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Abstract— A major issue that arises from mass visual media
distribution in modern video sharing, social media and cloud
services, is the issue of privacy. Malicious users can use these
services to track the actions of certain individuals and/or groups
thus violating their privacy. As a result the need to hinder
automatic facial image identification in images and videos
arises. In this paper we propose a method for de-identifying
facial images. Contrary to most de-identification methods, this
method manipulates facial images so that humans can still
recognize the individual or individuals in an image or video
frame, but at the same time common automatic identification
algorithms fail to do so. This is achieved by projecting the facial
images on a hypersphere. From the conducted experiments
it can be verified that this method is effective in reducing
the classification accuracy under 10%. Furthermore, in the
resulting images the subject can be identified by human viewers.

I. INTRODUCTION

Media sharing has become mainstream in modern times
and its volume increases daily. This inconceivable amount
of information includes a large amount of visual media
that contain information about the actions of the individuals
depicted as well as the creators of these media. Large
scale sharing, viewing and storing of these media introduces
concerns for the privacy of the above mentioned participants.
As is usually the case, this visual information is freely
available to all Internet users and, as a consequence, dangers
arise concerning the privacy of these media creators and
the subjects depicted. Face recognition algorithms are able
to recognize faces in images and video frames efficiently
threatening the privacy of the subjects. Malicious users
can utilize video sharing sites and social media to collect
information regarding specific individuals and groups fast,
freely and without much effort. Another concern for privacy
arises from the wide use of video surveillance in public
places, which in junction with face identification software
allows identification of all persons regardless of suspicion
level. Examples of privacy violation can be found in the cases
of Google Street View and EverySpace, which among others
use visual data to provide services and inevitably invade our
everyday privacy, although not intentionally. To tackle this
issue new methods must be developed that protect the privacy
of the subjects, while maintaining a certain level of image
quality. The quality of the final product must allow human
viewers to recognize the individuals in a scene.

The proposed method is developed under the following
scope. Suppose that a malicious user has trained a classifier
to identify certain individuals in a series of images or video
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frames. With this classifier the malicious user can search for
information in visual media about the targeted individuals.
If new images shared by these users have been modified by
a certain method the trained classifier will fail to recognize
the targeted individuals, thus rendering future actions of the
targets safe. So the proposed method aims to do just that
while at the same time preserving enough visual quality to
characterize the end product acceptable for everyday use.

Most face de-identification methods attempt to deceive
automatic face recognition methods by also hindering iden-
tification by human viewers. These methods aim to destroy
the majority, if not all, of the data concerning the depicted
individual. Ad-hoc solutions [1] include the use of simple
methods such as applying a black mask on parts of the face.
Black bars are used in order to cover the eyes, while T-shaped
masks cover both the eyes and the nose. Other masks reveal
only the mouth and, finally, a black mask can be applied
to the entire face, destroying all visual information of the
facial image [1]. Additional simple methods include methods
that blur the face area using low-pass filters [1], methods
that add random noise with a predetermined distribution,
methods that use the negative image and methods that swap
facial areas, such as eyes, nose, mouth, between images that
belong to different individuals [3]. Finally, simple methods
also exist that subsample an image leading to pixelation, or
that threshold the pixel values [1]. Moreover, more advanced
methods exist that implement the k-anonymity model [2], so
that all of the de-identified images indiscriminately relate to
at least k elements of the initial image set. Other methods
explloit characteristics of identification methods such as
eigenface-based algorithms, k-anonymity models and PCA
or LDA face recognition methods in order to defeat them
[4]. Finally, another method exists that reduces the number
of eigenvectors used in constructing the final images from
basis vectors [5].

A common characteristic of the above methods is hin-
dering recognition by both human viewers and automatic
classifiers. In this paper a novel approach is proposed that
utilizes projections on hyperspheres in order to defeat clas-
sifiers while preserving enough visual information so that
human viewers can identify the depicted individuals, contrary
to the methods mentioned above.

The rest of the paper is organized as follows. An in-
troduction on hyperspheres is presented in Section II. The
proposed de-identification method is described in Section III.
The experimental setup and results are presented in Section
V. Section VI analyzes a potential attack against this method.
Finally the conclusions are drawn in Section VII.



Fig. 1. Left: Original Image,Center: Projection on hypersphere centered at
the origin, Right: Projection on hypersphere centered at the image whose
pixels contained the maximum allowed value

Fig. 2. Left: Original Image,Center: Projection on hypersphere with
noise center following the normal distribution with a mean of 0.5 and
standard deviation of 0.1, Right: Projection on hypersphere with noise center
following the uniform distribution

II. PROJECTION ON HYPERSHPERES

A hypersphere [6][7] is a generalization of the ordinary
circle in 1 dimension and the ordinary sphere in 2 dimen-
sions to dimensions n ≥ 3. For any natural number n, a
hypersphere S(n−1) with radius R is defined as:

x2
1 + x2

2 + . . .+ x2
n = R2, (1)

where x1, x2, . . . , xn are n-tuples of points and R is the
radius of the hypersphere, which is a positive real number.
A hypersphere Sn−1 can also be defined as the set of points
in the n-dimensional space, which are at distance R from a
center point. A hypersphere Sn−1 centered at some origin is
defined as:

Sn−1 = {x ∈ Rn : ||x|| = R}. (2)

where x is a point in the n-dimensional space. The projection
of a point x ∈ Rn onto Sn−1 is given by the following
equation [9]:

PSn−1(x) =
R

||x||
x, (3)

where PSn−1(x) denotes the projection of point x onto the
hypersphere Sn−1.

III. DE-IDENTIFICATION OF FACIAL IMAGES BASED ON
PROJECTION ON HYPERSPHERES

Each image occupies a position in the n-dimensional
space, where the dimensionality n of the image is equal to
the number of pixels. Intuitively it is expected that images
depicting the same individual with the same pose are bound
to lie close together in space forming local clusters, while
images depicting different individuals are bound to lie farther
apart.

The general idea is to bring images of different individuals
closer together in order to prevent classifiers from correctly
identifying a subject in an image. The most simplistic

approach is to replace the initial image with the average
of all the images, or with another image. The purpose
of this method however is to preserve enough information
from the first image so that human viewers can identify the
depicted individual. So instead of replacing the images with
the average image we project the images on a hypersphere
with radius R centered at the origin.

The structure of the data allows trained classifiers to
accurately identify the individual in an image. A way to
impair this ability of the classifiers is to undermine this
structure. This can be achieved by projecting the images on
a hypersphere. This projection distorts the images in such
a way that, the new architecture of the data does not allow
trained classifiers from discerning between the individuals.
Bringing all images near to the center of the hypersphere,
image clusters of different individuals are driven closer
together. This clashes with the initial idea that the distance
between the clusters allows classifiers to correctly classify
a subject. Consequently it is expected that this projection
method will hinder classifiers from accurately identifying a
subject.

A. Selecting a Center for the Hypersphere

In order to project the images a hypersphere must first
be defined. As mentioned in Section II a hypersphere can
be defined with a center and a radius. For a center, several
alternatives where considered. At first abstract centers where
selected such as the origin of the n-dimensional space
in which the images reside as well as the image whose
pixels contained the maximum allowed value e.g. 255 for
8-bit images. These two centers did provide de-identification
which can be easily defeated, since the effects that they
introduced where darkening and brightening of the input
images respectively. This can be easily defeated by applying
the inverse effect on the output images. Despite this fact the
origin was used in combination with the mean image as is
described below. The output of using the above centers can
be viewed in Figure 1. Another abstract center considered
was an image of random noise whose values where in
the same range as the input images e.g. [0,255] for 8-
bit images. Visual results for these centers can be seen in
Figure 2. Although the de-identification rates where high,
visual quality suffered and as such these centers where not
considered any further.

In order to deviate from abstract centers the train dataset
image closest to the mean image was selected as a center for
the hypersphere. Since this is an actual image, all images that
depict the same individual as the median are not de-identified
as was found through experiments. A better hypersphere
would be one that is closer to the initial images and also
includes information from other images in order to deceive
face recognition algorithms. Such a center would be the mean
image of the dataset.

The mean image is computed using the following equa-
tion:

Ī =
1

Nim

Nim∑
i=1

Ii (4)



where Ī is the average image, Nim is the number of images
in the given dataset and Ii is each individual image in the
dataset.

B. Selecting a Radius for the Hypersphere

Since the mean image was selected as the center for the
hypersphere a radius is needed in order to fully define the
hypersphere. It is possible to manually select the radius by
using arbitrary values and then assessing the visual quality
as well as the error rate of various face recognition methods.
This is however a simplistic approach and for each database
a new radius must be selected. As such it would be better if
a radius could be calculated depending on the database used.
This was achieved using the Support Vector Data Description
method or SVDD, which is described in Section IV.

C. Projections Used for De-Identiffication

Two different projections where used in order to de-
identify facial images. The first one is the average of the
projection on the origin and the mean image. The formula
used to calculate the de-identified version IDID of an image
I is the following:

IDID =
1

2

(
R

||I||
I+ Ī

)
. (5)

where Ī is the mean image, R denotes the radius of the hy-
persphere and ||I|| is the measure of image I. This projection
method will be referred to as Projection De-Deidentifiaction
on Origin or PDID-O for short.

The second projection used was the projection with a
hypersphere centered on the mean image. The de-identified
image can be calculated using the following formula:

IDID =

(
R ∗ (I− Ī)

||I− Ī||
+ Ī

)
. (6)

and as above Ī is the mean image, R denotes the radius
and ||I|| is the measure of image I. This projection method
will be referred to as Projection De-Deidentifiaction on Mean
Image or PDID-M for short.

Having defined the projections used to de-identify the
input images, now let us focus on the value of radius R
that should be used in the following section.

IV. AUTOMATIC SELECTION OF RADIUS R

Choosing a small value for radius R allows us to project
the initial images close to the center, and subsequently close
to each other. This means that images of different individuals
will also be close to images from other individuals. Choosing
a large value for R, it is possible to project the initial
images farther from the center, closer to the initial locations.
Therefore the output images will be farther away from each
other, and subsequently the clusters of different images will
also be farther away. It is suspected that for small values
of R the error rates of the classifiers will be high, since the
classifiers will be unable to discern between the images from
different individuals and as a result will classify them falsely.
The value of R will also be responsible for preserving the

quality of the initial images. For small values of R the image
quality will suffer, while for large values of R the quality of
the output images will be closer to that of the initial image.
These observations can hint to the choice for the value of
parameter R.

It would be preferable though if radius R was calculated
based on the images in each dataset. This can be achieved
using the Support Vector Data Description method.

The Support Vector Data Description or SVDD [11] is
a method for defining the minimum bounding sphere that
encompasses most of or all of the training vectors xi where
i = 1, 2, . . . , N and N denotes the number of training
vectors. This sphere S can be defined by a center u and
a radius R, which can be computed by optimizing:

min
R,ξ,u

R2 + c
N∑
i

ξi (7)

s.t. ||xi − u||22 ≤ R2 + ξi (8)

ξi ≥ 0, i = 1, 2, . . . , N (9)

where ξi are the slack variables and c is a parameter that
describes the importance of the error in the optimization
problem.

Using the Karush-Kuhn-Tucker (KKT) theorem [10] the
optimization problem mentioned above can be solved by
finding the saddle point of the Lagrangian:

L(R, ξi,u,α,β) = R2 + c
N∑
i

ξi −
N∑
i=1

βiξi

−
N∑
i=1

ai
(
R2 + ξi − ||xi − u||22

)
.

(10)

This leads to the following optimality conditions:

ϑL
ϑu

= 0 ⇒
N∑
i=1

aiu =
N∑
i=1

aixi, (11)

ϑL
ϑR

= 0 ⇒
N∑
i=1

ai = 1 (12)

ϑL
ϑξi

= 0 ⇒ ai = c− βi (13)

From (11) and (12) the center u is given by:

u =
N∑
i=1

aixi (14)

Replacing (11), (12) and (13) in L(R, ξi, α, β) and using
the KKT conditions, optimization problem (7) can be for-
mulated to its dual from:

max
α

N∑
j=1

aix
T
i xi −

N∑
i=1

N∑
j=1

aiajx
T
i xi, (15)



under the condition 0 ≤ ai ≤ c and
∑

i ai = 1.
After solving 15 radius R can be calculated as:

R2 = {min ||xi − u||22,xi is a support vector or ai > 0}
(16)

With the above approach it is possible to calculate a good
estimate of radius R that will provide with the required
distortion to de-identify the input facial images.

V. EXPERIMENTAL RESULTS

A. Database Description, Classifiers and Metric Used

Experiments to test the effectiveness of the Projection-DID
method where run on the XM2VTS [13] and the Extended
Yale B [12] databases. From the XM2VTS database 16
individuals from the first recording where selected and used
in the experimental process. The individuals face the camera
on a neutral background. The frontal images where isolated
and subsequently where cropped to the face area. Finally the
images where converted to 8-bit grayscale images. This pro-
cess resulted in a dataset with 388 train samples and 265 test
samples from the 16 videos. Each sample of the above dataset
has 128721 dimensions (401×321), with both train and test
samples converted into vectors with dimensions 128721× 1.
The Extended Yale B database contains images from 38
individuals under different lighting conditions. Train and test
sets contain 1209 and 1205 samples respectively. These sets
where defined by randomly selecting half the images from
each individual. Each image has 1200 dimensions (40× 30)
and was used in vector form with dimensions 1200× 1. The
train sets mentioned above where used to train classifiers
and then the test data where used to measure the efficiency
of the proposed method. The three classifiers used in the
process where the K-Nearest Neighbour Classifier (KNN)
with 1 nearest neighbour, the Nearest Centroid Classifier and
the Naive Bayes Classifier. In the case of the KNN classifier
varying the number of nearest neighbours to 3 and 5 yielded
similar results.

In order to calculate the difference between the initial
and de-identified images and to measure the degradation of
quality introduced by the Projection-DID method, the mean
Mean Square Error (mMSE) metric was used. To calculate
the mMSE the images must be in vector form np×1, where
np is the number of pixels in each image. As such the
formula that is used to calculate the mMSE is:

mMSE =
1

Nim

Nim∑
i=1

 1

np

np∑
j=1

(
Ii(j)− Îi(j)

)2

 (17)

where Nim is the total number of images, np is the number
of image pixels, Ii is the ith original image and finally Îi is
the ith output image of the applied method. All calculations
for the mMSE are done with the images having values in the
range [0, 1], after they where divided by 255.

These two datasets contain only a small number of in-
dividuals compared to the datasets that an attacker would

use to identify a target. It is intuitively expected that if
the Projection-DID methods succeed in protecting privacy
in these small datasets it will achieve even higher levels of
privacy protection in large datasets.

B. Results for the PDID-O Method

This method uses formula 5 to de-identify the input
images. The radius used for the PDID-O was calculated using
the SVDD method. For the XM2VTS dataset the calculated
radius was R = 67.4034 and for the Yale B dataset the value
for radius R was calculated to be R = 17.4241.

In order to test the above radii in respect to error rates
and visual quality, other values where also used in the
experimental process. For the XM2VTS dataset Table I
summarizes the results for different radii and classifiers. As
it can be seen more values where selected near the calculated
radius in order to assess the effectiveness of the calculated
radius. Visual results can be seen in Figure 3 and Figure 4.

For the XM2VTS dataset the results are presented in Table
I from which we can conclude that parameter R plays a large
role in the error rates that are displayed by the error rates, as
well as the mMSE. As suspected increasing radius R reduces
the error rates displayed by the classifiers. For a radius of 10
very high error rates are observed reaching 97.36% for the
NBC classifier and with an mMSE of 0.06046. Increasing
the radius leads to a decline of the mMSE while error rates
remain almost the same for a radius R = 30 and slightly
falling by about 3% for radii R = 50 and 70. For a radius
with a value of R = 100 error rates fall sharply to 49.06%
for the KNN classifier and for R = 120 the same error
rate is 26.04%. The mMSE is also reduced from 0.06046
for R = 10, to 0.02829 for R = 70 and reaches 0.01216
for a radius R = 120.Focusing on the values near the
calculated value of R = 67.4034 and more specifically from
50 to 80 it can be observed that although the mMSE varies,
the error rates remain stable for all three classifiers. The
error rate is 90.57% for the KNN and NC classifiers, while
slightly higher for the NBC classifier at 93.58%, both being
high enough to offer privacy protection. From the results
in Table I we can conclude that the calculated radius R by
the SVDD method is a really good choice for de-identifying
facial images and retaining an acceptable level of quality
for this dataset and the PDID-O method. From these results,
we propose the value of 70 for radius R for the XM2VTS
dataset since R = 70 provides high error rates and acceptable
image quality. Finally it can be verified from the results that
increasing radius R causes a decline in error rates for all
classifiers also for the mMSE, as we approach the initial
image by increasing the radius R of the hypersphere.

For the Yale B dataset the radius R that was calculated
using the SVDD method has the value R = 17.4241. For this
R and radii in the same area, the error rates are shown in
Table II. As can be seen for a small radius R = 10, error rates
for all classifiers are high. Increasing the radius leads to low
error rates for the KNN classifier, while the NBC and NC
classifiers display high error rates. This observation mean
that the radius that is computed using the SVDD method



Fig. 3. Results for PDID-O with Left: R = 10, Middle: R = 30, Right:
R = 50

Fig. 4. Results for PDID-O with Left: R = 70, Middle: R = 100, Right:
R = 120

TABLE I
ERROR RATES FOR PDID-O (XM2VTS)

Classifiers mMSE
Radius KNN NC NBC

10 93.21 % 93.21 % 97.36 % 0.06046
30 93.21 % 93.21 % 93.58 % 0.04818
50 90.57 % 90.57 % 93.58 % 0.03746
60 90.57 % 90.57 % 93.58 % 0.03268

67.4034 90.57 % 90.57 % 93.58 % 0.02939
70 90.57 % 90.57 % 93.58 % 0.02829
80 90.57 % 90.57 % 93.58 % 0.02428
100 49.06 % 48.30 % 61.89 % 0.01745
120 26.04 % 26.04 % 54.72 % 0.01216

is a good estimate of the radius that should be used in
order to de-identify the images sufficiently. For the selected
radii the mMSE displays at first a decline from R = 10 to
R = 17.4241 and then increases. In this case the estimate by
the SVDD method is not ideal and a smaller radius should
be used to attain high de-identification rates. As such we
propose a value of R = 10 for the Yale B dataset.

In both datasets apart from simply using the original
images the LDA method was applied. The results gave
varying error rates that where either slightly higher than
the ones with the original images and some where lower. In
the case of the XM2VTS dataset the images where resized
to 40 × 30. In this case the radius R calculated with the
SVDD method was R = 0.9819. For this radius the NBC
and NC classifiers gave the same error rates at with the
original images and the ones with LDA giving 96.23% and
93.21% respectively. The KNN classifier showed error rates
at 93.21% for the initial images and 91.32% for the LDA. For
the Yale B dataset and a radius of R = 10 the NC classifier
displays the same error rates at 79.17%. In the case of the
NBC classifier the error rate increases if LDA is used from
72.61% to 87.14%. Finally for the KNN classifier there is
a drop from 89.96% to 79.50% which is still an acceptable
de-identification rate.

TABLE II
ERROR RATES FOR PDID-O (YALE B)

Classifiers mMSE
Radius KNN NC NBC

5 94.94 % 94.19 % 92.94 % 0.04760
10 89.96 % 79.92 % 72.61 % 0.02878
15 60.83 % 88.13 % 82.57 % 0.02038

17.4241 48.30 % 90.37 % 86.14 % 0.02005
20 38.67 % 91.95 % 89.38 % 0.02239

C. Results for the PDID-M Method

This method projects the input image on a hypersphere
centered on the mean image using formula 6. The radius
calculated using the SVDD method did not provide adequate
de-identification with the PDID-M method and the radii used
here found empirically. For the XM2VTS dataset the radius
proposed is R = 10 and for the Yale B dataset R = 2.
This is a drawback of this method, since the radii cannot be
calculated automatically. Error rates for the XM2VTS dataset
can be are displayed in Table III and visual results can be
seen in Figure 5 and Figure 6. From the results in Table
III it can be seen that the PDID-M method gives high error
rates with lower mMSE compared to the PDID-O method.
From a R = 4 with error rates at 96.23% for all classifiers a
slight drop is displayed up to a radius of R = 10 for which
value the error rates are 90.19% for the three classifiers used.
Beyond this value the error rates drop sharply and for a
radius of R = 14 the KNN classifier displays an error rate
of 53.21%.

The error rates for the Yale B dataset are displayed in
Table IV. For a radius R = 1 the KNN classifier displays
an error rate at 96.21% while the NBC a much lower error
rate at 88.13%. For R = 2 both the previous classifiers drop
to 95.02% and 83.32% respectively. The NC also displays
a drop in error rate from 92.61% for a radius of R = 1 to
89.21% for R = 2. The mMSE is at 0.04384 for R = 1 and
for R = 2 the mMSE value drops to 0.03307. The values
for the mMSE in the case of the Yale B dataset are close for
both the PDID-O and PDID-M method, unlike the case of the
XM2VTS dataset as mentioned above. For higher values for
radius R all error rates drop below 90%. For R = 3 the KNN
and NC classifiers display a difference of 1% at 88.71% and
89.71% respectively, while the NBC remains almost stable
in comparison with a radius R = 2 at 83.14% and the mMSe
dropping to 0.02396. For values beyond R = 3 error rates
drop sharply with a minimum of 76.51% for R = 4 and to
a minimum of 66.14% for R = 66.14% both displayed by
the KNN classifier.

As in the PDID-O method the LDA method was applied
to the initial images. The results gave varying error rates
that where either slightly higher than the ones with the
original images and some where lower. As mentioned above
the XM2VTS dataset images where resized to 40 × 30. In
this case the radius used was R = 0.8. For this radius
the NBC and NC classifiers displayed equal error rates for
the original images and the ones with LDA giving 96.23%



TABLE III
ERROR RATES FOR PDID-M (XM2VTS)

Classifiers mMSE
Radius KNN NC NBC

4 96.23 % 96.23 % 96.23 % 0.01954
6 90.19 % 94.72 % 96.23 % 0.01804
8 90.19 % 90.19 % 90.19 % 0.01660

10 90.19 % 90.19 % 90.19 % 0.01522
12 66.04 % 71.70 % 90.19 % 0.01390
14 53.21 % 53.58 % 73.58 % 0.01265

TABLE IV
ERROR RATES FOR PDID-M (YALE B)

Classifiers mMSE
Radius KNN NC NBC

1 96.76 % 92.61 % 88.13 % 0.04384
2 95.02 % 89.21 % 83.32 % 0.03307
3 88.71 % 89.71 % 83.15 % 0.02396
4 76.51 % 89.96 % 81.74 % 0.01652
5 66.14 % 90.54 % 81.41 % 0.01075

Fig. 5. Results for PDID-M with Left: R = 4, Middle: R = 6, Right:
R = 8

and 90.19% respectively. The KNN classifier displayed error
rates at 90.19% for the initial images and 96.60% for the
LDA. In the case of the Yale B dataset a radius of R = 2
was used. The NC classifier displays the same error rates
at 85.89%. Error rates of the NBC classifier the error rate
increases with LDA from 82.49% to 89.79%. Finally for the
KNN classifier error rates from 94.52% to 89.21%.

VI. POSSIBLE ATTACK AGAINST THE PROJECTION-DID
METHODS

As can be seen in the above figures a malicious user trying
to defeat the Projection-DID methods could use an averaging
filter in order to reduce the ghosting effects introduced by
this method and then use a sharpening method in order to
increase the correct classification of the classifiers, bringing
the output image closer to the initial image. Various low
pass filter sizes were used and sharpening filters and the
error rates of the classifiers did not diverge from the high
error rates reported above. As a result such an attack does
not defeat the proposed methods.

VII. CONCLUSIONS

In this paper we proposes two methods that de-identify
facial images using projections on hyperspheres. In order
to calculate a good radius R for the PDID-O method to
define the hypersphere the SVDD method was used. The
radii given by the SVDD gave radii values that provided
high error rates and at the same time acceptable image

Fig. 6. Results for PDID-M with Left: R = 10, Middle: R = 12, Right:
R = 14

quality. Error rates where high, attaining 93.58% for the
XM2VTS dataset using the Naive Bayes Classifier and the
radius R = 67.4034. For the Yale B dataset the highest error
rate was 92.12% with the Nearest Centroid Classifier and a
radius R = 17.4241. In the case of the PDID-M method,
the radii given by the SVDD did not provide adequate de-
identification so the values where selected empirically. The
highest error rates with the proposed radii where 90.19%
for R = 10 for the XM2VTS dataset and 95.02% for
R = 2 for the Yale B dataset. Comparing the two proposed
methods it can be seen that the PDID-M method performs
better compared to the PDID-O method. For simlar values of
mMSE (about 0.012) the minimum error rate is 26.04% for
the PDID-O method and 53.21% for the PDID-M method
which is more than double the error rate for PDID-O. To
summarize, from the above results it can be concluded that
the two proposed Projection-DID methods serve the purpose
of providing privacy protection by attaining high error rates
from classifiers and providing an end image that can be
characterized as acceptable for everyday use.
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