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ABSTRACT 

Cell-free protein synthesis based on E. coli cell extracts has been described for the first 

time more than fifty years ago. To date, cell-free synthesis is widely used for the 

preparation of toxic proteins, for studies of the translation process and its regulation as well 

as for the incorporation of artificial or labelled amino acids into a polypeptide chain. Many 

efforts have been directed towards establishing cell-free expression as a standard method 

for gene expression, with limited success. In this chapter we will describe the state-of-the-

art of cell-free expression, extract preparation methods and recent examples for successful 

applications of cell-free synthesis of macromolecular complexes.  
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1/ Introduction – Motivation and challenges 

The capacity of cell extracts to synthesize proteins has been shown in the fifties of 

the last century [1, 2], several years before the identification of ribosomes as protein-

synthesizing machines [3]. The cell-free extract was based on the classical S30 fraction 

obtained by a 30,000 x g centrifugation step at 4°C for 1 hour. Initially, endogenous mRNA 

was used for in vitro translation [4]. Subsequently, Nirenberg and Matthaei developed a 

protocol to degrade endogenous messenger RNA present in the cell extract and to add 

exogenous mRNA [5, 6]. The first cell-free protein synthesis (CFPS) from DNA, using a so-

called coupled transcription-translation system was developed in the late sixties by the 

group of Zubay [7]. They used their coupled transcription-translation system to study the 

regulation of gene expression by the E. coli lactose operon. Most cell-free extract 

preparation and in vitro translation protocols are based on this protocol [8, 9]. 

Significant improvements with respect to protein yields were achieved in the late 

eighties, in particular by the group of Spirin, which established the use of phage-specific 

RNA polymerases, SP6 [10] or T7 RNA polymerases [8]. Using these polymerases a high 

level of a specific mRNA during the in vitro transcription-translation reaction can be 

achieved and maintained. Importantly, the Spirin laboratory described the first ‘continuous’ 

in vitro translation system. It allows for a continuous exchange of small molecules between 

a ‘feeding compartment’ providing energy and substrates (amino acids) for the translation 

reaction and a ‘reaction compartment’ from which inhibitory reaction products are removed 

by dialysis [10, 11]. In a continuous set-up, the in vitro translation reaction can continue for 

several hours or even days, compared to 40-60 minutes using the classical reaction set-up. 

This allows obtaining significantly increased yields: for instance 6 mg chloramphenicol 
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acetyl-transferase protein per milliliter of in vitro translation reaction were synthesized in 21 

h [12].  

With these advancements, cell-free translation became a very interesting technology 

for protein production in structural biology. In particular the RIKEN Structural 

Genomics/Proteomics Initiative (RSGI) in Japan invested into the automation of cell-free 

protein synthesis and high-throughput screening of protein products with the aim to obtain 

high yields of isotope-labelled proteins for NMR studies [13-15]. Notably, specific 15N and 

13C labeling for any amino acid is trivial as soon as the protein is expressed in vitro. 

Accordingly, numerous NMR structures have been solved using this approach [16-18]. 

CFPS also led to several X-ray structures [15, 19]. 

Notably, CFPS allows to rapidly and economically screen a number of different 

proteins or protein variants (mutants, truncations etc.) when these are required only in 

small quantities. Classical sub-cloning of constructs into plasmids is not required since the 

in vitro transcription/translation reaction can be started from PCR products [20] which 

significantly improves the screening capacities, a high-throughput set-up and automation.  

Cell-free expression remains a powerful approach for the production of toxic and 

insoluble proteins, for instance membrane proteins. The group of F. Bernhard significantly 

improved in vitro translation protocols to be able to produce membrane proteins in the 

presence of detergents or of lipids (for review [21]). Subsequent crystallization attempts, for 

instance of G-protein coupled receptors, remained mostly unsuccessful. To date, three 

membrane proteins which were produced by in vitro translation have been crystallized: 

VDAC, diacylglycerol kinase and EmrE [22-24]. In the case of EmrE, cell-free synthesis 
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was used to generate a seleno-methionine derivative in order to phase already existing 

crystallographic data.  

Cell-free expression has thus several very attractive applications, related to the 

expression of toxic proteins, rapid production of small quantities of proteins for screening 

and protein engineering purposes as well as for the incorporation of unnatural amino acids 

in structural and synthetic biology. In this chapter, we describe the different in vitro 

translation reaction set-ups used in the field, and we present successful applications 

applied to the study of large macromolecular complexes. 

 

2/ Basic of E. coli translation – transcription  

2.1/ The classical S30-based cell-free expression system 

The most common method for cell-free expression is using E. coli S30 extract [7]. 

This classical cell-free expression system has been only slightly modified since the first 

description of the protocol by Nirenberg [5]. The S30 extract is composed of a soluble 

fraction which is obtained after lysis of E. coli cells and centrifugation of the lysate at 30,000 

x g. Thus, this extract contains all the cytosolic enzymes required for transcription and 

translation. However, without further treatment, the extract contains endogenous mRNAs 

which will also be translated, leading to unwanted side products. Nirenberg and Matthaei 

established a protocol to remove endogenous mRNAs without destabilizing the ribosomal 

RNAs [6]: After centrifugation, the lysate is treated with high-salt concentrations resulting in 

the release of mRNAs from the ribosomes. The endogenous mRNAs is then degraded by 

the RNases present in the cell extract (e.g. by incubation for 1 h at 25°C). For the cell-free 

transcription/translation reaction, the S30 extract needs to be supplemented with the 20 
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amino acids, the E. coli tRNAs, nucleotides (ATP, GTP, CTP and UTP) required as energy 

sources as well as building blocks for the RNA synthesis, as well as an energy-

regenerating system composed of phosphoenol pyruvate and pyruvate kinase, and the T7 

RNA polymerase for efficient in vitro transcription [9]. Alternative energy regeneration 

systems have been reported such as acetyl kinase and acetyl phosphate or creatine 

phosphate and creatine kinase [12, 25]. 

The template used in the classical cell-free expression system can be either plasmid 

DNA, linear DNA (PCR products) or mRNA. Usually, in vitro translated proteins are tagged 

for subsequent affinity purification directly from the cell-free expression reaction. In addition 

to the basic components, co-factors or regulatory proteins which are not present or under-

represented in the E. coli S30 extract can be added for the production of specific proteins. 

For instance, Yang and Zubay showed that the araC protein which is required for gene 

expression of the ara operon was lost during the S30 extract preparation, thus inhibiting the 

expression of proteins from the ara operon [26]. The addition of chaperones such as 

Trigger Factor, DnaK, DnaJ, GrpE, GroEL/GroES and protein disulfide isomerase often 

increases the amount of soluble proteins and helps folding of disulfide-containing proteins 

(e.g. immunoglobulin domains, see applications) [27]. In conclusion, the composition of the 

classical cell-free expression system can be optimized and tailored according to the 

specific requirements of the expressed protein.  

The yields (between few micrograms up to several milligrams per milliliter reaction) 

are dependent on the expressed protein, its mRNA stability, the composition of the cell-free 

reaction mixture and on the experimental set-up. For cell-free expression, two 

configurations can be used. The first configuration, which is easier to implement, is the 
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batch method. The bottleneck of this set-up is the yield which is quite low due to the 

consumption of energy and amino acids as well as due to the accumulation of by-products 

which have an inhibitory effect on the in vitro transcription/translation reaction. As a 

consequence, using the batch method protein is produced mostly during the first 60 

minutes of in vitro translation, thus limiting the yield.  

The second configuration was developed to overcome this problem: the continuous 

exchange cell-free (CECF) system [11] (Figure 1). This system is divided in two 

compartments that can exchange low molecular weight compounds through a dialysis 

membrane. The reaction compartment contains all the high molecular weight species 

required for the reaction such as the cell extract, the enzymes and the nucleic acids as well 

as the low molecular weight substrates required for the reaction. The feeding compartment 

contains only the low molecular weight compounds i.e. the NTPs, substrates of the energy 

regeneration system and the amino acids. Usually, the feeding compartment is more than 

ten-times larger than the reaction compartment. Consequently, during the cell-free 

expression reaction, which is subjected to mixing or shaking, the by-products are dialyzed 

from the reaction mixture into the feeding compartment. At the same time, the NTPs, 

energy substrates and amino acids in the reaction mixture are constantly replenished in the 

reaction compartment. Using this technique, the cell-free expression reaction can be 

maintained for tens of hours yielding to more than 10 milligrams of protein per milliliter of 

reaction [28].  
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2.2/ the PURE cell-free expression system 

The PURE (Protein synthesis Using Recombinant Elements) system has been 

developed with the idea to use only purified components of the transcription and translation 

machinery for in vitro synthesis [29]. To this end, initiation, elongation and termination 

factors as well as the 20 aminoacyl-tRNA synthetases, the methyl-tRNA transformylase 

and the T7 RNA polymerase were expressed as recombinant proteins with a hexa-

histidine-tag and affinity purified. In total 31 proteins are added to reconstitute the in vitro 

transcription/translation reaction. The ribosomal subunits were purified from E. coli cells 

and added to the translation reaction. The resulting PURE system can produce about 100 

µg of model proteins per ml reaction in one hour (GFP and DHFR). In addition, the PURE 

system contains 46 tRNAs, NTPs, creatine phosphate, 10-formyl-5,6,7,8-tetrahydrofolic 

acid, 20 amino acids, creatine kinase, myokinase, nucleoside-diphosphate kinase and 

pyrophosphatase. Chaperones, heat shock proteins and other factors can be added to the 

reaction mixture to keep proteins soluble and assist in protein folding.  

The use of histidine-tagged translation components offers the possibility to produce 

the protein of interest without any tag for affinity purification. The newly synthesized protein 

can still be easily purified in two steps: ultrafiltration to remove the ribosomes and a Ni-NTA 

affinity chromatography step to remove the recombinant, his-tagged translation factors. 

Importantly, RNases and Proteases are not present in the PURE system. Thus, mRNA of 

limited stability can still be a template for translation, and proteins which are rapidly 

degraded in vivo can be produced in vitro.  

The PURE system allows the efficient production of proteins with artificial amino 

acids. To this end, release factor 1 is omitted from the reaction and a chemically 
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synthesized mis-acylated amino-acyl-tRNA specific for UGA (amber stop codon) is added. 

This is particularly useful to incorporate fluorescent dyes or specific cross-linkers in the 

proteins for instance with the aim to analyze protein-protein interactions. Recent 

improvements of the system aimed at the in vitro synthesis of membrane proteins in the 

presence of lipids. In summary, the PURE system is highly versatile. It can be modified as 

specific proteins and other factors can be omitted or added to the reaction according to the 

needs of the proteins to be produced. 

 

3/ Considerations for cell-free protein synthesis e xperiments and challenges to 

produce protein complexes 

As outlined above, two major approaches exist for cell-free protein expression using 

the E. coli transcription/translation machinery. The S30 cell extract-based and PURE cell-

free systems differ significantly by the degree of purification of the components used. The 

PURE system has the advantage of being protease- and nuclease-free compared to the S-

30 cell extract where all cytosolic components are present in the extract. Thus, linear 

nucleic acids (PCR products and mRNAs) are more stable in the PURE reaction system. 

Also, proteolytic cleavage of the synthesized protein can be avoided using the PURE 

system. An additional advantage of the PURE system is the absence of ATP-consuming 

proteins, which are responsible for the rapid energy depletion in the S-30-based system 

[29]. However, because the PURE system is based on purified components, it is 

conceivable that some important cofactors or chaperones are missing in this purified 

system, leading to inefficient folding of the protein. Addition of Trigger Factor, DnaJ, DnaK 
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and GrpE as well as GroEL/GroES may help to improve the yield of soluble, functional 

protein [30].  

The cell extract-based system has the advantage that it is possible to produce the 

cell extract in large amounts in a standard molecular biology laboratory in a relatively short 

time (two to three days for cell extract production and testing). This can be cost-saving, and 

it allows for upscaling of the in vitro translation reaction. The disadvantage of such cell-

extract preparations is that batch-dependent differences in translation activity need to be 

taken into account. This limits the reproducibility of the method. 

The expression of multi-protein complexes is challenging in vitro and in vivo. The 

correct stoichiometry is difficult to achieve, and the least expressed protein subunit of the 

complex determines the overall yield of complex. The cell-free systems can be used to 

express protein complexes: Several DNA templates encoding the protein subunits of the 

complex can be added simultaneously to the cell-free reaction. In this context, the main 

advantage of the cell-free expression system compared to the cell-based system is the 

possibility to precisely adjust the expression of the different subunits of the complex by 

optimizing the amounts and the ratio of the DNA templates added to the translation 

reaction. Initial small-scale trials are usually used to optimize the production of the protein 

subunits in order to achieve stoichiometric expression and homogenous complex formation. 

In contrast to a cell-based expression in which the different subunits are mostly expressed 

at the same time, cell-free expression systems allows the sequential addition of DNA 

templates to the reaction mixture. Moreover, chaperones and additives can be added to the 

reaction mixture for the efficient integration of the subunits in the complex.  
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E. coli membrane proteins are mostly dependent on the presence of the conserved 

Sec translocation machinery for their proper integration into the membrane bilayer [31]. 

Traditionally, microsomal membranes from dog pancreas treated with high salt and partial 

trypsin digestion were added to the in vitro translation reaction to achieve co-translational 

protein translocation [32]. E. coli inverted membrane vesicles and proteoliposomes 

reconstituted from components of the translocation machinery also have been successfully 

used for protein translocation and secretion [33, 34]. However, the specific requirements of 

membrane proteins for efficient translocation and folding are still poorly understood. Cell-

free systems are commonly used to study the process of co-translational membrane protein 

insertion and folding which is rather inefficient [33]. The presence of membrane protein 

chaperones and additional translocation factors may be crucial. For instance, the subunit c 

of the F1F0-ATPase has been shown to be dependent on the function of YidC, which is an 

insertase, integrating small membrane proteins into the membrane of E. coli [35]. In part 

4.2, we describe the application of cell-free expression systems for membrane protein 

synthesis and their integration into a lipid bilayer or detergent micelles.  

 

4/ Applications 

4.1/ Ribosome-nascent chain complexes  

One important application of cell-free synthesis relates to the preparation of 

ribosome-nascent chain complexes (RNCs) for structural and functional studies as well as 

for synthetic biology applications including protein engineering, selection and evolution. To 

this end, mRNA-ribosome-nascent polypeptide complexes are produced which are stalled 

in a specific translational state. For this application, cell extract is required containing high 



12 

 

concentrations of active ribosomes. The aim is not high yields of newly synthesized protein, 

but every ribosome is supposed to translate a mRNA template once and then get stalled 

before translation termination. For RNC production, the in vitro transcription and translation 

reaction are often uncoupled [36]. In a first step, the mRNA template is generated by in 

vitro transcription, using T7 RNA polymerase for instance. The mRNA is subsequently 

purified by LiCl precipitation followed by ethanol precipitation and added to the in vitro 

translation reaction. The purified mRNA is then added to the in vitro translation reaction. 

The translation reaction can be stopped by addition of high concentrations of magnesium, 

chloramphenicol or other antibiotics. Alternatively, stalling motifs like SecM or TnaC, or 

mRNA templates without a stop codon are used to arrest translation. To stabilize the RNCs 

in the in vitro translation reaction mix, it is recommended to add oligonucleotides that inhibit 

the transfer-messenger-RNA complex of E. coli which recognizes ribosomes stalled during 

protein translation [37]. Subsequently, RNCs can be purified by traditional sucrose gradient 

centrifugation, or affinity purification via the nascent polypeptide which contains a specific 

purification tag or an epitope recognized by an antibody [36]. 

Homogenous RNCs stalled in a specific translational state and complexes with 

translation factors or factors in co-translational events are mostly studied by single-particle 

electron cryo-microscopy (cryo-EM). Thanks to recent advances in single-particle cryo-EM 

it is now possible to reach near-atomic resolution. For instance, a translating ribosome 

stalled with a TnaC-motif acting L-tryptophan sensor was recently reported at 3.8 Å 

resolution [38]. Stalling motifs like TnaC and SecM are short peptide sequences that 

interact with the ribosomal tunnel during translation and induce a conformation in the 

peptidyl transferase center of the large ribosomal subunits that inhibits further elongation of 
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the nascent polypeptide chain. The ribosome is thus trapped in a specific conformation and 

displays a nascent polypeptide of defined length. The stalling peptide is hidden in the 

ribosomal tunnel while the N-terminal part of the nascent chain can exit from the ribosomal 

tunnel (Figure 2). At the exit of the ribosomal tunnel the nascent chain can fold into a 

functional protein or bind diverse protein factors involved in co-translational folding, 

targeting and translocation.  

Such factors can be directly added to the cell-free expression system. This was the 

case with the trigger factor (TF), for instance, which is the first chaperone interacting with 

the newly synthesized polypeptide exiting the ribosome tunnel [39]. Structure determination 

of the RNC-TF complex suggested that the co-translational folding of the nascent chain 

was favored by a protected environment formed by TF and the ribosome (Figure 3). Using 

a similar approach, several ribosomal complexes have been solved by cryo-EM providing 

important insights into the molecular mechanism of co-translational targeting and 

translocation [31]. For these studies a DNA sequence encoding the N-terminal part 

including the signal-anchor sequence of the E. coli membrane protein FtsQ was used to 

produce RNCs. Subsequently, ribosomal complexes were reconstituted for cryo-EM studies 

by adding purified signal recognition particle (SRP) [40] or SRP-SRP receptor complexes 

[41] to the RNCs (Figure 3).  

Structural insights into the mechanism of signal sequence surveillance during protein 

targeting was obtained by using a DNA sequence for the E. coli autotransporter EspP for 

RNC generation [42]. EspP is not targeted by SRP to the membrane, but its signal 

sequence can be bound by SRP. The cryo-EM structure the RNC-SRP-SRP receptor 

complexes with the EspP nascent chain revealed how RNCs can be rejected from the SRP 
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targeting pathway [42] (Figure 3). Importantly, these RNCs were crucial to elucidate the 

conformational states of SRP and its receptor during co-translational targeting by 

Fluorescence Resonance Energy Transfer (FRET) [43]. These studies revealed that the 

targeting reaction is tightly controlled in space and time by the ribosome, the translocation 

machinery and through GTP hydrolysis. 

RNC displaying a signal-anchor sequence have also been successfully used to 

reconstitute complexes with the E. coli protein-conducting channel SecYEG and to solve 

the structure by cryo-EM [44] (Figure 3). Similarly, RNCs that translate the subunit c of the 

ATP synthase allowed to reconstitute complexes with the E. coli YidC translocase for cryo-

EM [45] and biochemical characterization of the complex using cross-linking agents [35]. In 

summary, homogenous RNCs are a prerequisite for structural studies. To date, cell-free 

translation followed by RNC purification and reconstitution of complexes is the method of 

choice for cryo-EM studies of ribosomal complexes in translation initiation, elongation, 

termination, recycling and many other ribosomal complexes.  

Notably, RNCs are also successfully used to study co-translational folding, targeting 

and translocation [46]. The dynamic folding of the nascent chain can be studied by FRET 

and NMR [47, 48]. For NMR, two advantages of the cell-free translation system can be 

exploited: The specific isotope-labelling of the nascent polypeptide during cell-free 

synthesis while the ribosome is not labelled, as well as the arrest of the translation reaction 

to produce nascent chains of different lengths. Moreover, the impact of Trigger Factor and 

other chaperones on the folding of the nascent chain can be studied with NMR [49]. 

In vitro selection and evolution using ribosome-nascent chai n complexes. 

RNCs provide a link between genotype (mRNA) and phenotype (protein) and thus can be 
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used for in vitro peptide and protein selection experiments. Display techniques such as 

ribosome display [20] and mRNA-protein fusions [50] allow to select for antibody single-

chain Fv fragments, scFvs (and other proteins) that interact with a molecule of interest. The 

starting library can encode up to 3•1011 different proteins which corresponds to a 

significantly larger library size compared to typical library sizes used for phage display 

selections (~107-108). Thus, the sequence space explored by in vitro selection is much 

larger compared to selection methods that involve a transformation or transfection step into 

a host cell. In ribosome display (Figure 4), a DNA library is first transcribed using the T7 

RNA polymerase and then translated in vitro. The mRNA sequences encoding the protein 

library do not contain a stop codon, but possess a long linker sequence which encodes for 

a C-terminal spacer peptide that spans the ribosomal exit tunnel. Therefore, the protein part 

is displayed outside of the ribosomal tunnel and can fold. The RNCs are then mixed with 

the protein of interest containing an affinity tag and the ribosomal complexes binding to it 

are therefore co-purified during the subsequent affinity purification. High Mg2+ concentration 

and low temperature allows preserving the ribosomal complexes such that the mRNA 

remains bound. After affinity purification, EDTA addition leads to disassembly of the RNCs 

and the release of the mRNAs. These mRNAs for selected binders and their sequences 

can be recovered and amplified by RT-PCR. The T7 promoter sequence is reintroduced 

during the PCR amplification step (Figure 4).  

The PCR product can then be used for further ribosome display cycles in order to 

enrich the best binders. Due to PCR errors the protein sequences can evolve in vitro during 

the selection experiment, and finally proteins with significantly improved affinity are 

selected which were not encoded by the original library pool [51]. Using PCR mutagenesis 
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protocols, this can of course be exploited for in vitro evolution of proteins towards higher 

affinity, stability or in case of enzymes improved / altered substrate specificity. For these 

experiments, it is very important that at each step the diversity of the library is maintained: 

ideally, each member of the library is present in the experiment in several copies. 

The concept of mRNA-protein fusions [50] is very similar to ribosome display. The 

major difference between the two methods is that a DNA spacer with a 3’ puromycin is 

fused to the mRNA encoding the protein library. During the in vitro translation reaction, the 

puromycin can enter the ribosome peptidyl transferase center, and subsequently the 

nascent polypeptide is transferred to puromycin. Thus, a covalent link is generated 

between the encoding mRNA and the protein allowing for harsher screening conditions 

compared to ribosome display where the intactness of the RNCs is crucial. 

The ribosome display approach has been successfully used for the generation of 

high-affinity and highly specific scFvs [51, 52]. More recently, target proteins of bioactive 

small molecules (drugs) were selected by ribosome display from a library encoding full-

length human proteins [53]. Ribosome display was very successfully applied to screen for 

Designed Ankyrin Repeat Proteins (DARPins), which are designed based on small, 

concave-shaped, alpha-helical protein domains typically involved in protein-protein 

interactions in vivo. The generation of DARPin libraries allows the selection of specific 

binders to virtually any protein of interest with up to low picomolar affinity. The stability of 

the core scaffold of DARPins leads to high-level expression and robust folding in ribosome 

display experiments. Indeed, issues exist with displaying scFvs because of their low folding 

efficiency. This is partially due to the disulfide bond that needs to be formed in the two 

immuno-globulin (Ig) domains. Cell-free transcription-translation is routinely performed 
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under reducing conditions, while Ig domains require an oxidative environment for their 

folding. In ribosome display, this has been addressed by omitting reducing agents (DTT, 

Dithiothreitol) from the translation reaction and the addition of protein disulfide isomerase 

(PDI) for improved folding.  

Antibody discovery and engineering is of high pharmaceutical interest. Accordingly, 

many groups developed cell-free expression-based tools to generate antibodies as 

diagnostics and drugs. For instance the use of the PURE system has several advantages 

[54] because of its low nuclease and protease activities as well as the absence of the 

tmRNA complex increase the stability of the RNCs and allow for screening even larger 

libraries. The composition of the PURE reaction can be adjusted, release factors are 

omitted from the reaction, PDI and oxidized glutathione are added leading to proper folding 

of antibody fragments. A different construct design now also allows to screen libraries of 

Fabs (Fragment antigen-binding) which are usually more stable than scFvs [54]. 

 

4.2/ Cell-free membrane protein expression 

Membrane proteins represent about one third of the proteome of a cell. However, 

their study is often hampered by the lack of a suitable expression system. High-level 

overexpression of membrane proteins is frequently toxic for the cell. Moreover, the copy 

number of proteins is limited by the translocation and folding machinery as well as the 

space which is offered by the membrane bilayer of the host. Cell-free expression of 

membrane proteins allows overcoming several of these difficulties as it can be adapted to 

the expression of hydrophobic proteins.  
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Different possibilities exist to express membrane proteins in a cell-free expression 

system. First, it is possible to refold the precipitate which is formed during the cell-free 

expression of a membrane protein. This is achieved by solubilization of the aggregated 

proteins with detergent for few hours under gentle agitation (precipitation-forming cell-free, 

P-CF) (Figure 5). Not all detergents are suitable for the refolding step but 

dodecylymaltoside (DDM), dodecylphosphocholine and lyso-phosphoglycerol derivatives 

(LMPG, LPPG) have been shown to successfully solubilize precipitates [55]. This approach 

has been successfully applied to the production of EmrE, a multidrug transporter [55, 56], 

and to the human histamine-1 receptor [57]. Second, the addition of detergent directly to 

the cell-free reaction keeps the nascent membrane proteins in solution (detergent-based 

cell-free, D-CF) (Figure 5). Like in the P-CF approach, not all the detergents can be used in 

the detergent-based cell-free expression system. Detergents with a high critical micellar 

concentration (CMC) such as CHAPS have a tendency to destabilize the translation 

machinery. In contrast, mild detergents like DDM and digitonin are efficient for D-CF 

expression of EmrE [58]. Other surfactants which are traditionally not used for membrane 

solubilization because of their low efficiency to solubilize lipid bilayers have been shown to 

be particularly useful to stabilize membrane protein during the D-CF: MscL, the 

mechanosensitive channel is efficiently expressed as soluble protein in the presence of 

amphipols [59]. Compared to the cellular expression and the P-CF, the D-CF expression 

offers several advantages: (i) it avoids the formation of aggregates; (ii) it avoids the 

membrane integration step which is limited by the targeting and translocation efficiency, 

thus improving the production of the protein; (iii) the detergent-solubilized membrane 

protein can be used immediately. A third approach is based on the addition of lipids to the 
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reaction mixture (lipid-based cell-free). Here, the classical cell-free reaction is 

supplemented with a preformed lipid bilayer (Figure 5). This membrane-like environment 

can be either liposomes, bicelles or nanodiscs. While the membrane protein is synthesized 

at the ribosomes, the transmembrane segments are thought to spontaneously insert into 

the lipid bilayer offered by those lipidic environments. The main advantage of this technique 

is that the membrane protein will be produced in a “native-like” environment which is 

necessary to obtain a functional protein. Not only single membrane proteins can be 

prepared following these protocols. Likewise, several membrane protein complexes have 

been generated using these methods. For instance, the F1F0-ATP synthase complex has 

been produced using the three techniques, P-CF, D-CF and L-CF [60]. Importantly, the 

complexes produced by the three cell-free expression protocols were similar to the in vivo 

complex in terms of enzymatic activity and structural properties. Using the L-CF approach, 

the SecYEG complex was produced in vitro [61]. Preformed liposomes were added to the 

reaction mixture and during translation, the SecYEG complex spontaneously inserted into 

the liposomes bilayer. The SecYEG translocon produced this way was functionally active in 

the translocation of other membrane proteins. 

Taken together, CFPS has been proven to be a very useful approach to overcome 

common problems faced with the traditional cellular expression system of membrane 

proteins. 

 

4.3/ Synthetic biology 

Synthetic biology is a rapidly expanding field which is currently actively researched. 

The idea to engineer biology in order to develop new biotechnological tools is indeed very 
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attractive. Cell-free synthesis can be used to reproduce cellular pathways ex-vivo. On the 

one hand, the PURE system can allow deciphering the components required to realize a 

specific biological process. On the other hand, the classical cell-free extract can be the 

basis for the comprehensive synthesis and assembly of cellular macromolecules towards 

the development of a synthetic cell. 

Bottom-up approach. Using the PURE system, it was possible to reconstitute 

bacterial transcription initiation from five different plasmids [62]. The α, β, β’ and ω subunits 

of the E. coli RNA polymerase as well as a σ factor (σ32 or σ70) were co-expressed by the 

PURE machinery using T7 promoter. In this study, the expression and correct assembly of 

the RNA polymerase and the σ-factor-dependent transcription initiation was confirmed by 

production of luciferase from a linear DNA template under the control of an E. coli promoter 

[62]. It was found that the ω subunit is dispensable for transcription initiation. It is now 

possible to assess the activity of point mutants of the different subunits of the E. coli RNA 

polymerase. This work could not be performed in bacteria since the expressed variants are 

likely toxic to the cell. The work also paves the way to study the assembly and the function 

of other bacterial RNA polymerases for which we have little knowledge.  

More recently, the co-expression of 13 genes building-up a replication machinery 

was reported [63]. Step-by-step the authors produced a functional Pol III HE, which is 

composed of nine different proteins and forms an assembly of 17 subunits. Together with 

the primase DnaG, it was possible to replicate the G4 phage ssDNA. Using this remarkable 

system, it was demonstrated that all genes but dnaQ, a proofreading exonuclease, are 

required for replication activity. The initiation machinery consisting of DnaA possessing the 

initiator activity, DnaB helicase and DnaC, the helicase loader was also produced in the 
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PURE system [63]. It was demonstrated that these three proteins are essential and 

sufficient for initiation of replication. The authors were also able to reconstitute replication 

activity using a mixture of proteins / complexes produced in different tubes. It was possible 

to detect ssDNA replication using 13 genes (Pol III HE genes and dnaA, dnaB, dnaC and 

dnaG) when the PURE synthesis reaction was performed in a single tube. Moreover, the 

dsDNA produced by the neo-synthesized replication machinery possesses a biological 

activity as shown in a phage-plaque forming assay. Finally, a synthetic gene circuit using 

GFP as reporter showed the possibility to produce the complete and functional replication 

machinery producing a dsDNA containing GFP under the control of the T7 promoter, the 

only polymerase present in the PURE system. The final production of GFP confirmed the in 

vitro central dogma in a single tube [63]. 

Cell-like systems. A completely different strategy has been pursued for the 

development of a cell-free expression toolbox for synthetic biology [64]. A very simple 

approach based on bead-beater cell breaking was developed to prepare a reproducible, 

highly active S30 extract. High expression levels of eGFP were obtained under the control 

of the sigma factor 70, and therefore endogenous RNA polymerase was used for 

transcription [64]. The aim is to set-up a close to native E. coli system to test synthetic gene 

circuits and to develop an artificial cell. This system enabled the assembly of the bacterial 

actin MreB on membranes after cell-free transcription/translation inside large liposomes 

[65]. Furthermore, it was shown that the presence of MreC is required to obtain filamentous 

structures (Figure 6a,b). An organized cytoskeleton-like structure could thus be obtained 

inside liposome vesicles by using cell-free expression system producing MreB and MreC.  
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Large vesicles of more than 10 µm encapsulating the extract were formed using 

dispersion of small droplets in an oil phase as a first step [66]. Expression of α-hemolysin 

lasting for more than 4 days was achieved in this system by exchange of small, up to 3 kDa 

molecules across the membrane bilayer leading to a continuous supply of substrates for 

the transcription and translation reactions. This system is therefore the first step towards a 

bioreactor encapsulated inside a lipid vesicle and able to express proteins for more than 4 

days. A step forward was achieved by the expression of the whole T7 bacteriophage 

genome, containing about 60 genes encoded by 40 kbp DNA. The complete proteome was 

synthesized using an E. coli cell-free transcription-translation system. Billions of T7 

bacteriophages, assembled spontaneously into well-shaped particles (Figure 6c,d), are 

produced per milliliter of batch reaction. Importantly, these in vitro assembled phages are 

as infectious as in vivo synthesized ones [67].  

This approach opens up the possibility to directly and rapidly assess genetic circuits 

and the effects of promoter strength or different substrate concentrations, to help 

understanding bacterial cell metabolism. Very recently, two-dimensional DNA 

compartments in silicon were generated [68]. In these compartments protein expression 

cycles can be auto-regulated using interconnected compartments containing different sets 

of DNA. This approach aims to study biological networks and communication between 

cells.  

Expansion of the genetic code. A clear advantage of the cell-free expression is the 

possibility to efficiently and specifically synthesize proteins with non-natural amino acids. It 

is possible to replace a certain amino acid by a non-natural analogue provided that the 

corresponding amino acyl t-RNA synthase (aaRS) recognizes the unnatural amino acid. 
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This can be easily achieved for seleno-methionine which is used in crystallography to solve 

the phase problem [69] and to structurally similar analogues of proline, tyrosine, 

phenylalanine, leucine and valine (reviewed in [70]). To further expand the repertoire of 

amino acids, stop codon suppressor-tRNAs recognizing the amber stop codon were 

chemically acylated with artificial amino acids were employed [71]. The advantage of this 

approach is that the incorporation of the artificial amino acid is site specific. Similarly, pairs 

of specific tRNAs - recognizing the amber stop codon or even a 4-base codon - and 

engineered aaRSs were evolved to incorporate the artificial amino acid at a specific site of 

the protein. Several tRNA/aaRS pairs are required to incorporate two or more unnatural 

amino acids in one protein for protein folding studies using FRET (e.g. [72]). This 

represents a very powerful approach for investigation of protein structure, function and 

dynamics. To improve the efficiency of stop codon suppression, release factor RF1 can be 

omitted from the cell-free translation reaction to improve stop codon suppression. For 

improved 4-base codon tRNA recognition, ‘orthogonal’ ribosomes have been engineered 

[73]. Similarly, an engineered elongation factor EF-Tu exhibiting improved affinity for 

incorporation of phosphoserine was reported.  

The application possibilities of such unnatural proteins are manifold: ranging from 

protein folding and protein-protein interaction studies using amino acids with fluorescent 

dyes or photo-activatable crosslinkers, to production of protein conjugates with small 

molecules or synthetic polymers for protein therapeutics. Of particular interest are 

antibody–drug conjugates and polyethylene glycol-growth factor conjugates with improved 

bio-kinetics [74]. 
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5/ Limitations 

In the case of large scale expression for structural studies, the main limitation of E 

coli cell free extract resides in the cost of the chemicals that have to be added to the 

system. Furthermore, the use of bacterial extracts leads to the production of proteins 

without any post-translational modifications, which are sometimes crucial for proper folding 

and function of eukaryotic proteins. E. coli cell-free expression is therefore most successful 

for expression of bacterial proteins. Eukaryotic cell-free expressions are often rather 

inefficient, resulting in low protein yields – this is most likely due to the lack of translation 

factors in the cell extracts. Moreover, eukaryotic cell-free expression systems are more 

labor-intense, requiring capped and polyadenylated mRNA for in vitro efficient translation.  

For expression of protein complexes, cell-free expression is limited to bacterial or 

phage protein complex expression, notably because of the limited protein size that can be 

expressed in E. coli per se (proteins larger than 100 kDa are difficult to produce in E. coli). 

This also applies when the transcription-translation machinery is “purified”. In general, the 

ribosomal machinery tends to be less efficient as soon as it is extracted from the cell and 

even more in the case of the PURE system in which it has been shown that the ribosomes 

are ten-times slower than the ones in the cell, incorporating only two amino acids per 

second [62]. Furthermore, the different enzymes including the ribosomes become less 

active over time outside of the cell. Due to this limited efficiency, cell-free protein 

expression did not become a general method for protein production.  
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6/ Outlook   

As highlighted in this review, cell-free expression is particularly suited for specific 

structural biology applications, in vitro protein screening, selection and evolution as well as 

for synthetic biology. One main advantage is the possibility of specific protein labelling, for 

instance, in NMR and the possibility to incorporate unnatural amino acids at specific sites of 

the protein. Here, we provide several examples that apply cell-free expression to produce 

large assemblies including phages. In these cases, the cell-free systems are used for 

production of small quantities for analytical purposes and functional studies, rather than 

large scale protein production.  

Cell-free translation is routinely used to study the translation process itself. Recent 

advances in single molecule techniques may even allow following co-translational 

processes such as protein folding during active protein synthesis; rather than using stalled 

RNCs.  

For structural biology, cell-free production of complexes comes to the fore when 

ribosomal complexes are studied. To date, cell-free extracts from eukaryotic species such 

as yeast, wheat germ, insect cells, rabbit reticulocytes and HeLa cells are constantly 

improved for protein production. A reconstituted system has been reported for the study the 

mechanisms of mammalian protein synthesis [75]. With these cell-free systems, specific 

eukaryotic RNC complexes can be generated in vitro and structurally and functionally 

characterized to understand the complex function of the eukaryotic translation machinery.  
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Figure Legends 

Figure 1: Scheme of the continuous exchange cell-fr ee (CECF) system 

Two compartments exist separated by a dialysis membrane: The reaction compartment 

contains the cell extract with the translation machinery, the template (DNA), the RNA 

polymerase and the low molecular weight substrates required for in vitro transcription and 

translation. The feeding chamber contains NTPs, substrates of the energy regeneration 

system and the amino acids in the same reaction buffer as used in the reaction chamber. 

The feeding chamber is usually more than 10–times larger than the reaction chamber. 

During protein synthesis, inhibitory side products of the transcription/translation reaction 

can diffuse into the feeding chamber and thus are diluted. Substrates are consumed during 

the reaction and are restocked from the feeding compartment.  

Figure 2: In vitro preparation of ribosome-nascent chain complexes. 

The DNA template used encodes a promoter (T7 if T7 RNA polymerase is used for in vitro 

transcription), a Shine Dalgarno sequence (ribosome binding site), an N-terminal triple TAG 

(Strep3-tag) followed by the sequence encoding the gene of interest. At the 3’ end the gene 

encoding the protein of interest is fused in frame to a sequence encoding the translation 

arrest motif of SecM. During in vitro translation, the protein synthesis is not terminated at a 

stop codon. It is stalled due to the presence of the SecM arrest motif. This results in stable 

ternary complexes consisting of mRNA, ribosome and nascent polypeptide. The RNCs be 

purified via sucrose gradient centrifugation and via the N-terminal tag of the nascent 

polypeptide by affinity chromatography. Finally, RNCs and binding factors are reconstituted 

and analysed, for instance by single particle cryo-EM. 
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Figure 3: Cryo-EM reconstructions of E. coli ribosomal complexes in  co-translational 

folding, targeting and translocation.  

Homogeneous RNC preparations are used to reconstitute complexes with ribosome 

binding partners. These complexes allowed visualizing how trigger factor binds to the large 

ribosomal subunit (50S) and arches over the exit of the ribosomal tunnel (a). Together, the 

ribosome and trigger factor provide a protected folding space for the ribosome [39]. (b) The 

signal recognition particle (SRP) binds next to the exit of ribosomal tunnel and adopts an 

elongated conformation stabilized by interactions with 50S [40]. (c) SRP receptor binding 

leads to formation of an early complex which adopts a V-shape [42]. (d) After successful 

handover of the translating ribosome, the SecYEG complex binds tightly to the exit of the 

ribosomal tunnel. The translocation channel is aligned with the ribosomal tunnel such that 

an almost continuous channel from the PTC into the periplasm is formed for the nascent 

chain [44]. The scheme also visualizes the increasing resolution that can be achieved by 

single particle cryo-EM due to significant improvements in the microscope, detectors and 

image processing.  

Figure 4: In vitro selection and evolution of protein by ribosome dis play 

A DNA library is transcribed and then translated in vitro. The mRNA sequences lack a stop 

codon and encode a linker sequence for a C-terminal peptide that spans the ribosomal exit 

tunnel. Therefore, the proteins encoded by the library can fold. Subsequently, RNCs are 

then mixed with the immobilized target protein of interest. The RNCs interacting with the 

target protein are co-purified, while the others are washed away during the subsequent 

affinity purification. EDTA addition leads to dissociation of the RNCs and release of their 

mRNAs which can be recovered and amplified by RT-PCR. The T7 promoter sequence is 



34 

 

reintroduced during the PCR amplification step. The resulting PCR products are subjected 

to further ribosome display cycles in order to enrich the best binders.  

Figure 5: Cell-free synthesis of membrane proteins.  

Three strategies are used to produce membrane proteins in vitro: in a conventional cell-free 

translation reaction the membrane protein precipitates (left) . Subsequently, the aggregated 

protein is solubilized with detergent, in the presence of which it can fold into its correct 

structure. Several mild detergents can be added directly to the translation reaction without 

interfering with translation (middle) , thus preventing the aggregation of the hydrophobic 

membrane protein. In the presence of membranes, some membrane proteins can 

spontaneously insert into the lipid bilayer (right) . The correct folding of the in vitro produced 

membrane proteins needs to be verified in functional assays.  

Figure 6: Successful examples of cell-free syntheti c biology.   

(a) Scheme of cell-free co-expression of YFP-tagged MreB and MreC inside a liposome. 

(b) Expression of the YFP-MreB fusion protein together with MreC results in the formation 

of filamentous structures (left panel), rhodamine-BSA stains the lumen of the lipid vesicle 

(middle panel). The merged red and green image highlights the localization of the YFP-

MreB filament on the surface of the liposome. The scale bar corresponds to 10 micro-

meters. (c) General scheme of the coupled in vitro transcription-translation reaction 

allowing the production of assembled and infectious phage particles from the complete 

40kbp genome (d) Transmission electron microscope micrograph of PHIX174 phage 

particles produced by the cell-free system. Inset: close-up view of an in vitro synthesized 

phage. Panels a and b are adapted with permission from [65]. Panels c and d are adapted 

with permission from [67].  
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