
                          Meuleman, W., Welten, M., & Verbeek, F. J. (2006). Construction of
correlation networks with explicit time-slices using time-lagged, variable
interval standard and partial correlation coefficients. In M. R. Berthold, R. C.
Glen, & I. Fischer (Eds.), Computational Life Sciences II: Second
International Symposium, CompLife 2006, Cambridge, UK, September 27-
29, 2006. Proceedings. (pp. 236-246). (Lecture Notes in Computer Science;
Vol. 4216). Springer  Berlin Heidelberg. DOI: 10.1007/11875741_23

Peer reviewed version

Link to published version (if available):
10.1007/11875741_23

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Springer at http://dx.doi.org/10.1007/11875741_23. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73983091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/11875741_23
http://research-information.bristol.ac.uk/en/publications/construction-of-correlation-networks-with-explicit-timeslices-using-timelagged-variable-interval-standard-and-partial-correlation-coefficients(8727b9ad-60dc-495a-abc4-70b3a3f43e55).html
http://research-information.bristol.ac.uk/en/publications/construction-of-correlation-networks-with-explicit-timeslices-using-timelagged-variable-interval-standard-and-partial-correlation-coefficients(8727b9ad-60dc-495a-abc4-70b3a3f43e55).html


Construction of correlation networks with

explicit time-slices using time-lagged, variable

interval standard and partial correlation

coefficients

Wouter Meuleman1,3, Monique C.M. Welten1,2, Fons J. Verbeek1

1 Leiden Institute of Advanced Computer Science (LIACS), Leiden University,
Niels Bohrweg 1, 2333CA Leiden, The Netherlands

2 Division of Molecular Cell Biology, Institute for Biology, Leiden University,
Wassenaarseweg 64, 2333AL Leiden, The Netherlands

{wmeulema,mwelten,fverbeek}@liacs.nl
3 Current address W. Meuleman: Information and Communication Theory group,
Delft University of Technology, P.O. Box 5031, 2600GA Delft, The Netherlands

Abstract. The construction of gene regulatory models from microarray
time-series data has received much attention. Here we propose a method
that extends standard correlation networks to incorporate explicit time-
slices. The method is applied to a time-series dataset of a study on gene
expression in the developmental phase of zebrafish. Results show that
the method is able to distinguish real relations between genes from the
data. These relations are explicitly placed in time, allowing for a better
understanding of gene regulation. The method and data normalisation
procedure have been implemented using the R statistical language and
are available from http://zebrafish.liacs.nl/supplements.html.

1 Introduction

Microarray data potentially disclose relations between genes. To that end a lot
of research effort is spend on revealing networks of genes from microarray time-
series experiments. Two established approaches for doing so are by using corre-
lation networks ([1, 2]) and dynamic Bayesian networks ([3–5]).

Correlation networks reveal only global associations between genes (via con-
trol mechanisms) over all time-points. No exact indication of time and inter-
action, i.e., interaction control, is given in these networks. The advantage of
correlation networks is however, that they can be built in a deterministic man-
ner, based on relatively simple calculations.

In general, dynamic Bayesian networks give more insight in the data by
providing information on when certain genes are related, i.e., over which time-
points. The major drawback of dynamic Bayesian networks however, is that there
is no polynomial time algorithm known for finding the optimal network structure
for a particular dataset, i.e., this problem is NP-hard ([6]). Network structure
candidates have to be tried one by one and since the number of possibly suitable



structures grows exponentially with the number of variables (genes) used, this
quickly becomes computationally infeasible1.

In this paper, we propose a method that combines these approaches so that
correlation networks with explicit time-slices are obtained. This is achieved by
using time-lagged, variable interval, standard and partial correlation coefficients.
We build onto the notion of correlation networks. However, in order to avoid
ambiguity with biological terms, from this point onwards the term ‘correlation
models’ will be used.

2 Approach

The model building process involves the selection of strong correlations between
gene expression profiles of which one profile is lagged in time and the interval over
which the correlation is calculated is shortened. More specifically, correlations are
calculated for all possible gene-pairs over transitions in time which are supported
by the dataset. A t-test is used as a cutoff filter to obtain strong correlations only.
These correlations are subsequently used to build an initial model incorporating
explicit time-slices.

Indirect relations are removed from the model by calculating first order par-
tial correlations for each strong correlation in the model. For two arbitrary genes
g1 and g2 this works as follows. For each strong correlation between the profiles
of g1 and g2 over time-points ti and tj , where i < j, partial correlations are
calculated. This is done by controlling the influence of each of the genes in ti,
excluding g1, on the correlation between g1 and g2.

Results are assessed for significance. Those below a certain significance thresh-
old are removed from the model. The result of this is a correlation network with
explicit time-slices, where connections between reporters indicate direct rela-
tions.

3 Methods

Correlations

In order to establish which genes portray a relation, we can calculate the corre-
lation between their expression profiles. Standard correlation models are based
on Pearson’s correlation coefficient. However, these are not sufficient here, as we
are primarily interested in correlations over time, that is, we would like to find
out which expression profiles show a similar trend, with a certain time-lag.

An example of such correlations is given in Figure 1. Profiles 1 and 2 are
strongly correlated with a time-lag of 2 units. A method for finding such cor-
relations is used in [4] for grouping genes with possible common pathways. A

1 Other recent approaches have acknowledged this problem and constructed ways of
restricting the search space so that solutions could be generated in reasonable time
([7]).
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Profile 1: strong correlation with profile 2, time−lag = 2
Profile 2: strong correlation with profile 3, start−pos = 3
Profile 3: strong correlation with profile 4, start−pos = 3, time−lag = 2
Profile 4

Fig. 1. Profiles with strong time-lagged and/or variable interval correlations. Arrows
between profiles indicate the interval over which the correlation was calculated.

drawback of this method is that the correlation calculation is always initiated
from the first time-point for one of the profiles. It is therefore not sufficient for
finding the strong correlations present between profiles 2 and 3 and between 3
and 4. Profiles 2 and 3 correlate strongly from time-point 3 onwards, but not
before that. Another example of this is the correlation between profile 3 and
4, which involves an additional time-lag of 2 units. These correlations must be
considered, otherwise valuable information is underutilised. Therefore, we ex-
tended the standard formula for Pearson’s correlation coefficient to incorporate,
in addition to time-lags, a starting position s from which to look for correlations.
This extension is formally described as:

ρ∗s,ℓ(x, y) =

|x|−ℓ
∑

i=s

(xi − µxs,|x|−ℓ
) (yi+ℓ − µys+ℓ,|x|

)

√

√

√

√

|x|−ℓ
∑

i=s

(xi − µxs,|x|−ℓ
)
2
|x|−ℓ
∑

i=s

(yi+ℓ − µys+ℓ,|x|
)
2

, (1)

where |x| (= |y|) denotes the number of time-points available and µxs,|x|−ℓ
and

µys+ℓ,|x|
are the means of variables xs to x|x|−ℓ and ys+ℓ to y|x| respectively.

Significance of correlations

The adjustment of intervals has consequences for the significance of correlations
calculated. In order to test the significance of a correlation, a t-test with n′ − 2
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degrees of freedom is used. Here, n′ indicates the number of time-points used for
calculating the correlation, given by

n′ = n − (s − 1) − ℓ (2)

where n is the total number of time-points and ℓ and s the used time-lag and
starting position respectively. Because we need at least one degree of freedom,
we can define the allowed ranges for s and ℓ as

s = 1, . . . , n − 3 (3)

ℓ = 1, . . . , n − s − 2 . (4)

We do not look at zero-lag correlations, as we are interested in finding relations
over time.

Partial Correlations

It may be the case that two strongly correlated variables (i.e., genes) have a
common controller variable or that there is a moderator variable through which
two variables are correlated. In both cases, two variables are strongly correlated
but either one does not cause the other.

Partial correlations allow one to investigate the correlation between two vari-
ables while controlling (or, excluding the influence of) one or several other vari-
ables. That is, the partial correlation between variables x and y, controlling z,
is the correlation between the parts of x and y that are uncorrelated with z.
This restricts the results to only direct relations between variables, ruling out
possible common controller or moderator variables.

The first order partial correlation between variables x and y, controlling z,
is formally described by

ρ(x, y|z) =
ρ(x, y) − ρ(x, z)ρ(y, z)

√

(

1 −
(

ρ(x, z)
)2

)(

1 −
(

ρ(y, z)
)2

)

. (5)

Note that when testing first order partial correlations for significance, the number
of degrees of freedom to be used is n′ − 3.

Model building

Using Eq. 1, pairwise correlations can be calculated between g selected genes,
over ℓ time-lags and with variable start positions s. This results in a correlation
matrix, given by

Ms,ℓ =







ρ∗s,ℓ(1, 1) · · · ρ∗s,ℓ(1, g)
...

. . .
...

ρ∗s,ℓ(g, 1) · · · ρ∗s,ℓ(g, g)






. (6)
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For each combination of s and ℓ, supported by the data and allowing for
enough degrees of freedom, such a correlation matrix is calculated. Analogous
to Eq. 3 and 4, the number of valid correlation matrices m is given by

m =
n−3
∑

s=1

n−s−2
∑

ℓ=1

1 . (7)

Of each correlation in the correlation matrices, the significance is assessed
using a t-test. All correlations with a p-value below a pre-defined value are
selected. A p-value of 0.05 is commonly used as a cutoff point to distinguish
strong correlations from weak ones. Using these correlations, an initial model
can be built. An example of such a model is shown in Figure 2.

Gene 4

Gene 3

t1 t2 t3 t4

Gene 2

Gene 1

Fig. 2. Example of initial model, with g = 4
genes and n = 4 time-points

Gene 4

Gene 3

t1 t2 t3 t4

Gene 2

Gene 1

Fig. 3. Example of final model

The initial model consists of a matrix of nodes, made up of g rows (genes)
and n columns (time-points). Each column can be seen as a slice of a time-
series, a common notion in the field of dynamic Bayesian networks and time-
series analysis in general. Each slice contains g nodes, depicting the genes at
that time-point. Two nodes in different slices are connected if and only if the
reporters they represent show a strong enough correlation.

After an initial model has been built, the correlations are verified using partial
correlations. For each two reporters connected between time-points ti and tj in
the initial model, where i < j, partial correlations are calculated. This is done
in an iterative manner, controlling each of the remaining reporters in time-point
ti one by one.

The significance of each calculated partial correlation is calculated (using a t-
test with n′−3 degrees of freedom, as described before) and if one of them turns
out not to be significant, this means the controlled reporter is responsible for a
substantial part of the strong initial correlation. This could indicate a common
controller or indirect relation.

We are particularly interested in direct relations. Therefore, in order to obtain
strong direct relations only, if one or more partial correlations do not reach a
pre-specified significance threshold, the initial correlation is removed from the
model.
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Inferring causation from correlation coefficients is discouraged ([8]), even after
correction using partial correlations ([9]). However, we can extend the undirected
connections in the model to directed ones when it is physically impossible for
two-way relationships to occur. Because we are considering correlations between
data from different time-points and time is generally directional, we can infer
directions. Figure 3 shows an example of a final model, including the directed
connections.

In the strict sense, the connections indicate which reporters have strongly
correlating expression profiles over a certain interval. A life scientist may in-
terpret these connections as possible regulations, or at least as hints towards
them. After all, when a reporter shows a certain behaviour from one time-point
onwards and another reporter shows similar behaviour from a later time-point
onwards, the first could well be regulating the second.

4 Results

The model building process has been tested using the dataset resulting from
experiments by Linney et al. ([10]). This dataset is the result of a zebrafish time-
series microarray experiment and contains data for 8 equidistant time-points,
ranging from 10 to 24 hours post fertilisation (hpf).

Data preparation

The processed data as used in [10] is publicly available from the ArrayExpress2

microarray data repository (accession number E-TIGR-17). However, to have
full control over the dataset, we preferred to start from the “raw” readouts
instead, provided by Renae Lin Malek ([10]). The normalisation procedure used
consisted of spatial, dye and conditional normalisations ([11]). All procedures
were implemented in the R programming language.

Variable selection

Using ANOVA and Benjamini & Hochberg false discovery rate analysis ([12])
with a false positive level of 5%, genes significantly differentially expressed over
the 8 time-points have been selected for further analysis.

We have focussed on one particular family of genes, so called hox genes.
These have been recognised ([13, 14]) as important factors in the developmental
mechanism of vertebrates and are significant in research involving axial pattern-
ing during development. The dataset used contains data of early developmental
stages, in this time-frame these genes are expected to show temporal differential
expression. Because of this, the 28 hox genes present in the normalised dataset
have been selected as a test case for further analysis.

2 ArrayExpress: http://www.ebi.ac.uk/arrayexpress
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Model building

Following Eq. 7, for the 28 hox genes, m = 15 correlation matrices have been
calculated. Out of the total amount of 11760 (28 × 28 × 15) correlations, 677
have been determined to be strong enough to be selected (p-value < 0.05).

Subsequently, partial correlations have been calculated, of which the signifi-
cance was tested with p-value < 0.05 as well. Out of the initial 677 correlations,
only 8 had strong enough partial correlations. This means that they suggest
strong direct relations. In Table 1 the 8 selected correlations are listed with the
lowest obtained partial correlation. The selected correlations have been used to
build the final model as shown in Figure 4.

Table 1. Connections in final hox model. The ‘s’ and ‘s+ ℓ’ columns denote the start-
ing points and time-lags of the connections as they are used in Eq. 1. The ‘Acc. no.’
column contains the accession numbers of reporters and the ‘Corr.’ and ‘Part. corr.’
columns contain the values of the standard and partial correlation coefficients respec-
tively. Values have been rounded to 4 decimals for clarity. The last column contains
references to literature showing evidence of found connections.

Selected correlations Lowest partial correlations

s Acc. no. Gene s + ℓ Acc. no. Gene Cor. Acc. no. Gene Part. cor. Evidence

1 U40995 hoxb1b 2 AF071261 hoxc13a -0.9173 AF071258 hoxc11a -0.8706 [15, 16]
1 U40995 hoxb1b 2 BI705747 hoxb8a -0.9177 AF071258 hoxc11a -0.8538 [15, 17–19]
1 AF071264 hoxc4a 3 AF071261 hoxc13a -0.9697 AF071247 hoxa5a -0.9092 [15, 16, 20]
1 AF071245 hoxa3a 3 BI705747 hoxb8a 0.9895 AF071252 hoxb4a 0.9456 [15, 17]
1 AF071241 hoxa13a 4 Y14530 hoxb8a 0.9880 BI705747 hoxb8a 0.9661
2 AF071251 hoxb1a 3 BI705747 hoxb8a -0.9841 AF071264 hoxc4a -0.9121 [15, 17]
2 AF071264 hoxc4a 4 X17267 hoxb6a -0.9972 AF071251 hoxb1a -0.9850 [17]
3 AF071251 hoxb1a 4 AF071258 hoxc11a -0.9908 AF071252 hoxb4a -0.9669 [15, 17]

Result verification

Hox genes are conserved throughout vertebrate evolution and possess a prop-
erty commonly referred to as spatial and temporal co-linearity ([21–23]). This
property is reflected in the names of the different hox genes. Lower numbered
genes, e.g., hoxb1a, are typically expressed earlier and more anterior (closer to
the head) than genes with a higher index, e.g., hoxc11a.

Thus, temporal co-linearity of hox genes already implicitly provides a method
for verification of the model given in Figure 4. The exact origin of the order
of expression of hox genes is still subject of research; moderators, regulation
through other (hox ) genes, might be involved ([24]).

Seven (7) out of the eight (8) relations present in the model do indeed directly
correspond to the co-linearity pattern; the gene in the earlier time-point is lower-
numbered than the gene in the later time-point. One relation, i.e. from hoxa13a

to hoxb8a (cf. Figure 4) is an exception to the co-linearity rule and we have to
reason as to whether this is a false positive result or another explanation clarifies
this outcome.
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hoxb1b

hoxa3a

hoxc11a

hoxb1a

hoxb8a

hoxc4a

hoxb6a

hoxa13a

hoxc13a

10 hpf 12 hpf 14 hpf 16 hpf 18 hpf 20 hpf 22 hpf 24 hpf

No strong relations found

Fig. 4. Correlation model of hox genes. Genes are ordered in such a way to provide
maximum graphical clarity. No strong relations were found between genes in time-
points 18 to 24 hpf.

The forward connections as computed by our method are confirmed by pub-
lished experimental approaches ([15–20], cf. Table 1). Very pronounced examples
from the recent literature are the connections between hoxb1b and hoxb8 and
between hoxa3a and hoxb8a.

5 Discussion

We have elaborated on a methodology for developing correlation models to find
good candidates for gene regulatory networks from microarray time-series data.
In [25], a method is presented for inferring correlation networks using both stan-
dard and partial correlations. The principal difference between their method and
the method presented in this paper is that we do incorporate explicit time-slices.

The principle of operation of our method was illustrated with a time-series
dataset of zebrafish development and the results on this dataset provide insight in
the usefulness of the method. We focussed on the connections between hox genes.
The use of partial correlations helped to eliminate indirect relations from this
subset of genes and thus focus on the more prominent ones over time. One should
realise that indirect relations still might play a role, i.e., other genes/factors
could influence the gene expression. Moreover, the connections found should not
be interpreted as conclusive direct causations or regulations between genes. In
our correlation model a connection indicates that gene expressions show a similar
trend in behaviour over a certain time-span and with a certain time-lag.

Clearly, the more samples available the more distinct the results will be.
Microarray data have some shortcomings that we should realise in the light of
understanding the results. First, the samples used in Linney et al. consisted of
crushed embryos. According to the co-linearity rule, in addition to a temporal
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order, hox genes also have a spatial order of expression. Using whole embryos
complicates the possibility of detecting such arrangements which has an effect
on the relations found by our method. Second, the accuracy with which relations
are detected strongly depends on the sampling over time, i.e., time resolution.
Given the time resolution of the dataset that we explored, consisting of samples
taken with 2 hour intervals, a number of relations between genes might not have
been detected. In considering our results one should also take into account that
gene relation events do not necessarily adhere to given sampling intervals; the
segmentation phase of zebrafish development is particularly profound in terms
of morphological changes and therefore changes in gene expression will also arise
between the time-points ([26]) and not appear distinct in the model building
process.

Models resulting from using our method provide an overview of some of the
more profound connections between genes. These connections are explicitly sit-
uated in time-slices, providing valuable information about their behaviour. The
resulting models can be used for the generation of new research hypotheses, as
well as for a starting point for heuristic approaches to the construction of further
models, such as dynamic Bayesian networks (DBN). Such networks are able to
model more complex relations between genes, which may yield more precise and
complete models. On the other hand, using DBNs will find much more relations
making it more difficult to interpret the results, especially by realising that noise
is an intricate component of microarray data. Using microarrays in the onset of
new experiments, a simple and straightforward outcome will help the researcher
in a better way and this is exactly what we set out to accomplish with our
method.

Spatio-temporal analysis approaches such as Whole Mount ISH ([27, 28])
could complement the information gained using this method. Spatial, rather
than temporal, information about the expression of genes yields information on
co-location in addition to that of co-expression. The unresolved, rather differing,
connection between hoxa13a and hoxb8a could be explained by understanding
that these genes co-localize in distinct domains ([29, 30]), which is something
that can be shown using such co-locational analysis methods. Further research
is therefore directed towards the combination of machine learning approaches on
both spatial and time resolved gene expression patterns.

Our results were confirmed in the literature from analysis of wild types in
zebrafish ([15, 17]) and additional data from explant as well as knock-out exper-
iments in other model systems (e.g., [20, 19]). We have claimed that the dataset
had some limitations; in addition we argue having data, i.e., microarrays, for
more time points would enrich our findings so as to get more confirmation on
the relations found and disclose other more transient relations. At the time of
our experimentation these data were not available, however, the repositories that
are currently being populated with microarrays can provide additional data nec-
essary for such analysis.

We have shown that this method allows hypothesis generation and extraction
of seed networks for computationally more intensive approaches. It makes use
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of multiple correlation matrices which can be calculated independently. As a
consequence, the method allows for easy parallelization.

6 Conclusion

We have presented a method for building correlation networks with explicit time-
slices which uses a novel way to find relations over time. The essential ingredients
are time-lagged, variable interval, correlation coefficients.

The method was tested for genes of the zebrafish hox -family and has pro-
duced good results which are biologically meaningful and in correspondence with
the literature.
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