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Abstract - Complexity is often quoted as an independent 

variable that challenges the utility of traditional project 

management tools and techniques. A large body of work has been 

devoted in exposing its numerous aspects, yet means for 

quantitatively assessing it have been scarce. Part of the challenge 

lies in the absence of hard evidence supporting the hypothesis 

that projects can be considered as complex systems, where 

techniques for measuring such complexity are better established. 

In response, this work uses empirical activity networks to 

account for the technological aspect of five projects. By doing so, 

the contribution of this work is two-fold. First, a procedure for 

the quantitative assessment of an aspect of project complexity is 

presented; namely structural complexity. Second, results of the 

analysis are used to highlight qualitatively similar behavior with 

a well-known complex system, the Internet. As such, it suggests a 

transition from the current, metaphorical view of projects being 

complex systems to a literal one.  

From a practical point of view, this work uses readily-

captured and widely-used data, enabling practitioners to evaluate 

the structural complexity of their projects to explore system 

pathologies and hence, improve the decision making process 

around project bidding, resource allocation and risk 

management. 

 
Index Terms— complex networks, project management, risk 

analysis, complex systems engineering, project engineering 

I. INTRODUCTION 

On March 17th, 2000, a lightning bolt struck a Royal 

Philips Electronics semiconductor plant, leading to a ten-

minute fire [1]. A small, random and rather minor event was 

enough to shock the status quo of the global cellular 

telecommunication industry. Nokia and Ericsson, the two 

dominant companies in the area, both sourced microchips 

from that plant, though under different supply chain strategies. 

Nokia quickly shifted production requirements to other 

suppliers, while Ericsson was trapped due to its single-source 

strategy. As a consequence, Ericsson reported a 3% market 

share decline resulting in financial losses of 400 million USD 
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in sales in the impacted quarter, while its stock value tumbled 

by 14% in just a few hours [1, 2].   

Single-point failures, such as the aforementioned case, are 

surprisingly common and observed in numerous, seemingly 

different, domains (e.g. single tree falling leading to extensive 

power outages [3, 4]; single financial institution failure 

leading to a collapse of the financial system [5, 6], single 

factory failing threatens global manufacturers [7, 8]). As a 

result, these systems are considered to be “Robust-Yet-

Fragile” (RYF) [9-12], where random disruptions cause 

minimum damage, unless a disproportionally important 

component is affected.  

These central components emerge from the highly 

heterogeneous nature of these systems; first noted in the 

pioneering work of Barabási and Albert [13] and more 

recently becoming a recognized feature of complex systems in 

general [14-17]. Consequently, it does not matter how large a 

single contribution is, in an absolute way, but rather how it 

compares to the overall ensemble of entries. In other words, 

the variance in the underlying distribution of individual 

contributions (or observations) is a necessary condition for 

complex phenomena (such as the RYF behavior) to emerge 

[10].  

The objective of this work is to contextualize this line of 

enquiry in the project management literature, with a focus on 

engineering projects in general, and construction projects in 

particular. In this context, it is often presumed that projects 

can be considered to be complex systems – yet no hard 

evidence have been proposed to support this hypothesis [18]. 

In response, this work proposes a procedure for assessing an 

aspect of project complexity – structural complexity; see 

Section II, B – in a quantitative, evidence-based manner. 

Subsequently, results of an analysis involving five real-world 

engineering projects highlights the qualitative similarity with 

the behavior of a widely-recognized complex system – the 

Internet. As such, this work provides evidence supporting the 

transition from the current metaphorical view of project being 

complex system to a literal one.   

II. THEORETICAL BACKGROUND 

A. Complexity Science 

In his classic paper, Weaver [19] proposed that system 

complexity arises from the inability to accurately predict the 

properties of a system, even under the state of complete 

knowledge of the properties of its composing parts. As a 
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result, non-trivial, system-wide properties, such as the RYF, 

emerge.  

Network science provides the tools for understanding how 

the architecture of a system allows such non-trivial behavior to 

emerge [20] (see [21, 22] for technical reviews of the field). 

Under this view, RYF is readily explained as the result of 

extreme variance (in fact, theoretically infinite) within the 

system, in terms of the connectedness of each individual 

component [10, 13]. In other words, the complexity of the 

system, as seen through the emergence of non-trivial behavior 

(e.g. RYF), resides in the extreme variance exhibited by a 

given indicator of the network structure (e.g. node degree).  

The importance of variance as a contributing factor to  

complexity is widely recognized within the natural sciences 

[23, 24] (also see [10, 25] for examples on how it is used); 

similar views on its importance have occasionally surfaced 

within the management literature [26-28]. 

B. Project Management 

During the past years, there has been a growing body of 

work around complexity and its role in project management 

[27-33]. Complexity has been described as an independent 

variable which limits the applicability of best practice tools 

and methods, as the means for achieving improved 

performance of project delivery [18]. Yet, the discussion 

around its relevance and potential benefits has been hindered 

by the lack of evidence supporting the hypothesis that a 

project can be equated to a complex system. As noted by the 

review of Geraldi, et al. [18] “not one of the publications 

identified under the heading of “complexity in projects” 

provided any evidence or justification that a project is a 

complex system (equivalence). We concur with the view that 

projects can exhibit many of the characteristics of complex 

systems (analogy), and there are insights to be gained from 

viewing projects through the lenses provided by the various 

complexity theories. However, equivalence has not been 

established. We believe that the discussion of complexity 

would benefit from work to clarify whether such equivalence 

is indeed justified, and under what circumstances”. Fuelled by 

this vagueness, a multitude of attributes and indicators 

attempting to describe the nature of project complexity have 

flooded the research space – for example,  Geraldi, et al. [18] 

report a total of 34 different manifestations for measuring one 

single aspect of project complexity. For clarity, we note that 

the term complexity does not refer to its everyday use (which 

can be discounted as “merely complicated” [29, 34]) but rather 

on the narrower view of complexity science [35], focusing on 

the “emergence, dynamics, non-linearity and other behaviors 

present in systems of interrelated elements” [18]. 

Part of the challenge lies in the multiplicity of sources 

deemed responsible for fuelling this complexity. In response, 

both industry and academia have focused their efforts in 

constructing frameworks that capture those aspects – see [36, 

37] and [18] for respective reviews. Throughout the literature, 

structural complexity emerges as a core aspect (e.g. [24, 27, 

29, 32-34]; also see [18] for its frequency within the literature. 

Specifically, structural complexity refers to the (potentially) 

non-linear interactions between the activities of a project [38]. 

Interestingly, structural complexity is the earliest aspect 

deemed to contribute to project complexity (Fig. 1) and has 

remained relevant to both academics (e.g. [18]) and 

practitioners (e.g. [39]) ever since. Hence, understanding (and 

measuring) the role of structural complexity is central in 

understanding the wider concept of project complexity.  

 

 
Fig. 1: Historical development of aspects contributing to project complexity, 
adapted from [18]. Note that since 2007, the nature of these aspects has 

converged.   

 

Structural complexity, as with the of rest project complexity 

aspects, spans across several dimensions relevant to the 

project management process, such as organizational, 

environmental, technological etc. The technological 

dimension is of special interest, as it can provide the grounds 

for exploring structural complexity in a quantitative, evidence-

based way. Baccarini [29] defines the technological 

dimensions as “the transformation process which converts 

inputs into outputs” and includes the act of task sequencing. 

As such, activity networks provide a suitable ground for 

capturing structural complexity of a project, across its 

technological dimension, in a quantitative, evidence-based 

way. 

Activity networks are a key concept in a number of 

important project management tools. In practice, they are 

widely used to identify critical tasks (e.g. Critical Path 

Method, Program Evaluation and Review Technique) [42]; in 

academia they form the basis upon which various optimization 

problems are set [43-45]. The latter stream of work is of some 

relevance to this work, as it adopts a graph theoretic approach 

in an attempt to measure the perceived complexity of these 

networks [46]. Nonetheless, the applicability of this body of 

work is restricted within the domain of mathematical 

scheduling, where measuring the complexity of activity 

networks serves as a proxy on the algorithmic complexity of 

various solution procedures [47]. It does so by assuming that 

complexity is proportional to the hardness upon which a given 

algorithm can solve a given optimization problem (i.e. linear 

structure is desirable over a parallel one); an assumption 

debunked in [48]. 

III. METHODOLOGY 

A.  Overview 

The premise of this work is grounded on the use of tools 

found within the study of complex systems throughout the 

field of natural sciences. Specifically, variability (quantified as 
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variance [26]) is commonly used to classify a system as being 

complex (e.g. [13, 14, 23, 49]). As such, variance serves as the 

quantity of interest. By focusing on the technological 

dimension of projects (i.e. the transformation process of 

converting inputs to outputs) [29], activity networks  are used 

to provide the underlying structure of a project. As such, 

activity networks form the subject of this quantitative analysis. 

In response to issues raised by Geraldi, et al. [18], the 

contribution of this work, to the domain of project 

management, is two-fold. First, evidence is provided in 

supporting the hypothesis that activity networks (and thus, to 

an extent, projects) can be considered as a complex system, 

where the latter is described as “a system composed of many 

interacting parts, such that the collective behavior of those 

parts together is more than the sum of their individual 

behaviors” [20]. Second, the proposed procedure provides a 

step forward in operationalizing the quantification of project 

complexity whilst using readily available data. By doing so, 

practitioners can identify, and proactively manage, complex 

engineering projects. Note that this work does not claim that 

other project aspects (e.g. supply chains, organizational 

learning requirement etc.) do not contribute towards their 

complex character. Rather, it focuses on quantifying the extent 

by which non-trivial technological dependencies (i.e. 

structural complexity) describes the transformation process 

that sustains an engineering project (i.e. across its 

technological dimension).  

The adopted approach can be summarized as follows. 

Project schedules of five engineering projects are obtained and 

converted into activity networks, using the activity-on-node 

notation [50, 51]. Specifically, every project schedule 

corresponds to a directed graph 𝐺 = {{𝑁} {𝐸}}, where every 

task 𝑖 is abstracted as node 𝑖, 𝑖 ∈ 𝑁 and a functional 

dependency between task 𝑖 and 𝑗 corresponds to a directed 

link 𝑒𝑖,𝑗, where 𝑒𝑖,𝑗 ∈ 𝐸.  

Subsequently, four indicators are defined, providing the 

means for measuring, in a direct or indirect way, the structural 

complexity of an activity network. Based on the distribution of 

each indicator, an artificial set of observations (using a 

suitably parameterized, truncated Normal distribution) is 

obtained - this set, corresponds to a homogeneous 

representation of the same indicator (which satisfies the 

research hypothesis – see Section III, C). The histogram of the 

empirical sample is subsequently compared to its empirical 

counterpart, using the Bhattacharyya measure. Based on this 

comparison, the variability of every indicator is directly 

assessed in order to decide whether it contributes to structural 

complexity - see Table 1 for an algorithmic description of the 

method (MATLAB implementation can be provided upon 

request). Note that results are to be plotted in a semi-log 

fashion, exposing the exponential character of the artificial set 

(sharp declining plot). Finally, similarities in behavior with 

other complex systems will be appropriately drawn. 

 
TABLE I 

ALGORITHMIC DESCRIPTION OF METHOD 

Extract precedence data from raw Gantt chart 

Compute adjacency matrix, 𝐀 

Compute the indicator of interest – this is stored in vector 𝐼, with size 𝑛 × 1 

Using 𝐼, parameterize the truncated Gaussian probability density function 

(pdf); see eq. 4 

For 𝑥 number of times 

Sample an 𝑛 number of (observations from the parameterized pdf; store it 

in vector 𝑅, with size 𝑛 × 1 

Normalize 𝑅 and 𝐼 between intervals [0, 1], using eq. 1, where the 

minimum and maximum values are equal to min K and max K 

respectively, where 𝐾 = 𝑅 ∪ 𝐼. 

Compute the probability of obtaining each 𝑃(𝑅𝑖 = 𝛼), where 𝛼 ∈ 𝑅, 
using eq. 2. 

Store in matrix 𝑀(𝑅𝑖 , 𝑥), where each column is sorted in an ascending 
manner 

End 

Average matrix 𝐌 across its second dimension; store resulting vector as 𝑅2 
Use the Bhattacharyya measure to assess the similarity between the 

normalized histogram capturing the frequency of values in 𝐼 and 𝑅2. 

B. Data 

Project management is a field dominated by professional 

associations [18]. Consequently, best practice, as advised by 

their respective Bodies of Knowledge, drives current data 

availability. This reality needs to be reflected by the data 

requirements of the procedure proposed herein otherwise there 

is a real risk of being theoretically valid, yet practically 

irrelevant. As such, project schedules, in the form Gantt charts 

[42], are used as the sole data input, as they adequately capture 

the technological aspect of a project [29] – see Fig. 2.  

 

 
Fig. 2: An example of a project schedule, along with the typical information 
that it contains. Of relevance to this work are: a) the total number of links of a 

given task; b) the extend upon which a task keeps the network together; c) the 

free float between two tasks (referred to as the Inter-Event Time, IET) and d) 
the number of active tasks per day. For details see Section II, D (1).  

 

Engineering projects with a focus on technical activities 

form the majority of modern organization activity [52], with 

construction projects being a typical example. As such, five 

real-world projects are considered, with their respective Gantt 

charts being produced at various stages of the project. 

Specifically, Project 1 corresponds to the delivery of an 

educational institution with an agreed cost of approximately 

15,000,000 USD and an expected duration of 366 days. The 

Gantt chart used herein was produced 40 days after the project 

was launched. In terms of its activity network, it is composed 

of 5 connected components, where 935 nodes are connected 

through 1070 links. Project 2 corresponds to a commercial 

office complex, with an original contract sum of 

approximately 13,000,000 USD and an expected duration of 

744 days. The Gantt chart used herein was produced 603 days 

after its launch. Its respective activity network is composed of 

47 connected components, containing a total of 833 nodes and 

806 links. Project 3 corresponds to an extension and 

renovation project, with an original contract sum of 
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approximately 3,000,000 USD and expected duration of 596 

days. The Gantt chart used herein was produced 8 days after 

the launch of the project. Its respective activity network is 

composed of 12 connected components, with 521 nodes and 

563 links. Project 4 corresponds to an undisclosed project 

(undisclosed cost) with an expected duration of 418 days. The 

Gantt chart used herein was produced 45 days after the project 

launch. Its respective activity networks is composed of 79 

connected components, with a total of 774 nodes and 822 

links. Finally, Project 5 corresponds to the delivery of a 

commercial office complex, with an original contract sum of 

approximately 5,000,000 USD and an agreed duration of 549 

days. The Gantt chart used herein was produced 12 days 

before the launch of the project. Its respective activity network 

is composed of 26 connected components, with a total of 326 

nodes and 435 links. 

C. Hypothesis 

Variance is used as the means to evaluate the variability of 

an indicator, where the indicator captures a specific feature of 

the structure of the activity network1. This general 

interpretation will serve as the grounding principle for 

developing the research hypothesis (H1): 

 

H1: Activity networks of engineering projects do not exhibit 

extreme variation in their topological structure. 

 

In the case of a homogenous sample (H1 is true), the 

resultant distribution will resemble a fast-decaying, 

probability density function (FDpdf) with a very thin tail (e.g. 

Normal, exponential etc.). On the other hand, if the sample is 

highly heterogeneous (H1 is false), the resulting distribution 

will resemble a slow-decay, probability density function 

(SDpdf) with a fat-tail (e.g. power law, log-normal distributions 

etc.) - see [53-55] for further discussion on the implications of 

identifying the specific functions. It is worth noting that from 

a risk management point of view, appreciating the difference 

between a FDpdf and SDpdf is key as it affects one’s ability to 

confidently dismiss the existence of disproportionately 

important components within a system [10, 56] and thus, 

assess the likelihood of a system undertaking a systemic 

failure [57]. 

D. Method 

1) Indicators 

By focusing on the structure of the activity network, four 

indicators are considered; three are directly drawn from the 

domain of network science, with remaining being a new 

contribution – see Table II.  Specifically, the first two 

indicators perform direct measurements on the topology of the 

network – they are referred to as the degree centrality (DC) 

and betweenness centrality (BC). The remaining two 

indicators emphasize on the indirect implications of the 

                                                           
1 For example, if one was to focus on the RYF property (see Section I), 
connectivity would be a suitable indicator; its uniformity evaluated by 

examining the connectivity distribution. By doing so, the contribution of each 

individual node could be exposed i.e. if the connectivity distribution is 
increasingly uniform, the contribution of each node is comparable to every 

other node; if the connectivity distribution is not uniform, then the majority of 

nodes will be of little importance, with few nodes serving as central 
connection points (the so-called hubs). 

structure, from a temporal point of view2. These are the inter-

event time (IET) and the daily task density (DTD).  

In order to avoid potential scaling issues due to the different 

activity network sizes, each set of measurements is normalized 

accordingly:   

 

𝑋𝑖
′ =

𝑋𝑖−𝑋min

𝑋max−𝑋min
                (1) 

 

where 𝑋 represents the vector containing the appropriate  set 

of observations (i.e. empirical (𝐼) or artificial (𝑅2)), where 

each individual observation within 𝑋 is denoted by the 

subscript 𝑖, where 𝑖 = 1,2,3, … , 𝑛 and 𝑖 ∈ 𝑋.  

 
TABLE II  

INDICATORS USED TO MEASURE STRUCTURAL COMPLEXITY 

Measurement of Structural Complexity Indicator 

Direct Degree Centrality (DC) 

Direct Betweenness Centrality (BC) 

Indirect Daily Task Density (DTD) 

Indirect Inter-Event Time (IET) 

 

DC𝑖 refers to the number of connections node 𝑖 has. The 

extreme variance (and consequently, deviation from Normal 

distribution) noted across a wide range of real-world systems 

[53], first noted in [13], provided the first evidence of 

examining complex systems through a network lens [11, 12]. 

DC𝑖 can be computed as: 

 

𝐷𝐶𝑖 = ∑ 𝐴(𝑖, 𝑗)𝑛
𝑖=1                      (2) 

 

where 𝐀 corresponds to the adjacency matrix of the network, 

defined as: 

𝐀(𝑖, 𝑗) = {
1 if there is a link between 𝑖 and 𝑗

0 otherwise
 

Note that although activity networks are directed (reflected by 

an asymmetric 𝐀 (i.e. 𝐀(𝑖, 𝑗) ≠ 𝐀(𝑗, 𝑖)), these are to be 

simplified as undirected, reducing the number of indicators 

needed. Such simplification would not have been appropriate 

if we were focusing on dynamical processes that are heavily 

dependent on the directionality of the task network e.g. failure 

propagation, where a task’s capacity to trigger a failure 

cascade, or be influenced by one, is a function of its out-

degree and in-degree respectively [59]. However, as we are 

focusing on the overall structural importance of each task, by 

considering the undirected case, we are able to highlight nodes 

that have both high in-degree and out-degree. This feature is 

an important perquisite of structural complexity (as it 

highlights non-trivial structural correlations due to assortative 

mixing [60]) emphasizing the existence of tasks that unlock an 

increased number of tasks and are increasingly dependent on 

the completion of other tasks – an aspect likely to increase the 

challenge of effectively delivering the project. 

BC𝑖 essentially reflects the number of times node 𝑖 is found 

within the shortest path that connects any two other nodes. 

                                                           
2 Such indirect implications arise from the fact that the Euclidean space of an 

activity network corresponds to project time, a feature unique to activity 
networks. For reference, another major class of networks that assign a 

meaningful aspect to the Euclidean space of a network are spatial networks 

[58], where distance between two connected nodes corresponds to the 
physical distance between them. 
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Nodes with high BC play a key role in holding the network 

together, and consequently, relate to several resilience-related 

concepts [15, 61, 62]. BC𝑖 can be defined as: 

 

𝐵𝐶𝑖 = ∑ 𝑛𝑗𝑘
𝑖

𝑗𝑘   (3) 

 

where 𝑛𝑗𝑘
𝑖  is 1 if node 𝑖 is found within the shortest path that 

connects node 𝑗 and k and 0 if it does not or if there is no such 

path [63]. 

IET𝑖,𝑗 captures the time interval between two consecutive 

tasks 𝑖 and 𝑗, measured in days. This measure has a direct 

equivalent within the project management literature, coined as 

task free-float [42]. However, this more general term was 

chosen in order to reflect the generality of the concept. For 

example, it has been shown that the numerous complex 

systems follow a bursty behavior, captured by extreme 

variance in the IET distribution, compared to its normally-

distributed counterpart [25, 64-66].  

Finally, DTD corresponds to the number of active tasks per 

day, providing a proxy for the daily coordination effort 

required, noting that higher DTD will demand a greater 

amount of coordination effort. 

It should be noted that neither the number nor the nature of 

the indictors proposed is exclusive. One can easily extend this 

procedure to include further aspects that are deemed to have a 

direct or indirect effect on the structural complexity of a 

project.  

2) Artificial set of observations 

Due to the focus of H1 (i.e. variability), the precise nature 

of the FDpdf is of little importance, as long as two main 

conditions are satisfied: a) the presence of a fast decaying tail, 

and b) be defined within positive bounds. The first condition is 

central in the argument (i.e. caps the potential variability of 

individual contributions); the second condition is set to restrict 

the emergence of negative values for each indicator.  

With respect to the first condition, the Normal (i.e. 

Gaussian) distribution is one of the most widely used pdfs 

[67]. Its exponential nature strictly limits the range of possible 

values that an observation can take. As a result, a meaningful 

average emerges, where the majority of observations fall 

within a narrow band of values (99.7% are found within 3 

standard deviations). Consequently, the contribution of each 

component to the overall aspect is similar (and consequently, 

H1 is satisfied). Yet, the Normal distribution is defined with 

infinite bounds [−∞, +∞] and thus, allows for both positive 

and negative values to emerge, conflicting with condition b). 

In response, a truncated variant of the Normal distribution can 

be used, where finite bounds [a, b] can be set [68]. Following 

the work of Mazet [69], a truncated Normal pdf is defined as: 

 

𝑝(𝑥) =
1

𝑍
exp (−

(𝑥−𝜇)2

2𝜎2 )                            (4) 

 

where 𝑍 = √
𝜋

2
𝜎 [erf (

𝑏−𝜇

√2𝜎
) − erf (

𝛼−𝜇

√2𝜎
)], erf is the error 

function, defined as 
2

√𝜋
∫ 𝑒𝑡2

𝑑𝑡
𝑥

0
, 𝜇 = mean and 𝜎2 =

variance. 

To evaluate H1, eq. 4 can be used to generate a sample of 

observations that corresponds to a specific aspect of the 

topology of an activity network. This set of (artificial) 

observations will necessarily satisfy H1 (i.e. the range of 

values will be tightly bound) and thus, will serve as the 

reference point. First, eq.4 must be parameterized against the 

empirical set of observations, as stored in vector 𝐼. In order to 

do so, parameters 𝑎, 𝑏, 𝜇 and 𝜎 need to be accordingly set. The 

latter two parameters correspond to the mean and standard 

deviation of 𝐼; 𝑎 and 𝑏 correspond to the minimum and 

maximum values in 𝐼. Once the precise form of 𝑝(𝑥) has been 

obtained, 1,000 samples of 𝑛 entries (in the form of 1,000 

column vectors) are drawn. The probability of encountering a 

value of a given size X is computed for every column vector, 

and subsequently stored in matrix 𝐌. Finally, matrix 𝐌 is 

averaged across its second dimension in order to limit the 

emergence of outlier values. The resulting column vector (𝑅2) 

essentially corresponds to the artificial observations obtained 

by the null model, and can be used to assess the difference in 

variability of 𝐼.   

3) Distance measure 

To compare the variability of the empirical set of 

observations (𝐼) against its artificial counterpart (𝑅2), and 

consequently evaluate H1, the histogram containing the 

frequency of each observation will be used. Specifically, let  

𝐼𝑖
freq

 (and 𝑅2𝑖
freq

) contain the frequency-coded empirical (and 

artificial) observation in bin 𝑖. Note that each histogram is 

normalized, such that ∑ 𝐼𝑖
freq

𝑖 = ∑ 𝑅2𝑖
freq

𝑖 = 1). 

As such, the  Bhattacharyya measure (𝐵) can be used [70], 

to assess the difference between the two histograms, defined 

as: 

 

𝐵 = ∑ √𝐼𝑖
freq

𝑖 × √𝑅2𝑖
freq

                           (5)  

 

with 𝐵 = 1 indicating a perfect match between the two 

histograms. As such, 1 − 𝐵 refers to the structural complexity 

of an activity network, as captured by the appropriate 

indicator. Note that the Bhattacharyya measure was chosen 

over more traditional similarity measures (such as the chi-

squared statistic) as it has a number of benefits, including 

lifting the assumption that the content within each bin follows 

a Poisson distribution (which is especially useful as the 

underlying distribution of 𝐼 is unknown) [71].  

IV. RESULTS 

As the purpose of this work is to exemplify the applicability 

and utility of the procedure, detailed analysis will be limited to 

one direct (BC) and one indirect (IET) indicator – for  

completeness, results for the remaining indictors (DC and 

DTD) are included in the Appendix. For each indicator, the 

empirical set of observations is first computed (and 

normalized using eq.1). Similarly, the artificial set of 

observations is obtained by using the truncated Normal pdf  
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Fig. 3: Cumulative probability distribution of betweenness centrality (BC), capturing the probability (y-axis) of encountering an entry equal or greater than a 

given size (x-axis). Increased variance is exhibited by the empirical set of observations (blue, square marker) compared to the normally distributed, artificial set 
of observations (red, circle). 
 

(eq.4). Subsequently, the cumulative probability distributions 

of BC and IET, for both empirical and artificial observations, 

are plotted – see Fig.3 and Fig. 5 respectively. By doing so, 

we can proceed to a visual inspection, providing for a 

qualitative assessment of the differences between the 

empirical and artificial set of observations for each respective 

indicator. For the quantitative assessment, the normalized 

histograms for both empirical and artificial set of observations 

are first obtained. The Bhattacharyya measure is subsequently 

computed in order to provide for a measure of the absolute 

similarity between the two histograms. By doing so, H1 can be 

evaluated for each individual indicator. 

As such, the degree of structural complexity for each 

project is provided in the form of an average, along with the 

percentile contribution of each aspect – see Fig. 6. Where 

appropriate, parallels with the wider set of complex systems 

are drawn, either from original work (Fig. 4) or through 

relevant literature.  

A. Direct Measurement – Betweenness Centrality 

A number of general observations can be made across all 

five activity networks – see Fig. 3. Specifically, the 

cumulative probability distribution of all five artificial sets of 

observations decay exponentially, limiting the allowable size 

of an observation – this is to be expected due to the 

exponential tail of the (truncated) Normal pdf from which they 

are drawn. This is in stark contrast to the empirical set of 

observations, where the probability of obtaining relatively low 

values declines rather swiftly at the beginning, but 

subsequently slows down. As a result, it is significantly more 

probable to encounter large values (typically, this difference is 

several orders of magnitude) along with allowing for greater 

values to emerge.  

Project 2, 3 and 4 follow similar behaviors, where the 

empirical set of observations can account for roughly 20% to 

30% larger values. At the same time, the probability for 

encountering an observation in the empirical set, of equal size 

to the maximum value of the artificial is approximately 4 

orders of magnitude higher. 

Despite the fact that Project 1 follows the same general 

points, it shows an added peculiar feature. Specifically, a 

transitional stage is observed near the mid-point of the 

distribution. At this stage, the probability of obtaining a value 

of a given size remains roughly the same, yet its potential 

value more than triples (from 𝐵𝐶 ≅ 0.2 to almost 𝐵𝐶 ≅ 0.8). 

The mechanism responsible for the emergence of this effect 

may be worth further exploration; yet it is beyond the scope of 

this work and will not be explored further.  

Moving to a more quantitative approach, the Bhattacharyya 

measure is computed using the histograms of all five sets of 

empirical observations, with respect to their artificial 

counterpart. As such, Project 1 is the most structurally 

complex (i.e. lowest 𝐵(𝐵𝐶) value) with a Bhattacharyya value 

of 0.5463, followed by Project 5 (0.6220), Project 2 (0.7023), 

Project 4 (0.8398) and Project 3 (0.9703). Note that a higher 

Bhattacharyya value corresponds to increased similarity with 

the respective artificial set of observations, and hence to 

reduced structural complexity.  

At this point, let us use the same indicator to examine the 

variance of a system that is widely accepted as being complex. 

Consider the Internet, as the operating level of autonomous 

systems (AS) – it is widely considered as one of the most 

complex systems currently in operation [63], with numerous 

researchers exploring its various properties through a networks 

view (e.g. [13, 14, 21]). Note that the Internet differs from the 

WWW, where the former corresponds to a physical network 

of autonomous systems, at an inter-domain level, and the latter 

corresponds to an information network composed of websites 

and hypertext links, and is of a significantly larger scale. By 

using publically-available data, the network representation of 

the system (composed of 22,963 nodes and 48,436 links) can 

be explored, and the BC indicator accordingly computed. Note 

that despite the difference in size between the Internet AS 

network and the activity networks used, the normalization 

process ensures that scaling conflicts are avoided. By visual 

inspection of Fig. 4, a qualitatively similar behavior is 

observed, yet to a greater extend. This increase can be 

explained by the increased scale of the system, where the 

difference in size implies an increased capacity for asymmetry 

to grow – this is reflected by the lower Bhattacharyya measure 

(0.4232; approximately 29.09% higher than the most 

structurally complex project). Importantly, this qualitatively 

similar behavior between the Internet AS network and the 
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Fig. 4: Cumulative probability distribution of betweenness centrality across a 

widely-accepted complex system - the Internet. Notice the extreme difference 
between the observed and artificial sample and the qualitatively similar 

behavior to Fig. 3.  

 

activity networks is important for two reasons: a) it illustrates 

that the method is consistent and able to show that the 

Internet, as the AS level, is complex and b) that projects, at 

least from a structural point of view, are also complex, yet to a 

lesser degree. 

B. Indirect measurement – Inter-Event Time 

IET is directly coupled to the structure of the activity 

network, and thus, provides an indication of the structural 

complexity of the project. Despite the fact that it builds on 

topological information (i.e. task precedence) it further 

requires the temporal signature of each task (i.e. start and end 

date). By doing so, it captures the structural complexity of 

project in an indirect way.  

As with the case of BC, the entirety of projects follows a 

qualitatively similar behavior, with a number of general 

observations: the cumulative probability distribution of the 

empirical set of observations deteriorates faster than its 

artificial counterpart but as the reference value increases, the 

rate of decrease slows down (Fig. 5). As a result, the 

maximum value found within the empirical set of observations 

is significantly higher (ranging from approximately 20% to 

60%). At the same time, the probability of encountering the 

maximum artificial observation in the empirical set is 

significantly higher, typically 3 orders of magnitude higher. 

With respect to the Bhattacharyya measure, Project 1 is the 

most structurally complex (i.e. lowest 𝐵(𝐼𝐸𝑇) value), with a 

value of 0.6274, followed by Project 2 (0.6879), Project 5 

(0.7207), Project 4 (0.8186) and Project 3 being the least 

structurally complex, with a value of 0.9681.  

Although we are unable to compute the IET (nor the DTD) 

indicator for the Internet AS network (since nodes do not have 

any temporal signature), numerous systems have been noted to 

have heavily asymmetric IET distributions, similar to the ones 

captured in Fig. 5. Examples range from various forms of 

human communication (including the use of email, letters and 

phone) [25, 65, 72, 73], library activity [73] and Internet 

traffic [64] to earth-quake activity [74] and brain activity [72]. 

Such bursty behavior is considered to be another universal 

feature of several complex systems [72]. Consequently, the 

similarity between activity networks and complex systems is 

reinforced, further strengthening the view that activity 

networks (and to an extent, projects) are indeed complex, at 

least from a structural point of view. 

C. Overall Structural Complexity 

The structural complexity of each activity network, 

quantified using the Bhattacharyya measure for all four 

indicators, is given in Table III. In step with both qualitative 

and quantitative observations, all 5 projects are shown to 

significantly deviate from their artificial counterparts and 

hence, H1 can be confidently falsified. It is worth noting that 

since the scope of the work revolves around the falsification of 

a hypothesis (rather its validation), the finite size of the sample 

shouldn’t affect the validity of this insight. 

 
TABLE III  

BHATTACHARYYA MEASURE ON THE FOUR INDICATORS OF STRUCTURAL 

COMPLEXITY. HIGHER VALUES SUGGEST LOWER COMPLEXITY  

 Measurement of Structural Complexity 

Project 
Direct Indirect 

𝐵(𝐷𝐶) 𝐵(𝐵𝐶) 𝐵(𝐷𝑇𝐷) 𝐵(𝐼𝐸𝑇) 

1 0.5750 0.5463 0.5599 0.6274 

2 0.7001 0.7023 0.8294 0.6879 

3 0.9189 0.9703 0.9906 0.9681 

4 0.9348 0.8398 0.8088 0.8186 

5 0.2420 0.6220 0.8107 0.7207 

 

 
Fig. 5: Cumulative probability distribution of IET, capturing the probability (y-axis) of encountering an entry equal or greater than a given size (x-axis). As with 

Fig. 3, increased variance is noted in the empirical set of observations compared to the artificial set. 
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Fig. 6: (a) Structural complexity, quantified by the 1−𝐵 value (y-axis) for each project, where each color represents a specific indicator; (b) contribution of each 

indicator to the overall structural complexity of each project, in terms of a percentage (left y-axis; numerical value in each bar). The white, circle marker 

represents the average structural complexity of each project (right y-axis). 
 

Following these results, the structural complexity (i.e. 1 −
𝐵) of each activity network is visualized in Fig. 6a. Fig.6b 

emphasizes the distinct profiles of structural complexity 

within each project, based on the contribution of each distinct 

aspect. For example, consider Project 1 and 5, with an average 

structural complexity of 0.5772 and 0.5988 respectively (a 

relative difference of 3.74%). Despite their comparable 

average structural complexity, their composition is distinctly 

different – Project 5 has an asymmetric profile, with DC 

contributing almost half of its overall structural and DTD 

being significantly low. On the other hand, Project 1 shows a 

balanced profile with each aspect roughly contributing in 

equal parts – see Fig. 6b. Similarly, Project 3 appears to be 

rather similar to Project 5, despite their significant difference 

in terms of average structural complexity (a relative difference 

of 954.96%). Specifically, the larger contributor of structural 

complexity for both Project 3 and 5 is DC, with DTD having a 

significantly lower contribution.  

V. DISCUSSION  

The aim of this paper is: (a) to develop a procedure which 

enables the measurement of an aspect of project complexity, 

and by doing so, (b) provide evidence supporting the 

equivalence between projects and other complex systems – 

both aspects have been recognized as key challenges within 

the field of project management  [18]. Despite the broad range 

of aspects that define a project, and consequently project 

complexity, this work focuses on the structural complexity of 

a project across its technological dimension (i.e. the 

transformation process of converting inputs to outputs [29]).  

Even within this narrow context, this task is inherently 

challenging. Part of the complexity in describing certain 

systems lies at the necessity for describing each aspect 

separately and how it relates with all the remaining aspects 

[40]. In the context of project complexity, this challenge 

translates directly to the composing aspects of complexity 

(Fig. 1), where structural complexity must be described both 

independently aspect but also with respect to the remaining 

aspects of complexity (e.g. structural complexity is implicitly 

coupled with uncertainty [41]). This work focuses on the first 

task (describing, and quantifying, structural complexity) – 

enabling future work to delve into the latter aspect of 

evaluating the relationship between structural complexity and 

other sources of project complexity in an evidence-based, 

quantitative way. 

Even within the limited scope of this work we note that 

project complexity does not necessarily scale with project cost 

or size (in terms of number of activities). Consider Project 1 

and 5, having very little difference in terms of average 

structural complexity (Fig. 6b), despite the fact that Project 1 

has more than twice of Project’s 5 cost, duration and scale (in 

terms of its compositing activities). Similar insight was put 

forward by Williams [33], where the case of the Kuwait oil 

field reconstruction and the Automated London Ambulance 

project are used as examples where a massive and costly 

project (Kuwait oil field) can have significantly lower 

complexity than what its size suggests, with the converse 

being also true (i.e. London ambulance project). The 

consequences of such underestimations can be serious – in the 

case of the Automated London Ambulance project, it 

translates to 2.5 million USD and 20 lives lost [30]. On the 

same grounds, one may consider Project 5 as a similar case, 

where its relatively small size can mask its structural 

complexity, potentially leading to ineffective/inefficient 

decisions being made.  

A. Measuring Structural Complexity 

Operationalizing the means for measuring structural 

complexity of projects must reflect the practical ethos of 

project management and consequently, dictate the data 

requirements of the proposed procedure. In response, this 

work endorses the use of readily-captured and widely-used 

data; specifically project schedules in the form of Gantt charts 

[42]. As such, it can be readily adopted by current practice.  

The proposed procedure has been applied in an a priori 

fashion, allowing for the quantification of the structural 

complexity of five engineering projects. By doing so, 

numerous insights can be put forward. For example, projects 
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with a relatively low 𝐵(𝐷𝐶) value (e.g. Project 5) will be 

largely composed of tasks with a relatively low number of 

links. At the same time, a few tasks will have a surprisingly 

large number of links these will be central tasks, and thus 

should be constantly monitored as their failure is bound to 

affect a large portion of the remaining activities. As such, 

project manager faced with low 𝐵(𝐷𝐶) projects should expect 

a heightened need for identifying these central tasks, and 

prioritize resource allocation accordingly. At the same time, 

shielding these tasks against possible perturbation should be 

part of any proactive risk management plan. This is of special 

importance in cases where the largest contribution of 

structural complexity is DC, as in the case of Project 5. 

The case of 𝐵(𝐵𝐶) is subtly different, where a low value 

suggest the emergence of nodes that are increasingly 

important in unlocking an increased number of activities. 

These nodes are tasks that have increased control over the 

remaining nodes and thus, a project manager dealing with 

low 𝐵(𝐵𝐶) project should follow a similar approach and 

actively identify, and appropriately manage, them.  

In the case of indirect measures, and specifically from a 

DTD point of view, a project with a low 𝐵(𝐷𝑇𝐷) would have 

highly asymmetric coordination effort requirements, where 

few task will be active per day, for the majority of the 

project’s duration (low coordination requirement), but with 

few days having a surprisingly high number of active tasks 

(high coordination requirement). These few days are bound to 

stress the coordination capabilities set to manage the project, 

especially if the resources in place were tailored to deal with 

the remaining, low-requirement days. Furthermore, an 

increased capability to toy with the level of coordination effort 

dispensed must be in place, to cope with the highly 

asymmetric coordination requirements. With respect to the 

IET indicator, one can identify projects that exhibit an 

increasingly bursty behavior (i.e. the majority of tasks starts 

soon after its predecessor(s) are completed, yet some are 

scheduled surprisingly late). Such bursty behavior, and the 

implied long wait-time between consecutive tasks, can 

introduce a temporal buffer. As such, potential issues in the 

delivery of task 𝑖 have an increased amount of time to be 

resolved, lower the probability of the consecutive task(s) to be 

affects. A similar effect is noted by Karsai, et al. [75] with 

regard to the general process of failure cascades, of which the 

previous project-specific example is a subset of.  

This procedure can further be applied in-situ, where 

changes in structurally complexity can be monitored, as they 

arise from changes in a project’s schedule. As such, an 

increased in the structural complexity of a project may serve 

as an early-warning mechanism, calling for immediate 

mitigation action to be taken. 

Finally, this procedure can be used on a portfolio level, 

where it can be used to evaluate the capacity of an 

organization in successfully delivering structurally complex 

projects. Insight of this sort can be used to guide the bidding 

process for future projects, a process being widely considered 

as a major cause of engineering project failure [76, 77].  

B. Projects/Complex Systems Equivalency 

The Internet AS network will be used as a reference point in 

order to assess whether projects, even under the limited 

representation of their activity network, can be considered to 

be complex systems. There is little doubt that the Internet is 

considered to be a complex system, exhibiting numerous 

trademark characteristics – extreme variance in its topology 

being one of them [13, 14, 78]; Fig.4 is a representative 

example. As such, all five projects exhibit a qualitatively 

similar behavior, where the largest empirical observed value 

cannot be accounted by the artificial set of observations. 

Furthermore, significant differences are noted in terms of the 

probability of encountering a value of a given size, in times 

spanning several orders of magnitudes. Importantly, both of 

these qualitative observations are scale invariant, as they are 

present despite the normalization process that took place. 

Nonetheless, one would expect that the Internet AS network 

would somehow be “more complex” as its larger size allows 

for certain nodes to increase in importance (from a BC point 

of view), further skewing the BC distribution. Consequently, 

one would expect that quantitatively, the Internet would still 

rank higher in terms of complex – this is exactly what is 

observed when the Bhattacharyya measure of the two classes 

is compared (0.4232 for the Internet AS network; 0.5463 for 

the lowest ranking activity network). 

Activity networks capture both topological and temporal 

aspects and thus, the implications of structural complexity can 

be measured directly or indirectly. In contrast, the Internet AS 

network is limited to topological information, restricting our 

ability to use it as a reference point for the indirect indicators. 

Nonetheless, the bursty behavior noted by the activity 

networks (a consequence of increased variance in its 

distribution) has been noted in several complex systems 

(ranging from the human brain to the earth’s crust [25, 65, 66, 

72-74]), and has been suggested as a universal features of a 

large class of complex systems [72]. As such, activity 

networks exhibit another qualitatively similar behavior, further 

reinforcing the equivalence between projects and complex 

systems. 

VI. LIMITATIONS AND FUTURE WORK 

Establishing a link between project performance and project 

complexity (even in the limited view of structural complexity) 

is bound to be challenging, simply because project complexity 

extends across numerous aspects [18] and dimensions [29]. 

Despite the fact that some external validation for the results of 

the propose procedure can be achieved by examining the 

actual project performance data3, taking this route can be 

ambiguous. This is because it implies that other aspects of 

project complexity (beyond the structural aspect examined 

herein) have been kept constant between all projects – a 

clearly faulty assumption. Nonetheless, the fact that empirical 

data does not contradict the results of Fig. 6 (or Table III) 

should add confidence to its use. As an alternative, one can 

isolate the impact of structural complexity by using computer 

experiments (numerical simulation) to examine its impact of 

various processes that can affect the delivery of a project. 

                                                           
3 For example, both Project 1 and 2 have shown significant delays (5 months 
for Project 1; 1.5 months for Project 2) and cost overruns (5 million USD, or 

33% of its overall budget, for Project 1; 0.7 million USD, or 4% of its overall 

budget, for Project 2), on par with the fact that both Projects have been shown 
to be structurally complex, with Project 1 being more complex than Project 2.  
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Cascading process is one such process [57], where failure to 

deliver task 𝑖 can affect the delivery of a portion (or even all) 

of its successor tasks. Recent work has shown that structural 

complexity (in terms of the 4 indicators used) significantly 

affects the propagation of such failures [79] and hence, 

impacts the likelihood of successfully delivering a project. In 

other words, a non-structurally complex project is less 

sensitive to failure cascades across its activity network, 

compared to its structurally complex equivalent. 

Building on this insight, the procedure presented herein 

forms a minimal attempt to quantify the structural complexity 

of an engineering project across its technological dimension.  

Nonetheless, the flexibility of the approach allows for further 

information to be introduced into the analysis, broadening its 

focus. For example, if task 𝑖 is deemed to be of increased 

importance (e.g. lies on the critical part; its precise nature is 

uncertain etc.), then its increased contribution can be captured 

by using a weighted, rather than a binary, adjacency matrix, 

where every 𝐀(𝑖, 𝑗) entry is suitably adjusted. Similarly, if the 

relationship between tasks 𝑖 and 𝑗 is deemed to be of increased 

importance (e.g. due to increased resource requirements; 

scarce resource availability; complicated supply chain etc.) the 

entry 𝐀(𝑖, 𝑗) can, again, be suitable adjusted. Such aspects are 

increasingly important in practice, where milestone nodes 

and/or links exist and can be determinant for the life of a 

project i.e. funding being conditional to their accomplishment 

of the respective node and/or link. 

VII. CONCLUSION 

Complex project management is relatively young, with the 

term “project complexity” being first introduced in 1996. As 

the field strives for maturity, attempts to expose various 

aspects of project complexity have converged to five distinct 

aspects of project complexity – these are socio-political; pace; 

dynamics; uncertainty and structural complexity. As such, 

attempt to quantify these various aspects, such as the one 

contained within this work, are expected to grow. Part of the 

challenge lies in identifying suitable mediums for measuring 

these various aspects – with several being rather hard to 

conceptualize, let alone measured.  

By focusing on the technological dimension of projects, 

activity networks capture the structure of a project, and hence, 

serve as a suitable medium for measuring structural 

complexity. The practical utility of this procedure revolves 

around the capability to use structural complexity as a proxy 

for project complexity. By doing so, several important 

decision making processes can be improved, including 

prioritizing resource allocation and project bidding. From a 

theoretical point of view, results herein highlight a 

qualitatively similar behavior between activity networks and a 

well-known complex system – the Internet. As such, it 

validates the analogy of projects being complex systems, and 

builds towards establishing an equivalency.  
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X.  APPENDIX 

Results of the analysis, with respect to DC and DTD, are 

presented in Fig. 1SI and 2SI respectively 

 

 

 

Fig. 1A: Cumulative probability distribution of degree centrality (DC) capturing the probability (y-axis) of encountering an entry equal or greater than a given 

size (x-axis).  In this case, empirical observations (blue, square) exhibit limited variance and are reasonably mapped by the normally-distributed, null sample 
(red, circle). As values increase in size, variance dominates and difference of several orders of magnitude is observed. 

  

 
Fig. 2A: Cumulative probability distribution of the daily task density (DTD) distribution, capturing the probability (y-axis) of encountering an entry equal or 

greater than a given size (x-axis). In this case, empirical observations (blue, square) exhibit limited amounts of variance, with Project 2,3 and 5 being well 

mapped by the normally-distributed, null sample (red, circle); Project 1 and 3 are also reasonably mapped. 

 

 

 


