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ABSTRACT
In this paper we propose a framework for stereoscopic video
shot classification that includes low-level representations ex-
ploiting visual and disparity information and determination
of optimal discriminant subspaces based on Linear Discrimi-
nant Analysis (LDA). Low-level representations are obtained
through various color, disparity and texture descriptors which
are applied to shot key frames. A new LDA-based subspace
representation is proposed aiming at that optimal utiliza-
tion of both visual and disparity information. The proposed
shot classification framework has been evaluated on football
stereoscopic videos providing enhanced classification per-
formance and class discrimination, in comparison to using
visual information only and standard LDA.

Index Terms— Shot classification, stereoscopic video,
disparity, Linear Discriminant Analysis (LDA).

1. INTRODUCTION

Shot classification has been researched within a video sum-
marization context in order to provide efficient video in-
dexing, retrieval and browsing mechanisms in sport, news,
broadcasting, etc. Video summarization methods [1, 2] ini-
tially try to select a set of salient video frames such as shot
key frames, that represent the video context. Such key frames
can be represented [3, 2] by color-based features includ-
ing color histograms, color moments, color correlograms,
etc, texture-based features such as orientation features and
wavelet transformation-based texture features, and shape-
based features that can describe object shapes using for ex-
ample information related to the detected edges. Various
clustering and classification-based techniques have been pro-
posed to organize shot key frames into semantic groups based
on Hidden Markov models [4], Hierarchical Tree structures
[5], Bayesian classifier and Support Vector Machines [6],
Graphs [7], Fuzzy classification [8], etc.
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Although 3DTV and 3D cinema have witnessed an in-
creased popularity during the last years [9], a very limited
number of video summarization techniques operating on
stereoscopic or multiview videos have been presented and are
mainly using a shot clustering-based approach. Specifically, a
method for multi-view video summarization was proposed in
[10] which represents the multi-view video structure by using
a spatio-temporal shot graph, clusters the shots using random
walks and generates the final summary by multi-objective
optimization. A technique for summarization of stereoscopic
videos was presented in [11], which performs object segmen-
tation utilizing both color and depth information. In next,
feature vectors are constructed using multidimensional fuzzy
classification of segment features including size, location,
color and depth, and similar shots are clustered based on the
generalized Lloyd-Max algorithm.

In this paper, we propose a novel framework for classifi-
cation of shots from stereoscopic video content to semantic
classes such as “field long-view” and “player medium-view”.
The main aim is to utilize disparity information and to check
whether this additional information can enhance better clas-
sification results compared to using visual information only.
More specifically, video shots are represented by key frames
and the corresponding disparity maps, and low-level repre-
sentations are generated by employing various color, dispar-
ity and texture descriptors. Classification involves a new sub-
space learning method based on Linear Discriminant Analysis
(LDA) which takes into account the fact that key frames rep-
resentations are comprised of two subsets of features (visual
and disparity) in order to learn projection subspaces equipped
with more generalization ability. We show that this can be
achieved by adding an appropriate constraint in the objective
function of LDA.

The paper is structured as follows. The proposed shot
classification framework is described in Section 2. Section
3 illustrates experiment results conducted in order to evaluate
its performance. Finally, conclusions are drawn in Section 4.



2. PROPOSED METHOD

The proposed shot classification framework operates on
stereoscopic videos consisting of two visual channels (left
and right) and includes two processing steps. The first one
involves the representation of shot key frames using low-level
features obtained by various color, disparity and texture de-
scriptors. It is assumed that disparity information has been
calculated and is available in the form of a disparity sequence
and that the video has been divided into shots by using a shot
cut detector algorithm. Additionally, through a key frame
selection algorithm, each shot is represented by a key frame
for each channel of the left channel and the disparity channel.
In the second step, the obtained low-level representations are
mapped to discriminant subspaces by applying a proposed
extension of the Linear Discriminant Analysis (LDA) sub-
space learning technique and classified to the nearest class.
In the following, each step of the proposed shot classifica-
tion method is described in detail. The feature extraction
process is presented in Subsection 2.1. The standard LDA
is briefly described in Subsection 2.2. Finally, the proposed
LDA extension is presented in Subsection 2.3.

2.1. Feature Extraction

Let V be a stereoscopic video containing N shots. Each
shot is represented by the key frame of the left channel and
the disparity map of the frame, resulting to two image sets
Kv = {kv

1, ...,k
v
N} and Kd = {kd

1, ...,k
d
N} containing the

key frames of the left channel and the corresponding disparity
maps, respectively. Low-level representations are generated
by applying to the above key frames various color, dispar-
ity and texture descriptors adopting the image representation
proposed in [12]:

• For each visual key frame kv
i , a 3D HSV joint his-

togram [13] is generated by uniformly quantizing its H,
S and V components into 8, 2 and 2 bins, respectively.

• For each disparity key frame kd
i a 32-bin disparity his-

togram is evaluated.

• The color or disparity auto-correlogram [14] is evalu-
ated by quantizing separately the kv

i and kd
i images into

4× 4× 4 colors in the RGB space1.

• Mean and standard deviation are evaluated for the
R,G,B channels separately for each kv

i and kd
i image.

• Gabor wavelet filters [15] spanning four scales [0.05, 0.1,
0.2, 0.4] and six orientations [0, π/6, π/3, π/2, 2π/3, π]
are applied to the kv

i and kd
i images. The mean and

standard deviation of the Gabor wavelet coefficients
are then computed.

1The disparity image is considered as a three-channel grayscale image
(R=G=B).

• Wavelet transform [16] with a 3-level decomposition is
applied to the kv

i and kd
i images. The mean and stan-

dard deviation of the wavelet transform coefficients are
then computed.

The list of applied descriptors is summarized in Table 1.
Here, f jki denotes a generated feature vector, where j can get
one value of H , A, S, G, and T denoting the correspond-
ing descriptor (histogram, auto-correlogram, moments, Ga-
bor wavelet moments and wavelet transform moments), k can
be v or d depending on the kind of information (visual or
disparity, respectively) and i denotes denotes the feature di-
mensionality.

Descriptor Features

HSV/Disparity Histogram fHv
32 fHd

32

Auto-correlogram fAv
64 fAd

64

RGB moments fSv
6 fSd

6

Gabor wavelet moments fGv
48 fGd

48

Wavelet transform moments fTv
20 fTd

20

Table 1. Visual and disparity information descriptors.

Representations of shots are finally formed by the con-
catenation of the above feature vectors. LetX = {x1,x2, . . . ,
xN} be the the set of generated low-level representations
xi ∈ R340×1 of the visual (Kv) and disparity (Kd) key
frames, where

xi = [fHd
32 , f

Ad
64 , f

Sd
6 , fGd

48 , f
Td
20 , f

Hv
32 , f

Av
64 , f

Sv
6 , fGv

48 , f
Tv
20 ]i

(1)
contains the visual and disparity information of the i-th key
frame. Additionally, in our experiments we used shot repre-
sentations consisting of either visual information or dispar-
ity information only. More specifically, in the case of us-
ing visual information only, the low-level representation xi ∈
R170×1 of the i-th key frame is formed by the concatenation
of visual feature vectors

xi = [fHv
32 , f

Av
64 , f

Sv
6 , fGv

48 , f
Tv
20 ]i. (2)

Correspondingly, in the case of using disparity information
only

xi = [fHd
32 , f

Ad
64 , f

Sd
6 , fGd

48 , f
Td
20 ]i. (3)

Since the range of values of the features vectors varies, the
features generated for all shots are rescaled in the range [0, 1].

2.2. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [17] belongs to the su-
pervised subspace learning techniques and determines a pro-
jection matrix W so that the classes of the projected samples



are well discriminated. The objective of LDA is to find the
transformation matrix W that maximizes the following ob-
jective function:

J(W) = argmax
W

tr[WTSLDA
B W]

tr[WTSLDA
W W]

. (4)

In the previous equation the between-class scatter matrix
and the within-class scatter matrix are defined as:

SLDA
B =

c∑
i=1

(µi − µ) (µi − µ)
T (5)

and

SLDA
W =

c∑
i=1

ni∑
k=1

(
xi
k − µi

) (
xi
k − µi

)T
, (6)

where xi
k is the k-th sample in the i-th class, µi, ni are the

mean vector and the number of samples in class i, respec-
tively, and c, µ denote the total number of classes and the
mean vector of the entire dataset, respectively.

Thus, the objective of LDA is to find W so that in the new
m-dimensional space the class means are as far from each
other as possible and samples from the same class are as close
to their mean as possible. The solution of (4) is approximated
[18] by the following generalized eigenvalue decomposition
problem:

SLDA
B ·w = λ · SLDA

W ·w (7)

and keeping the m eigenvectors that correspond to the m
largest eigenvalues to form the columns of W (projection
vectors). The maximum number of nonzero eigenvalues is
equal to c− 1 and thus the upper bound on m is c− 1.

2.3. Weighted Linear Discriminant Analysis

Although LDA uses the data class label information for the
determination of the projection matrix, it does not take into
account the specific nature of data samples in certain prob-
lems. In our case, a sample of the form (3), is comprised
of two subsets: the first one corresponds to disparity-related
feature vectors (fHd

32 , f
Ad
64 , f

Sd
6 , fGd

48 , f
Td
20 ), while the second

subset contains the visual features (fHv
32 , f

Av
64 , f

Sv
6 , fGv

48 , f
Tv
20 ).

When we combine features with different discriminant abil-
ity, it is possible that the more discriminant will dominate
and will have considerably higher projection values that the
less discriminant. Moreover, if we consider a small training
set that favors the one subset of features over the other, it is
possible to have overtraining that will result in significantly
smaller projection values for the second subset and thus their
discriminant ability, even if it is smaller, will be completely
lost. The proposed solution is to try regularizing the contri-
bution of each subset to the discriminant projection by setting
a-priori the contribution of each subset using a parameter b.
In our case, we can assume that, ideally, the disparity features
(the first K values of the sample) should hold a percentage b

of the total discriminant ability, while the visual ones (the re-
maining M −K values of the sample, where M denotes the
sample dimensionality) should hold the remaining percent-
age. Accordingly, it would be expected that the discriminant
projection vectors w (columns of W) of LDA should follow
a similar distribution of element values in the two groups.

To cope with the above, we modify the objective function
of LDA, in order to determine projection vectors that follow
a specific distribution of values defined by a weight b, so that
the samples are projected in corresponding discriminant sub-
spaces. The optimal b can be found by a line search approach.
In more detail, the error of a projection vector

w = [w1, w2, ..., wK︸ ︷︷ ︸
b

, wK+1, ..., wM︸ ︷︷ ︸
1−b

]T , (8)

with respect to the sum of element values in the two groups
defined by a weight b, can be given by the following equation:

Ew =

(
(1− b)

K∑
i=1

wi − b
M∑

i=K+1

wi

)2

(9)

By expanding (9), the error can be re-written as:

Ew = (1− b)2
K∑
i=1

w2
i + b2

M∑
i=K+1

w2
i

−2(1− b)b
K∑
i=1

wi

M∑
j=K+1

wj

+(1− b)2
K∑
i=1

K∑
j=1
i6=j

wiwj

+b2
M∑

i=K+1

M∑
j=K+1

i6=j

wiwj (10)

We can notice that the first two terms correspond to the
sum of the squared disparity and visual discriminant values,
the next term refers to the relation of the visual and disparity
discriminant values, and the two last terms refer to the relation
of either the visual or the disparity discriminant values. The
last two terms refer to the relation of the discriminant pro-
jection values inside the disparity subset or inside the visual
subset. Thus, they can be omitted by the objective function,
since we are only interested in regularizing the projection val-
ues of the one subset related to the other. The above leads to
an error expression of the form:

Ew = (1− b)2
K∑
i=1

w2
i + b2

M∑
i=K+1

w2
i

−2(1− b)b
K∑
i=1

wi

M∑
j=K+1

wj (11)



Taking into account the fact that the objective function
used in LDA uses a projection matrix, we define a matrix
A, whose multiplication (wTAw) with a projection vector
equals to the vector error. It can be easily proven that for a
M ×M matrix of the form:
[

(1− b)2 0
0 (1− b)2

]
K×K

[−b(1− b)]M−K×K

[−b(1− b)]K×M−K

[
b2 0
0 b2

]
M−K×M−K


(12)

wTAw equals the error Ew:

wTAw = (1− b)2
K∑
i=1

w2
i + b2

M∑
i=K+1

w2
i

−2(1− b)b
K∑
i=1

wi

M∑
j=K+1

wj

= Ew. (13)

The objective of the proposed Weighted Linear Discrimi-
nant Analysis (WLDA) is to exploit the fact that the elements
of the input data follow a specific distribution for the deter-
mination of projection vectors w, which both increase class
discrimination and follow the same value distribution. To this
end, we want to maximize tr[WTSLDA

B W], so that the dis-
persion of samples from different classes will be maximized
after the projection, while, at the same time, we want to min-
imize a) the trace of the WTSLDA

W W so that samples from
the same class will come as close as possible to their mean
vector after the projection and b) to minimize the trace of the
WTAW, so that the error defined by (11) becomes as small
as possible after the projection:

J(W) = argmax
W

tr[WTSLDA
B W]

(1− s) tr[WTSLDA
W W] + s tr[WTAW]

.

(14)
where s ∈ [0, 1] is a factor that controls the error of w. It is
obvious that, for s = 0, WLDA is equivalent to LDA, while,
as s → 1, the level of error of the projection vectors is mini-
mized. The solution of (14) is approximated by the following
generalized eigenvalue decomposition problem:

SLDA
B ·w = λ ·

(
(1− s)SLDA

W + sA
)
·w, (15)

by keeping the m eigenvectors that correspond to the m
largest eigenvalues. The upper bound on m, as in the case of
LDA, is c− 1, where c is the total number of classes.

Figure 1 illustrates the result of LDA and WLDA on ar-
tificial (toy) data from 2 classes. Here, we assume that the
horizontal and vertical axes correspond to disparity and vi-
sual information, respectively. We notice that the disparity
elements correspond to 60% of the sum of visual and dispar-
ity elements. The actual distribution of data is represented by
two elliptical regions, while the available samples of the two
classes are represented by crosses and circles, respectively.
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Fig. 1. LDA and WLDA projection lines for a 2-class artificial
data problem.

As can be seen, the samples are not very representative of the
actual distribution, while some of them can be considered as
noisy data. It is clear that even if the LDA projection separates
well the samples from the two classes, it does not determine
a best projection for the two actual distribution. On the con-
trary, WLDA determines a projection line such that projection
on the line best separates both the available samples and the
actual distributions.

3. EXPERIMENTAL EVALUATION

In this section we present the experiments conducted for as-
sessing the performance of the proposed framework for shot
classification. We have used a stereoscopic video dataset
consisting of three soccer matches, since soccer video anal-
ysis is of special importance [19]. The disparity maps of the
videos were extracted using the method described in [20].
Shot boundary detection and key frame selection algorithms
described in [21] have been applied to the color channels
of the videos in order to extract shots and a representative
frame (key frame) for each shot. The number of extracted
shots for each video were 520, 622 and 470, respectively. To
evaluate the shot classification results, we created ground-
truth labels for the shots of the above videos by manually
grouping the shots into 4 semantic concepts/classes. The fol-
lowing labels have been used to describe these classes: “field
extreme-long-view”, “field long-view”, “player long-view”
and “player medium-view”. In Figure 2, an example image
for each concept label is provided.

After extracting the features as described in Subsection
2.1 for each video, a series of experiments were conducted.
In all the experiments, we applied LDA or the proposed ex-
tension (WLDA) to the training set and the samples were pro-
jected into the corresponding subspace. Additionally, LDA



(a) field extreme-long-view (b) field long-view

(c) player long-view (d) player medium-view

Fig. 2. Examples of the semantic concepts/labels.

was applied to the visual and disparity features separately.
The projected samples were classified using the Nearest Cen-
troid (NC) classifier. In the case of WLDA, the values of b
and s were determined by using a grid search strategy. In our
experiments, a combination of b = [0.00, 0.05, 0.10, ..., 1.00]
and s = [0.00, 0.05, 0.10, ..., 1.00] was used. In our method,
it is considered that a sample is comprised of two subsets (vi-
sual and disparity information) leading to searching optimal
values for two parameters. Alternatively, a sample may be
considered that is comprised by more subsets, based on e.g.,
the type of descriptor (see Table 1). In such a case, a larger
number of parameters should be determined and adopting this
searching procedure would be infeasible.

In the first series of experiments, we used the 5-fold
cross validation procedure for each video. More specifi-
cally, the samples (key frames) for each video have been
randomly spit in five non-overlapping subsets. For each
video the same partitioning was used in all the experiments.
In each fold, the techniques were trained by using 4 subsets
and testing was performed on the remaining subset. Perfor-
mance was measured by evaluating the mean classification
rate over all five folds. Classification results are illustrated
in Table 2. Columns 2-4 depict the classification accuracies
obtained by applying the LDA on the visual, disparity and vi-
sual+disparity features, respectively. The last column depicts
the recognition accuracies obtained by applying the WLDA
on both visual and disparity features. The best results are
shown in bold. We can observe that, in the case of LDA,
using visual information only provides better classification
compared to using only disparity or both visual and disparity
information. Thus, it seems that disparity does not provide
discriminant information. On the other hand, the proposed
WLDA technique outperforms the standard LDA in all the
cases providing 0.5% - 3% improvement on the performance.

The second series of experiments included three experi-
ments. In each experiment, the samples (key frames) of a

Video LDA WLDA
Visual Disparity Both Both

1 71.05 58.83 61.34 72.13
2 76.18 56.60 72.86 76.53
3 71.23 53.19 65.27 73.84

Table 2. 5-fold cross validation classification accuracies (%).

video comprised the training set, while the test set consist
of the key frames of the two remaining video. WLDA was
used with the optimal values of b and s obtained by the 5-fold
procedure for each video. The results obtained in these ex-
periments are illustrated in Table 3. It can be easily observed
that in all the videos the proposed WLDA provides 2.5% -
13% improvement compared to standard LDA. On the other
hand, it is obvious that the performance rates are rather low in
comparison with the ones obtained by the 5-fold procedure.
This can be explained by the fact that the directing/filming
style of the various football matches may differ. For example,
Figure 3 illustrates three representative example of the class
“field long-view”, one for each video, where it is obvious that
different styles are used in each football match.

Video LDA WLDA
Visual Disparity Both Both

1 37.69 22.50 33.23 47.73
2 47.78 27.28 41.97 50.11
3 33.98 31.93 30.78 46.96

Table 3. Comparison of the best classification accuracies (%).

(a) Video 1 (b) Video 2

(c) Video 3

Fig. 3. Examples of class “field long-view”, for each video.



4. CONCLUSIONS

In this paper, we presented a framework for stereoscopic
video shot classification exploiting visual and disparity infor-
mation. Shots are represented by the respective key frames
and low-level representations obtained by applying vari-
ous color, disparity and texture descriptors. Optimal class
representations are determined by modifying the objective
functions of LDA technique. Experimental results on football
stereoscopic videos showed enhanced classification perfor-
mance and class discrimination compared to using visual
information only and the standard LDA technique.
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