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Abstract

The majority of work in the literature on modal interaction is based on two degree-
of-freedom nonlinear systems with cubic nonlinearities. In this paper we consider
a three degree-of-freedom system with nonlinear springs containing cubic nonlinear
terms. First the undamped, unforced case is considered. Specifically the modal in-
teraction case that occurs when all the underlying linear modal frequencies are close
is considered (i.e. ωn1 : ωn2 : ωn3 ' 1 : 1 : 1). In the case considered, due to the
symmetric of the system, the first mode is linear and not coupled with the other two
modes. The analysis is carried out by using a normal form transformation to obtain
the nonlinear backbone curves of the undamped, unforced response. In addition, the
frequency response function (FRF) of the corresponding lightly damped and harmon-
ically forced system obtained by the continuation software AUTO-07p is compared
with the backbones curve to show its validity for predicting the nonlinear resonant
frequency and amplitude. A comparison of the results gives an insight into how modal
interactions in the forced-damped response can be predicted using just the backbone
curves, and how this might be applied to predict resonant responses of multi-modal
nonlinear systems more generally.

Key words: Backbone curve, 3-DoF nonlinear oscillator, Nonlinear modal interaction,
Cubic nonlinearity, Second-order normal form method

1 Introduction

In this paper, we consider the nonlinear modal behaviour of a three-degree-of-freedom (3-
DOF) lumped mass system. In particular we consider the potential modal interactions that
can occur by analysing the backbone curves, i.e the response of the equivalent undamped,
unforced system. This is because, in common with the majority of vibration examples
that lend themselves to modal analysis, the lightly damped dynamic behaviour is largely
determined by the properties of the underlying Hamiltonian dynamic system.



The motivation for this study is that when multi-degree-of-freedom systems have weak
nonlinearities, then internal resonance effects become significant. In fact these types of
resonance effects have extensively been studied because they are often related to unwanted
vibration effects in structures. Most of the literature is for undamped, unforced systems,
and includes beams, cables, membranes, plates and shells — see for example [1, 8, 14].
Several different analytical approaches have been used to approach this type of problem,
such as perturbation methods, [9] nonlinear normal modes (NNMs) [6, 11, 13] or normal
form analysis [2, 7, 10]. Similar 3-DOF systems have been analysed using NNMs in the
context of nonlinear vibration suppression [5].

In this paper we demonstrate the resonance effects by considering two configurations of
an in-line three-degree-freedom(3-DOF) nonlinear oscillators with small forcing and light
damping. In Section 2 we describe the two different configurations of in-line oscillator.
Then, in Section 3, we apply a normal form transformation method to the 3-DOF systems.
Having found the normal form, in Section 4 the backbone curves are computed. These
curves are then used to infer the dynamic behaviour of the system, which in turn can be
used or interpret the forced, damped behaviour. Conclusions are drawn in Section 5.

2 In-line nonlinear 3-DOF oscillators

The first 3-DOF system considered here is shown schematically in Figure 1. Three lumped
massed, all of mass m, have displacements x1, x2 and x3 and are forced sinusoidally at
amplitudes P1, P2 and P3 respectively at frequency Ω. The two outside masses are connected
to the ground via linear viscous dampers with damping constant cn, and via nonlinear
springs, with linear spring stiffness kn and cubic stiffness κn. The middle mass is also
connected to the two side masses via a linear viscous damper and nonlinear springs.

k1, 1 k2, 2
k3, 3 k4, 4

c1 c4c2 c3

P1cos( t) P2cos( t) P3cos( t)x1 x2 x3

m m m

Fig. 1: In-line, 3-DOF nonlinear oscillator. The middle mass is respectively
connecting to the two masses at the end and the two end masses are connected
to the ground via a linear spring, a nonlinear cubic spring and a linear viscous
damper. All three masses are excited by the single-frequency-sinusoidal forces.

The second 3-DOF system configuration is shown schematically in Figure 2. All three
masses are connect to the ground via a linear viscous damper,cn, and a linear springs, kn,
and the middle mass is connected to the two end masses via a linear viscous dampers and
the cubic nonlinear springs.

Generally, the governing motion equations of the multi-degree-of-freedom (MDOF) non-
linear vibration system under single-frequency-sinusoidal excitations can be expressed as,

Mẍ + Cẋ + Kx + Nx(x) = P cos(Ωt), (1)



P1cos( t)
x1 x2 x3P2cos( t) P3cos( t)k1 k2 k3

k4, 1 k5, 2 mmm

c4 c5

c2c1 c3

Fig. 2: In-line, 3-DOF nonlinear oscillator.All three masses are connected to the
ground with a linear spring and a viscous damper and the middle mass links
the masses at two ends via a linear spring, a nonlinear cubic spring and a linear
viscous damper. All three masses are excited by the single-frequency-sinusoidal
forces.

where M, C and K are the mass, damping and stiffness matrices (n×n), respectively; x, ẋ
and ẍ are the displacement, velocity and acceleration vectors (n × 1), respectively; Nx(x)
is the nonlinear force vector (n× 1) and P is the external force amplitude vector (n× 1).

For both of our nonlinear oscillator configurations, the linear damping matrix C and
external sinusoidal force amplitude vector can be written as,

C =

 C1 −C4 0
−C4 C2 −C5

0 −C5 C3

 , P =

P1

P2

P3

 . (2)

But their stiffness matrices and nonlinear terms vectors are different. For the nonlinear
oscillator in Figure 1, its specific stiffness matrix K and the cubic nonlinear force vector
Nx(x) are given by,

KI =

k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3 + k4

 , NI
x(x) =

 κ1x
3
1 + κ2(x1 − x2)3

κ2(x2 − x1)3 + κ3(x2 − x3)3

κ3(x3 − x2)3 + κ4x
3
3

 , (3)

while for another oscillator which is shown in Figure 2, its stiffness matrix K and nonlinear
force vector Nx(x) ( superscripts are used to indicate the two oscillators),

KII =

k1 + k4 −k4 0
−k4 k2 + k4 + k5 −k5

0 −k5 k3 + k5

 , NII
x (x) =

 κ1(x1 − x2)3

κ1(x2 − x1)3 + κ2(x2 − x3)3

κ2(x3 − x2)3

 .

(4)

3 Application of the second-order normal form method

Now, we apply a normal form technique which is the second-order normal form method [10]
to investigate the modal interaction within the nonlinear 3-DOF oscillator. Here, we firstly
consider the case with no damping and no forcing. In this case the equation of motion for
both systems is given by

Mẍ + Kx + Nx(x) = 0. (5)



First by applying the linear modal transformation to Equation 5 to decouple the linear terms,
we get the linear modal decomposition equation in terms of the new modal coordinate q as

q̈ + Λq + Nq(q) = 0, (6)

where q is the modal coordinates and Λ is a diagonal matrix of the squares of the cor-
responding linearised natural frequencies ωn1, ωn2 & ωn3, and the Nq(q) is the nonlinear
modal force vector,

Nq(q) = nqq
∗, (7)

where coefficient matrix nq and nonlinear element vector q∗ are, in general

nT
q =



α11 α21 α31

α12 α22 α32

α13 α23 α33

α14 α24 α34

α15 α25 α35

α16 α26 α36

α17 α27 α37

α18 α28 α38

α19 α29 α39

α10 α20 α30


, q∗ =



q31
q21q2
q1q

2
2

q32
q22q3
q2q

2
3

q33
q1q

2
3

q21q3
q1q2q3


. (8)

Substituting qn → un = unp + unm gives the functional form of u∗ vector and coefficient
vector nu as below, and simultaneously, values for βk,l can be computed using

βk,l =

[
N∑
n=1

{(snpl − snml)ωrn}

]2
− ω2

rk, (9)

with the assumption that ωr2 = rωr1 and ωr3 = r′ωr1,



u∗ =



u31p
u21pu2p
u1pu

2
2p

u32p
u21pu2p

u1pu1mu2p
u21mu2p
u21pu2m

u1pu1mu2m
u21mu2m
u1pu

2
2p

u1pu2pu2m
u1pu

2
2m

u1mu
2
2p

u1mu2pu2m
u1mu

2
2m

u32p
u22pu2m
u2pu

2
2m

u32m
u22pu3p

u2pu2mu3p
u22mu3p
u22pu3m

u2pu2mu3m
u22mu3m
u2pu

2
3p

u2pu3pu3m
u2pu

2
3m

u2mu
2
3p

u2mu3pu3m
u2mu

2
3m

u33p
u23pu3m
u3pu

2
3m

u33m
u1pu

2
3p

u1pu3pu3m
u1pu

2
3m

u1mu
2
3p

u1mu3pu3m
u1mu

2
3m

u21pu3p
u1pu1mu3p
u21mu3p
u21pu3m

u1pu1mu3m
u21mu3m
u1pu2pu3p
u1pu2pu3m
u1pu2mu3p
u1pu2mu3m
u1mu2pu3p
u1mu2pu3m
u1mu2mu3p
u1mu2mu3m



nT
u =



α11 α21 α31

3α11 3α21 3α31

3α11 3α21 3α31

α11 α21 α31

α12 α22 α32

2α12 2α22 2α32

α12 α22 α32

α12 α22 α32

2α12 2α22 2α32

α12 α22 α32

α13 α23 α33

2α13 2α23 2α33

α13 α23 α33

α13 α23 α33

2α13 2α23 2α33

α13 α23 α33

α14 α24 α34

3α14 3α24 3α34

3α14 3α24 3α34

α14 α24 α34

α15 α25 α35

2α15 2α25 2α35

α15 α25 α35

α15 α25 α35

2α15 2α25 2α35

α15 α25 α35

α16 α26 α36

2α16 2α26 2α36

α16 α26 α36

α16 α26 α36

2α16 2α26 2α36

α16 α26 α36

α17 α27 α37

3α17 3α27 3α37

3α17 3α27 3α37

α17 α27 α37

α18 α28 α38

2α18 2α28 2α38

α18 α28 α38

α18 α28 α38

2α18 2α28 2α38

α18 α28 α38

α19 α29 α39

2α19 2α29 2α39

α19 α29 α39

α19 α29 α39

2α19 2α29 2α39

α19 α29 α39

α10 α20 α30

α10 α20 α30

α10 α20 α30

α10 α20 α30

α10 α20 α30

α10 α20 α30

α10 α20 α30

α10 α20 α30



βT = ω2
r1



8 9− r2 9− r′2
0 1− r2 1− r′2
0 1− r2 1− r′2
8 9− r2 9− r′2

r2 + 4r + 3 4r + 4 r2 + 4r + 4− r′2
r2 − 1 0 r2 − r′2

r2 − 4r + 3 −4r + 4 r2 − 4r + 4− r′2
r2 − 4r + 3 −4r + 4 r2 − 4r + 4− r′2
r2 − 1 0 r2 − r′2

r2 + 4r + 3 4r + 4 r2 + 4r + 4− r′2
4r2 + 4r 3r2 + 4r + 1 4r2 + 4r + 1− r′2

0 1− r2 1− r′2
4r2 − 4r 3r2 − 4r + 1 4r2 − 4r + 1− r′2
4r2 − 4r 3r2 − 4r + 1 4r2 − 4r + 1− r′2

0 1− r2 1− r′2
4r2 + 4r 3r2 + 4r + 1 4r2 + 4r + 1− r′2
9r2 − 1 8r2 9r2 − r′2
r2 − 1 0 r2 − r′2
r2 − 1 0 r2 − r′2
9r2 − 1 8r2 9r2 − r′2

4r2 + 4rr′ + r′2 − 1 3r2 + 4rr′ + r′2 4r2 + 4rr′

r′2 − 1 r′2 − r2 0
4r2 − 4rr′ + r′2 − 1 3r2 − 4rr′ + r′2 4r2 − 4rr′

4r2 − 4rr′ + r′2 − 1 3r2 − 4rr′ + r′2 4r2 − 4rr′

r′2 − 1 r′2 − r2 0
4r2 + 4rr′ + r′2 − 1 3r2 + 4rr′ + r′2 4r2 + 4rr′

r2 + 4rr′ + 4r′2 − 1 4rr′ + 4r′2 r2 + 4rr′ + 3r′2

r2 − 1 0 r2 − r′2
r2 − 4rr′ + 4r′2 − 1 −4rr′ + 4r′2 r2 − 4rr′ + 3r′2

r2 − 4rr′ + 4r′2 − 1 −4rr′ + 4r′2 r2 − 4rr′ + 3r′2

r2 − 1 0 r2 − r′2
r2 + 4rr′ + 4r′2 − 1 4rr′ + 4r′2 r2 + 4rr′ + 3r′2

9r′2 − 1 9r′2 − r2 8r′2

r′2 − 1 r′2 − r2 0
r′2 − 1 r′2 − r2 0
9r′2 − 1 9r′2 − r2 8r′2

4r′ + 4r′2 1 + 4r′ + 4r′2 − r2 1 + 4r′ + 3r′2

0 1− r2 1− r′2
−4r′ + 4r′2 1− 4r′ + 4r′2 − r2 1− 4r′ + 3r′2

−4r′ + 4r′2 1− 4r′ + 4r′2 − r2 1− 4r′ + 3r′2

0 1− r2 1− r′2
4r′ + 4r′2 1 + 4r′ + 4r′2 − r2 1 + 4r′ + 3r′2

3 + 4r′ + r′2 4 + 4r′ + r′2 − r2 4 + 4r′

r′2 − 1 r′2 − r2 0
3− 4r′ + r′2 4− 4r′ + r′2 − r2 4− 4r′

3− 4r′ + r′2 4− 4r′ + r′2 − r2 4− 4r′

r′2 − 1 r′2 − r2 0
3 + 4r′ + r′2 4 + 4r′ + r′2 − r2 4 + 4r′

(1 + r + r′)2 − 1 (1 + r + r′)2 − r2 (1 + r + r′)2 − r′2
(1 + r − r′)2 − 1 (1 + r − r′)2 − r2 (1 + r − r′)2 − r′2
(1− r + r′)2 − 1 (1− r + r′)2 − r2 (1− r + r′)2 − r′2
(1− r − r′)2 − 1 (1− r − r′)2 − r2 (1− r − r′)2 − r′2
(1− r − r′)2 − 1 (1− r − r′)2 − r2 (1− r − r′)2 − r′2
(1− r + r′)2 − 1 (1− r + r′)2 − r2 (1− r + r′)2 − r′2
(1 + r − r′)2 − 1 (1 + r − r′)2 − r2 (1 + r − r′)2 − r′2
(1 + r + r′)2 − 1 (1 + r + r′)2 − r2 (1 + r + r′)2 − r′2


(10)



By viewing the β matrix, the zero terms represent the unconditionally-resonant terms
which should be kept in the dynamic equation for u. Furthermore, there are also additional
conditionally-resonant terms depending on the value of r and r′. For example, r, r′ = 1, 3, 1

3

will lead further zero terms in the β matrix. For both unconditionally- and conditionally-
resonant terms, the corresponding terms in nu as equal to those in n. Here, as an instead
examples, consider the case that r and r′ 6= 1, 3, 1

3
, such that there is no conditionally

resonance terms and the resulting dynamic equations are, (Note that this special case is
inconsistent with the ωn1 : ωn2 : ωn3 ' 1 : 1 : 1 case considered elsewhere in this paper)

ü1 + ω2
n1u1 + 3α11

[
u21pu1m + u1pu

2
1m

]
+ 2α13 [u1pu2pu2m + u1mu2pu2m] + 2α18 [u1pu3pu3m + u1mu3pu3m] = 0,

ü2 + ω2
n2u2 + 3α24

[
u22pu2m + u2pu

2
2m

]
+ 2α22 [u1pu1mu2p + u1pu1mu2m] + 2α26 [u2pu3pu3m + u2mu2pu3m] = 0,

ü3 + ω2
n3u3 + 3α37

[
u23pu3m + u3pu

2
3m

]
+ 2α35 [u2pu2mu3p + u2pu2mu3m] + 2α39 [u1pu1mu3p + u1pu1mu3m] = 0.

(11)

Substituting uip = (Ui/2) ej(ωrit−φi) and uim = (Ui/2) e−j(ωrit−φi) into Equation 11 and
balancing the coefficients of ejωrit and e−jωrit, we can get the time-independent equations[

−ω2
r1 + ω2

n1 + 3α11U
2
1 + 2α13U

2
2 + 2α18U

2
3

]
U1 = 0,[

−ω2
r2 + ω2

n2 + 3α24U
2
2 + 2α22U

2
1 + 2α26U

2
3

]
U2 = 0,[

−ω2
r3 + ω2

n3 + 3α37U
2
3 + 2α35U

2
2 + 2α39U

2
1

]
U3 = 0.

(12)

Three solutions to Equation 12 can be found by successively setting U1 , U2 and U3 to zero
and the results are,

S1 : U1 6= 0, U2 = U3 = 0, ω2
r1 = ω2

n1 +
3

4
α11U

2
1 , (13)

S2 : U2 6= 0, U1 = U3 = 0, ω2
r2 = ω2

n2 +
3

4
α24U

2
2 , (14)

S3 : U3 6= 0, U1 = U2 = 0, ω2
r3 = ω2

n3 +
3

4
α37U

2
3 . (15)

Here S1, S2 and S3 are the expressions of the backbone curve branches of the modal
coordinates for the non-modal-interaction case.

4 Backbone curve and FRF results

In order to show how the backbone curve obtained by the second-order normal form method
can present the information of the modal interaction within a nonlinear oscillator, we choose
the second nonlinear system (shown in Figure 2) with specific parameters as a example for
illustration. Here, to simplify the mathematical presentation, we choose the oscillator to be
symmetric, which means the linear stiffness k1 = k2 = k3 = k and k4 = k5 = k′ and the
cubic nonlinear stiffness κ1 = κ2 = κ.

Therefore, through linear modal transformation, the linear modal natural frequencies can
be calculated to be ωn1 =

√
k, ωn2 =

√
k + k′ and ωn3 =

√
k + 3k′. To make these modal

frequencies be close, k′ is supposed to be small and there will exist the possibility for the
nonlinear modes to interact. Hence, for a 1 : 1 : 1 resonance we set r = r′ = 1. Submitting
the frequencies ratios values into the β matrix derived in Section 3, picking out the resonant



terms into n and following the same process in last section, we obtain the time-independent
equations like Equation 12 to be,[

−ω2
r1 + ω2

n1

]
U1 = 0,[

−ω2
r2 + ω2

n2 +
3

4
µ
{
U2
2 + (18 + 9p)U2

3

}]
U2 = 0,[

−ω2
r3 + ω2

n3 +
3

4
µ
{

27U2
3 + (6 + 3p)U2

2

}]
U3 = 0.

(16)

where µ = κ/m and p = ej2(|φ2−φ3|). The |φ2 − φ3| represents the phase difference between
mode 2 and 3. Using the same procedure as that in Section 3, there exist three independent
backbone branches labelled S1, S2 and S3,

S1 : U1 6= 0, U2 = U3 = 0, ω2
r1 = ω2

n1, (17)

S2 : U2 6= 0, U1 = U3 = 0, ω2
r2 = ω2

n2 +
3

4
µU2

2 , (18)

S3 : U3 6= 0, U1 = U2 = 0, ω2
r3 = ω2

n3 +
81

4
µU2

3 . (19)

It can be noticed that the branch for u1 is linear and it is actually not coupled with the
other two modes, where mode 2 and 3 would potentially interact with each other which will
be affected by p. If u2 and u3 are both active, Equation 16 can be written as

Ω2 = ω2
n2 +

3

4
µ
{
U2
2 + (18 + 9p)U2

3

}
= ω2

n3 +
3

4
µ
{

27U2
3 + (6 + 3p)U2

2

}
. (20)

For Equation 20 to be real, the phase difference terms should be, p = ±1. p = 1 and p = −1
represent the in-unison and out-of-unison resonances respectively. The full discussion of the
value chosen of p and its corresponding physical meaning can be found in [3, 16]. So, here
by setting p = +1 yields two extra backbone curves, labelled S4+ and S4−, with the phase
difference

S4+ : |φ2 − φ3| = 0, S4− : |φ2 − φ3| = π, (21)

and their corresponding backbone branch expressions,

S4± : U2
2 =

ω2
n2 − ω2

n3

6µ
,

S4± : Ω2 =
9ω2

n2 − ω2
n3

8
+

81

4
µU2

3 .

(22)

The case where p = −1 yields a further two backone curves, denoted S5+ and S5−. They
are characterised by the phase differences,

S5+ : |φ2 − φ3| = +π/2, S5− : |φ2 − φ3| = −π/2. (23)

Substituting p =1 into Equation 20 gives the amplitude and response frequency relationships

S5± : U2
2 =

2(ω2
n2 − ω2

n3)

3µ
− 9U2

3 ,

S5± : Ω2 =
3ω2

n2 − ω2
n3

2
.

(24)



It should be noted that if µ is positive Equation 22 and Equation 24 will be complex (assumed
ωn3 > ωn2) and lose its physical meaning. Hence, the S4± and S5± branches exist and the
corresponding nonlinear modal interaction only happens when the cubic spring stiffness κ is
negative, i.e. the system is a softening nonlinear case. Also it can be seen from Equation 24
that as the frequency of S5± will not vary with the mode amplitude and the mode amplitude
cannot infinitely increase S5± backbone branch will be a vertical line with a limited length.

Figure 3 shows the backbone curves for the cases where ωn1 = 1, ωn2 = 1.005, ωn3 =
1.015 and κ = −0.05. All panels show the backbone curves in the projection of response
frequency against a displacement. The first column shows the amplitude of displacement of
the fundamental response of u1, u2 and u3 and the second shows that of the lumped masses
x1, x2 and x3. The labelled S1, S2 and S3 branches are the independent resonant backbone
curve. The S4+, S4−, S5+ and S5− branches are the interacting ones in which case mode
2 and mode 3 are both activated and the mode phase differences are 0, π, +π/2 and −π/2
respectively. Note that as S5± will coincide with S1, S5± backbone curves are indicated by
by short cross lines in Figure 3.

To further demonstrate the ability of the backbone curve in determining the response
of the system to an external forcing, we show a brief example of the relationship between
the forced response and the backbone curves. The same fundamental system as above is
used and it is forced in the second mode, [Pm1, Pm2, Pm3] = [0, 15, 0]× 10−4 (corresponding
physical mass force is [P1, P2, P3] = [15, 0,−15] × 10−4) with a damping ratio of ζ = 0.001.
The forced response has been computed from an initial steady state solution, found with
numerical integration in MATLAB, which is then continued in forcing frequency using the
software AUTO-07p.

Figure 4 shows the forced response of the first and third masses, X1 and X3 (due to the
system symmetry) for the system whose backbone curves are presented in the first panel of
the second column in Figure 3. In Figure 4, it can be observed that the response of the typical
softening Duffing oscillator is following the S2 backbone where the response is confined to
just the second mode. On the right stable and left unstable Duffing oscillator response
branches, two branch bifurcation points, marked by quadrangles, respectively leading to
two branches which follow S4+ and S4− backbone curves respectively. Still one couple of
response branches is stable and the other is unstable.l These branches are the responses
composed of both second and third modes with the phase difference 0 and π respectively.
In the center part of Figure 4, there are four stable branches which also bifurcate from the
Duffing oscillator response and they appear to be attracted to S5±. There four curves seems
to be the response composed of second mode and third mode but with the phase difference
+π/2 and −π/2. Besides, it can be seen that all the peaks amplitude points are close to
our backbone curve branches. Therefore, the result shows that the backbone curve obtained
by the second-order normal form method provides a good way for understanding the modal
interaction within the nonlinear 3-DOF oscillator system.

5 Conclusions

In this paper, we have considered the nonlinear modal behaviour of a three-degree-freedom
(3-DOF) lumped mass system. In particular we considered the potential modal interactions
that can occur by analysing the backbone curves of the undamped, unforced system. This
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Fig. 3: Backbone curves for the oscillator with the physical parameters k1 =
k2 = k3 = 1, k3 = k4 = 0.01 and κ1 = κ2 = −0.05, so the modal natural frequencies
are ωn1 = 1, ωn2 = 1.005 and ωn3 = 1.015. The panels in the first and second
column show the modal and physical results respectively. Stable solutions are
shown with solid lines, whereas unstable solutions are represented by dashed
line. Bifurcation points are noted by BP. Note that as S5± would overlap S1,
S5± backbone curves are indicated by short cross lines for distinction.
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Fig. 4: Backbone curves and the amplitude response of the first and third
masses when the system is forced in only the second mode (i.e. [Pm1, Pm2, Pm3] =
[0, 0.0015, 0]) with parameters m = 1, ωn1 = 1, ωn2 = 1.005, ωn3 = 1.015, κ1 = κ2 =
−0.05, c1 = c2 = c3 = 0.002, c4 = c5 = 0 and [P1, P2, P3] = [0.0015, 0,−0.0015]. The
diamond, start and asterisk indicate branch, torus bifurcation and fold points.
The black solid lines and thin dash lines represent the stable and unstable ampli-
tude response respectively. The grey lines represent the backbone curves. Note
that as forcing is in the second mode only, the backbone branches S1(containing
mode 1 only) and S3(containing mode 3) have not been plotted here.

is an important topic because the majority of vibration examples that relate to modal
analysis are lightly damped and therefore the dynamic behaviour is largely determined by
the properties of the underlying undamped dynamic system.

First we considered the undamped, unforced case was considered. In particular the
modal interaction case that occurs when all the underlying linear modal frequencies are
close was considered (i.e. ωn1 : ωn2 : ωn3 ' 1 : 1 : 1). In this case the first mode is linear
because of the symmetry of the system and the rest two mode will potentially interact with
each other when the special parameters are chosen. We showed how this system can be
analysed using a normal form transformation to obtain the nonlinear backbone curves of



the undamped, unforced response. Following this the frequency response function (FRF) of
the corresponding lightly damped and harmonically forced system was obtained using the
continuation software AUTO-07p. This result was compared with the backbones curve to
show its validity for predicting the nonlinear resonant frequency and amplitude.
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