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ABSTRACT

In this paper, we propose a method for human action recog-
nition in unconstrained environments based on stereoscopic
videos. We describe a video representation scheme that ex-
ploits the enriched visual and disparity information that is
available for such data. Each stereoscopic video is repre-
sented by multiple vectors, evaluated on video locations cor-
responding to different disparity zones. By using these vec-
tors, multiple action descriptions can be determined that ei-
ther correspond to specific disparity zones, or combine infor-
mation appearing in different disparity zones in the classifi-
cation phase. Experimental results denote that the proposed
approach enhances action classification performance, when
compared to the standard approach, and achieves state-of-the-
art performance on the Hollywood 3D database designed for
the recognition of complex actions in unconstrained environ-
ments.

Index Terms— Human Action Recognition, Stereoscopic
Videos, Disparity Pyramids, Bag of Features

1. INTRODUCTION

The automatic recognition of human actions has received
considerable research study in the last two decades, due
to its importance in many applications, like content-based
video retrieval, human-computer interaction and intelligent
visual surveillance, to name a few. Depending on the ap-
plication scenario, several approaches have been proposed,
ranging from the recognition of simple human actions in con-
strained environments [1–4], to the recognition of complex
actions (also referred to as activities) in unconstrained envi-
ronments [5–7]. The methods proposed for the first scenario
aim at the recognition of simple human actions (usually re-
ferred to as Actions of Daily Living - ADL). According to
this scenario, action recognition refers to the classification of
one, or multiple videos captured from multiple viewpoints,
depicting a person performing an instance of a simple action
(e.g., a walking step) in a scene containing a relatively simple
background. The assumption of a simple background is vital
for the methods of this category, in the sense that video frame
segmentation is usually required in order to determine the

video locations depicting the performed action (e.g., in order
to obtain human body silhouettes).

The recognition of complex human actions in uncon-
strained environments is usually referred to as ‘action recog-
nition in the wild’ and is a very active research field nowa-
days, since it corresponds to a very challenging problem.
Challenges that methods belonging to this category should
be able to face include different capturing viewpoints, varia-
tions in action execution styles among individuals, cluttered
backgrounds (possibly containing multiple persons perform-
ing a different action) and variations in the distance between
the performed action and the capturing device(s). Perhaps
the most well studied and successful action representation
in this setting is based on the Bag of Features (BoF) model.
According to this model, videos are described by exploiting
shape and motion information appearing in spatiotemporal
video locations of interest. Several action descriptors, which
are evaluated directly on the videos, have been proposed to
this end. Finally, a compact video representation is achieved
by descriptor quantization. This approach has the advantage
that video frame segmentation is not required and, thus, the
assumption of a simple background is not necessary.

The type of the adopted capturing device plays an impor-
tant role on the information that action recognition methods
are able to exploit. Most of the conducted research until now
exploits visual information captured by one (RGB) camera.
Such an approach has the disadvantage that information re-
lated to the scene geometry is discarded, since only the pro-
jection of the scene on the camera plane is conceived. In the
unconstrained recognition problem, this information may fa-
cilitate the discrimination between different action types [8–
10]. Depth sensors, like Time of Flight (ToF) cameras and
structured light sensors (e.g. the Microsoft Kinect), are able
to provide information related to the scene geometry, since
such sensors provide maps denoting the distance of each real-
world point appearing in their field of view. Action recog-
nition can be performed either based on the derived depth
videos, or by combining depth and visual information in order
to increase recognition performance [8]. However, the capa-
bilities of current depth sensors are limited. For example the
Kinect sensor provides depth maps at 640×480 pixels and of
range around 0.8− 3.5 meters. The resolution of depth maps



created by ToF cameras is between 64× 48 to 200× 200 pix-
els, while their range varies from 5 to 10 meters. This is why
such devises have been employed only in indoor application
scenarios related to the recognition of ADL.

In order to overcome these issues, researchers have pro-
posed the use of multi-camera setups [1, 2, 11, 12]. By com-
bining the information coming from multiple viewpoints,
information related to the scene geometry can be conceived,
e.g., by applying 3D reconstruction methods. However,
multi-cameras setups need to be calibrated and are difficult
to be used in unconstrained environments. In addition, the
use of multiple cameras increases the computational cost of
the methods. Stereo cameras provide a compromise between
the computational cost and the geometric information that
can be exploited by computer vision methods. By using
two cameras, placed side by side in a similar manner to the
human eyes, two views of the scene captured by slightly dif-
ferent viewpoints are obtained. The application of disparity
estimation algorithms on synchronized video frames com-
ing from the two cameras [13] results to the production of
disparity maps denoting the displacement of the projections
of real-world points on the two camera planes. This way,
information related to the scene geometry can be obtained.
The resolution of the obtained disparity maps can vary from
low- to high-resolution, depending on the resolution of the
cameras used. In addition, the range of the stereo camera can
be adjusted by changing the stereo baseline, i.e., the distance
between the two camera centers. Thus, stereo cameras can be
used in both indoor and outdoor settings.

Despite the fact that action recognition in unconstrained
environments from videos is a well-studied problem in com-
puter vision, the adoption of stereo-derived information for
human action recognition is a relatively new approach [9,10].
It has been mainly studied in a BoF-based action recognition
framework exploiting local activity information appearing in
Space Time Interest Point (STIP) locations. This can be per-
formed either by evaluating local space-time descriptors di-
rectly on the obtained disparity videos [10], or by extending
single-channel local video description, in order to exploit the
enriched VpD (visual plus disparity) information [9]. To this
end, extensions of two STIP detectors and three action de-
scriptors in four dimensions have been proposed in [9]. This
is achieved by considering stereoscopic videos as 4D RGB-
D data and extending the Harris and Hessian interest point
detectors in order to operate in four dimensions. This way,
the obtained interest points correspond to video locations that
undergo to abrupt intensity value changes in space, time and
disparity directions. Extensions of the Histogram of Oriented
Gradients (HOG), the Histogram of Optical Flow (HOF) and
the Relative Motion Descriptor (RMD), evaluated on such in-
terest points have been employed in order to represent stereo-
scopic videos.

Experimental results conducted on the recently intro-
duced Hollywood 3D database [9, 10] denote that, by using

disparity-enriched action descriptions in a BoF-based classifi-
cation framework, enhanced action recognition performance
can be obtained. However, the adoption of a STIP-based
action descriptions have proven to provide inferior perfor-
mance, when compared to action descriptions evaluated on
densely sampled interest points [14]. This is due to the fact
that STIP-based action descriptions exploit information ap-
pearing in a small fraction of the available video locations of
interest and, thus, they may not be able to capture detailed
activity information enhancing action discrimination. The
adoption of 4D STIP-based stereoscopic video descriptions
may further decrease the number of interest points employed
for action video representation, decreasing the ability of such
representations to properly exploit the available enriched
VpD information.

In this paper we propose a method for human action
recognition based on stereoscopic videos. In order to avoid
the above mentioned issues relating to STIP-based action
representations, we exploit information appearing in densely
sampled interest points for action description. Since the
computational cost of such action representations is high,
the computation of disparity-enriched interest points and
descriptors would undesirably further increase the computa-
tional cost of the adopted action representation. This is why
we follow a different approach. We employ the disparity
videos evaluated on a set of (training) stereoscopic videos in
order to define multiple disparity zones. Such disparity zones
can be exploited to roughly divide the scenes in multiple
depth levels. By using this information, we can subsequently
represent stereoscopic videos by multiple vectors, called ac-
tion vectors hereafter. This is achieved by applying the BoF
model on different disparity zones. In addition, by combining
the action vectors describing a stereoscopic video, enriched
representations based on disparity pyramids can be obtained.
Experiments conducted on the Hollywood 3D database de-
note that the proposed stereoscopic video representation en-
hances action classification performance, when compared to
the single-channel case. In addition, the proposed approach
achieves state-of-the-art performance on the Hollywood 3D
database, as will be seen in the experimental section.

The remainder of the paper is structured as follows. The
proposed stereoscopic video representation is described in
Section 2. The adopted classification scheme is described
in Section 3. Experiments conducted on the Hollywood 3D
database are illustrated in Section 4. Finally, conclusions are
drawn in Section 5.

2. STEREOSCOPIC VIDEO REPRESENTATION

Let us denote by V a database consisting of N stereoscopic
videos depicting actions. We refer to the i-th stereoscopic
video of the database by using vi. Let us also denote by vl

i,
vr
i the left and right channels of vi, respectively. We employ

vl
i, v

r
i in order to evaluate the corresponding disparity videos



Fig. 1. Distribution of disparity values in the training set of
the Hollywood 3D database.

vd
i by applying the method in [13]. That is, we can say that the

stereoscopic video database is a set consisting of 3N videos,
i.e., V = {vl

i,v
r
i ,v

d
i }Ni=1.

As we have already described, we employ the disparity
videos vd

i , i = 1, . . . , N in order to determine disparity zones
that will be subsequently used for action description. In order
to do this, we would like to estimate the probability of observ-
ing each disparity value in a stereoscopic video. Assuming
that all the stereoscopic videos appearing in V (as well as the
stereoscopic videos that will be introduced in the test phase)
have been captured by using the same stereo parameters, i.e.,
the same stereo baseline and focal length, this probability can
be estimated by computing the distribution of the disparity
values of the disparity videos in V . In Figure 1, we illustrate
the distribution of the disparity values in the training set of
the Hollywood 3D database. As can be seen in this Figure,
we can define two disparity zones: one corresponding to low-
disparity values, i.e., 0 − 20, and one corresponding to the
disparity values in the interval 50 − 160. Clearly, the stereo-
scopic video locations having a disparity value appearing in
the first zone correspond to background1, while those having
a disparity value in the second zone may correspond either to
background or to foreground.

In order to automatically determine the disparity zones,
we compute the cumulative distribution of the disparity val-
ues in V . Let us denote by f(dj) the probability of appear-
ance for the disparity value dj , j = 0, . . . , 255. The cumu-
lative distribution of the disparity values is given by F (dj) =∑j

k=0 f(dk). That is, F (·) is the CDF of the disparity values
in the training set. The cumulative distribution of disparity
values in the training set of the Hollywood 3D database is il-
lustrated in Figure 2. Let us assume that we would like to
determine D disparity zones. By using F (·), we can define

1The locations having a disparity value equal to zero may correspond ei-
ther to background, or to locations where the disparity estimation algorithm
failed. Currently, we do not distinguish these two cases. That is, we as-
sume that the locations where the disparity estimation algorithm has failed
do not contain much information for action discrimination and are regarded
as background locations.

Fig. 2. Cumulative distribution of disparity values in the train-
ing set of the Hollywood 3D database.

D − 1 threshold values by equally segmenting the CDF of
the disparity values. An example of this process for the case
of D = 3 is illustrated in Figure 2. Finally, in order to al-
low fuzzy segmentation of the disparity values, the disparity
zones are determined so as to overlap by 0.25.

After the calculation of the D disparity zones, we use
them in order to compute D action vectors for each stereo-
scopic video in V . We employ an activity description which
exploits local video information in densely-sampled interest
points in order to preprocess the color videos of the database
V . Since the two channels of a stereoscopic video vi depict a
slightly different view of the performed action, the activity in-
formation appearing in them is the same. Thus, in order not to
increase the overall computational cost, we can employ only
one of the channels (we chose vr

i ) in order to calculate a set
of action descriptors denoted by Si. By exploiting the previ-
ously determined disparity zones, Si can be split to D action
descriptor sets, i.e., Si = {Si,1, . . . ,SiD}. Subsequently, we
can evaluate D BoF-based action video representations, each
evaluated by using the descriptors appearing in the corre-
sponding activity descriptor set. It should be noted here that,
since the distances of each descriptor in Si to the codebook
vectors need to be calculated only once, the computational
cost of the proposed stereoscopic video representation is the
same with that of the standard BoF-based single-channel
video representation. In the case where the adopted action
description approach employs multiple descriptor types, e.g.,
HOG, HOF, etc, the above described process is performed
for each descriptor type independently and the stereoscopic
video is, finally, represented by C = DQ action vectors,
where Q is the number of the available descriptor types.

3. STEREOSCOPIC VIDEO CLASSIFICATION

Let us assume that the N stereoscopic videos in V have been
annotated. That is, each vi, i = 1, . . . , N is accompanied
by an action class label li denoting the performed action. Let
us assume that the number of action classes appearing in V is
equal to A. By applying the above described process, each vi



Table 1. Comparison with state-of-the-art in the Hollywood
3D database.

mAP CR
Method in [9] 15 % 21.8 %

Method in [10] 26.11 % 31.79 %

Proposed Method 30.52 % 36.09 %

is represented by C action vectors xc
i ∈ RKc , c = 1, . . . , C.

We employ xc
i and li in order to train a kernel Extreme Learn-

ing Machine (ELM) network [15]. We use the multi-channel
χ2 kernel function, which has been shown to outperform other
kernel function choices in BoF-based classification [16]:

[K]i,j = exp

(
− 1

Ac

Kc∑
k=1

(xc
ik − xc

jk)
2

xc
ik + xc

jk

)
. (1)

Ac is a parameter scaling the χ2 distances between the c-
th stereoscopic video representations. We set this parame-
ter equal to the mean χ2 distance between the training action
vectors xc

i . In the test phase, when a test stereoscopic video
appears, we introduce the corresponding test action vectors to
the ELM network and classify it to the class corresponding to
the highest network response.

4. EXPERIMENTS

We have applied the above described stereoscopic video clas-
sification method on the publicly available Hollywood 3D ac-
tion recognition database consisting of stereoscopic videos.
We provide a description of the database and the experimental
protocols used in our experiments in subsection 4.1. Experi-
mental results are given in subsection 4.2. In the experiments,
we have employed the state-of-the-art action description [14],
where five action descriptors, i.e., HOG, HOF, MBHx, MBHy
and Trajectory, are calculated on the trajectories of densely
sampled interest points. As a baseline approach we use the
method in [14], which corresponds to the proposed stereo-
scopic video representation by using one disparity zone, i.e.,
for D = 1. In addition, we compare the performance of the
proposed method with that of the two state-of-the-art methods
in [9,10], exploiting the enriched VpD information for action
recognition.

4.1. The Hollywood 3D database

The Hollywood 3D database [9] consists of 951 stereoscopic
videos coming from 14 3D Hollywood movies. It contains
13 action classes and another class referred to as ‘No action’.
The actions appearing in the database are: ‘Dance’, ‘Drive’,
‘Eat’, ‘Hug’, ‘Kick’, ‘Kiss’, ‘Punch’, ‘Run’, ‘Shoot’, ‘Sit
down’, ‘Stand up’, ‘Swim’ and ‘Use phone’. A training-test
split (643 training and 308 test stereoscopic videos) is pro-
vided by the database. Training and test samples come from

Fig. 3. Video frames of the Hollywood 3D dataset depicting
instances of twelve actions.

Table 2. Action Recognition Performance on the Hollywood
3D database.

D=1 D={1,2} D={1,3} D={1,2,3}
mAP 29.44 % 30.45 % 30.52 % 30.5 %

CR 34.09 % 35.43 % 35.76 % 36.09 %

different movies. Example video frames from the database
are illustrated in Figure 3. The performance is evaluated by
computing the mean Average Precision (mAP) over all classes
and the classification rate (CR), as suggested in [9].

4.2. Experimental Results

Table 2 illustrates the performance obtained by applying the
proposed stereoscopic video classification method on the Hol-
lywood 3D database. We denote by {·} the set of the used
pyramid levels. For example we use D = {1, 2} in order
to denote that each stereoscopic video is represented by Q +
2Q = 3Q action vectors. Since the adopted action description
employs Q = 5 descriptors, in the case of D = {1, 2} each
stereoscopic video is represented by 15 action vectors. As can
be seen, the adoption of a stereoscopic video representation
based on disparity pyramids enhances the action classifica-
tion performance, when compared to the baseline approach,
i.e., for D = 1, in both the mAP and CR cases. The adop-
tion of a three-level pyramid seems to provide the best perfor-
mance, since it clearly outperforms the remaining choices in
CR and achieves close to the highest performance in mAP. In
Table 1 we compare the performance of the proposed method
with that of the best results reported in [9, 10]. As can be
seen, the proposed method clearly outperforms both of them.
We also provide the average precision values of all the 14
classes in Table 3. It can be seen, that the proposed method
outperforms [10] in nine, out of fourteen, classes and [9] in
twelve classes. Overall, the proposed method outperforms
the current state-of-the-art performance [10] by 4.4% (mAP)
and 4.3% (CR).

5. CONCLUSIONS

In this paper, we proposed a method for human action recog-
nition in unconstrained environments based on stereoscopic



Table 3. Comparison with state-of-the-art in the Hollywood
3D dataset.

Class D={1,3} Method in [10] Method in [9]
Dance 37.45 % 36.26 % 7.5 %

Drive 59.84 % 59.62 % 69.6 %

Eat 7.48 % 7.03 % 5.6 %

Hug 17.09 % 7.02 % 12.1 %

Kick 22.93 % 7.94 % 4.8 %

Kiss 41.42 % 16.4 % 10.2 %

Punch 27.71 % 38.01 % 5.7 %

Run 47.89 % 50.44 % 27 %

Shoot 49.38 % 35.51 % 16.6 %

Sit down 10.03 % 6.95 % 5.6 %

Stand up 50.02 % 34.23 % 9 %

Swim 29.44 % 29.48 % 7.5 %

Use phone 14.75 % 23.92 % 7.6 %

No action 11.83 % 12.77 % 13.7 %

Mean 30.52 % 26.11 % 14.1 %

videos. Actions are represented by multiple vectors, each de-
scribing shape and motion information in different disparity
zones (corresponding to different depth zones with respect to
the capturing camera). By combining these vectors, multi-
ple action representations can be determined which take into
account information relating to the geometry of the scene.
Experimental results on the publicly available Hollywood 3D
database show that the proposed approach outperforms com-
peting methods exploiting the enriched VpD information and
achieves state-of-the-art performance on this database.

Acknowledgment
The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 287674
(3DTVS).

REFERENCES

[1] D. Weinland, R. Ronfard, and E. Boyer, “Free view-
point action recognition using motion history volumes,”
Computer Vision and Image Understanding, vol. 104,
no. 2–3, pp. 249–257, 2006.

[2] A. Iosifidis, A. Tefas, and I. Pitas, “View-invariant ac-
tion recognition based on artificial neural networks,”
IEEE Transactions on Neural Networks and Learning
Systems, vol. 23, no. 3, pp. 412–424, 2012.

[3] J. Sanchez-Riera, J. Cech, and R. Horaud, “Action
recognition robust to background clutter by using stereo
vision,” European Conference on Computer Vision,
2012.

[4] A. Iosifidis, E. Marami, A. Tefas, and I. Pitas, “Eating
and drinking activity recognition based on discriminant
analysis of fuzzy distances and activity volumes,” IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing, 2012.

[5] M. Marszalek, I. Laptev, and C. Schmid, “Actions in
context,” IEEE Conference on Computer Vision and
Pattern Recognition, 2009.

[6] H. Wang, A. Klaser, C. Schmid, and C.L. Liu, “Dense
trajectories and motion boundary descriptors for action
recognition,” International Journal of Computer Vision,
vol. 103, no. 60-79, pp. 1–20, 2013.

[7] A. Iosifidis, A. Tefas, and I. Pitas, “Minimum class
variance extreme learning machine for human action
recognition,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, vol. 23, no. 11, pp. 1968–
1979, 2013.

[8] L Chen, H. Wei, and J Ferryman, “A survey of human
motion analysis using depth imagery,” Pattern Recog-
nition Letters, vol. 34, pp. 1995–2006, 2013.

[9] S. Hadfield and R. Bowden, “Hollywood 3d: Recog-
nizing actions in 3d natureal scenes,” IEEE Conference
on Computer Vision and Pattern Recognition, 2013.

[10] K. Konda and R. Memisevic, “Unsupervised learning
of depth and motion,” arXiv:1312.3429v2, 2013.

[11] A. Iosifidis, A. Tefas, and I. Pitas, “Multi-view action
recognition based on action volumes, fuzzy distances
and cluster discriminant analysis,” Signal Processing,
vol. 96, no. 6, pp. 1445–1457, 2013.

[12] A. Iosifidis, A. Tefas, and I. Pitas, “Multi-view human
action recognition under occlusion based on fuzzy dis-
tances and neural networks,” European Signal Process-
ing Conference, 2012.

[13] C. Riechert, F. Zilly, and P. Kauff, “Real time depth
estimation using line recursive matching,” European
Conference on Visual Media Production, 2011.

[14] H. Wang, A. Klaser, C. Schmid, and C.L. Liu, “Action
recognition by dense trajectories,” IEEE Conference on
Computer Vision and Pattern Recognition, 2011.

[15] G.B. Huang, H. Zhou, X. Ding, and R. Zhang, “Ex-
treme learning machine for regression and multiclass
classification,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, vol. 42, no. 2,
pp. 513–529, 2012.

[16] J. Zhang, M. Marszalek, M. Lazebnik, and C. Schmid,
“Local features and kernels for classification of texture
and object categories: A comprehensive study,” Inter-
national Journal of Computer Vision, vol. 73, no. 2, pp.
213–238, 2007.


