orientations of 



the reclaimed mat would have also reduced the effect of any fibre misalignment in the 

unidirectional layers.  

A material with a high SEA may introduce such high deceleration forces that they kill or injure 

the human occupant they are intended to protect during an impact event. Despite the relatively 

low SEA of the reclaimed material, it may still offer some benefit in these energy absorbing 

applications. Given the performance of the hybrid material combining both the unidirectional 

and reclaimed material forms, structural performance tailoring becomes possible. The greater 

predictability and potential to deal with off-axis loading, as well as this tailoring ability suggests 

the hybrid energy absorbing structure is a potential use of reclaimed carbon fibre waste. 

4. CONCLUSIONS 

Edgewise crushing tests have been carried out on composite sandwich coupons to investigate the 

use of a reclaimed carbon fibre materials within an energy absorbing structure using a small 

rectangular samples with a triangular trigger mechanism. This was compared to a continuous 

fibre layup as well as a hybrid of the two. The testing showed that the fully reclaimed coupons 

failed in an undesirable fragmentation mode compared to the progressive crushing observed in 

the unidirectional material. This resulted in a significant drop of 40 % in the specific energy 

absorption of the material. By forming a hybrid of the two materials, the performance was 

partially restored, and resulted in a more stable and consistent failure mode. These results 

demonstrate the potential use of reclaimed carbon waste in energy absorbing structures. 
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