
                          Mygdalis, V., Iosifidis, A., Tefas, A., & Pitas, I. (2015). Video
summarization based on Subclass Support Vector Data Description. In 2014
IEEE Symposium on Computational Intelligence for Engineering Solutions
(CIES 2014) : Proceedings of a meeting held 9-12 December 2014, Orlando,
Florida, USA. (pp. 183-187). Institute of Electrical and Electronics Engineers
(IEEE). DOI: 10.1109/CIES.2014.7011849

Peer reviewed version

Link to published version (if available):
10.1109/CIES.2014.7011849

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7011849. Please refer to any applicable
terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73983053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/CIES.2014.7011849
http://research-information.bristol.ac.uk/en/publications/video-summarization-based-on-subclass-support-vector-data-description(eaa2f11c-2406-4d06-99a7-b14d8a3c0563).html
http://research-information.bristol.ac.uk/en/publications/video-summarization-based-on-subclass-support-vector-data-description(eaa2f11c-2406-4d06-99a7-b14d8a3c0563).html


Video Summarization based on
Subclass Support Vector Data Description

Vasileios Mygdalis, Alexandros Iosifidis, Anastasios Tefas and Ioannis Pitas
Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

Email: {tefas,pitas}@aiia.csd.auth.gr

Abstract—In this paper, we describe a method for video sum-
marization that operates on a video segment level. We formulate
this problem as the one of automatic video segment selection
based on a learning process that employs salient video segment
paradigms. We design an hierarchical learning scheme that
consists of two steps. At the first step, an unsupervised process is
performed in order to determine salient video segment types. The
second step is a supervised learning process that is performed
for each of the salient video segment type independently. For the
latter case, since only salient training examples are available, the
problem is stated as an one-class classification problem. In order
to take into account subclass information that may appear in
the video segment types, we introduce a novel formulation of the
Support Vector Data Description method that exploits subclass
information in its optimization process. We evaluate the proposed
approach in three Hollywood movies, where the performance of
the proposed Subclass SVDD (SSVDD) algorithm is compared
with that of related methods. Experimental results show that the
adoption of both hierarchical learning and the proposed SSVDD
method contribute to the final classification performance.

I. INTRODUCTION

Video summarization techniques develop condensed ver-
sions of the original input stream through identification of
the most important and pertinent content within the stream
[1]. The derived video summaries can be exploited in various
applications, like movie (post-)production interactive brows-
ing and searching systems, offering the user the ability to
efficiently access video content [2], [3]. Different techniques
vary by the type of content used, the performed analysis and
the type of video summary representation. Regarding the type
the exploited information, it may belong in either generic or
domain specific type (e.g., sports, news, movies etc.) as well
as information besides the video stream (external information,
provided by a user). Objects, events, perceptions and features
are extracted by analysing the available modalities (image,
sound or text) for abstracting intuitive semantics from the
video stream [1]. The abstracted semantic content that needs to
be included in the target summary, is commonly represented as
a cue of still images (key frames) or a video skim. Key frames
are sequences of still images presented in temporal order, that
represent the input video stream [4]. This process may involve
temporal video segmentation, so that the extracted key frames
represent a video segment. The process of key frame extraction
is also known as “key-framing”, “story-boarding” or “static
video summarization”. A video skim is a video of shorter
length than the input stream, which is known as ”dynamic
video summarization” [1], [5], [6], [7], [8], [9].

In video summarization techniques with applications to
movie post-production, the state-of-the-art approach exploits
key frame extraction and video skimming techniques. Usu-
ally, long videos containing multiple shots are temporally
segmented, either manually or automatically by applying shot
detection algorithms. A user attention model is proposed in
[6], where visual, audio and textual features are extracted
by applying multimodal analysis. A saliency score for each
frame is computed and the most salient frames are selected
to be the key frames. Video segments around each key frame
are concatenated using a fade-in fade-out technique in order
to form the summarized video skim. A different approach is
proposed in [7]. The video stream is segmented into shots, then
face detection and tracking are performed on the segmented
video clips. Clustering is performed on the extracted facial
images, in order to determine which images belong to the
same character. The extracted characters are selected to form
a character community network, which forms a graph of inter-
actions between the movie characters. Redundant interactions
are excluded from the video skim. Activity information has
been exploited mainly in domain-specific applications, like
in video surveillance where motion detection techniques are
used, in order to create summaries that contain sets of subject
actions, like pedestrian walking. Detected actions taking place
in different directions and speeds, are fused in a single scene
to form a short length video containing as many actions as
possible [8], [9].

In this paper, we describe a method for video summariza-
tion that operates on a video segment level. Resulting video
summaries can be described using the MPEG-7 AVDP profile
[10], [11]. We focus our attention in video summarization
under unconstrained environments, i.e., the summarization
of Hollywood movie shots. Since in movies the activities
performed are of great interest for the movie plot, we choose to
employ a video segment representation that describes activity
information. We employ one of the current state-of-the-art
video representations to this end [12]. Related work in ‘human
action recognition in the wild’ [12], [13], [14], [15], has
shown that this task corresponds to a very challenging problem
due to many reasons, like camera movement, illumination
changes, different camera observation angles, etc. After ob-
taining the video segment representation, we formulate the
video summarization problem as the one of automatic video
segment selection based on a learning process. In order to
learn what properties of a video segment are important for



video summarization, we employ salient video segments to
learn the parameters of our learning scheme. Specifically,
in the case of Hollywood movies, video shots appearing
in movie trailers are characteristic salient video segments,
since they have been specially edited in order to catch the
viewer attention and, at the same time, to describe the movie
plot. In order to appropriately describe the multi-modality of
the various video trailer shots, e.g., such shots may depict
action scenes, comedy scenes, etc., we design a hierarchical
learning scheme. This has been motivated by related work in
deep learning [16], where complex classification problems are
analysed in multiple levels. The first levels of such schemes
are unsupervised and are employed in order to extract semantic
information related to the problem to be solved. Finally,
a supervised process is employed in order to combine the
semantics determined by the previous (unsupervised) levels,
along with the labeling information that is available for the
training data. In our case, the first step of the adopted learning
process is employed in order to roughly determine different
video segment types, e.g., action, comedy, etc., by clustering
the representations of the movie trailer shots. Subsequently, a
supervised learning process is employed.

Since our learning process involves only positive training
data, i.e., salient video shots, the final step of our learning
scheme is restricted in one-class classification. We employ
the Support Vector Data Description (SVDD) approach [17]
to this end, in order learn to multiple hyperspheres (one
for each video segment type) enclosing the corresponding
salient video segments. In order to increase performance, we
extend the SVDD classification scheme, so that to incorporate
subclass information to its optimization process. This has been
motivated by the fact that each video segment type may consist
of several subclasses, due to different observation angles,
illumination changes, etc. We compare the performance of the
proposed Subclass Support Vector Data Description (SSVDD)
method with that of SVDD, as well as with that of other one-
class classification methods, in video shot summarization of
three Hollywood movies. Experimental results show that it is
able to outperform other competing approaches.

The remainder of the paper is structured as follows: In
section II we describe the video representation method. In
sections III and IV we describe the proposed Subclass SVDD
(SSVDD) method. Experimental results evaluating each per-
formance on video summarization is described in section V.
Finally, conclusions are drawn in Section VI.

II. VIDEO REPRESENTATION

Let us denote by V = {V1, . . . ,VM} a video database
consisting of M video segments Vi. Vi may be various takes
obtained during movie production, or different video shots
appearing in a larger video (e.g., a movie). In the latter case,
we automatically segment long videos containing multiple
shots in shorter ones, each corresponding to a video shot.
We employ the method in [18] to this end. We would like to
employ Vi, i = 1, . . . , N in order to create a summary S of V ,
where S ⊆ V , i.e., a video formed by the most salient video

segments Vi. This process is usually noted as video skimming
[1].

Let us denote by X = {X1, . . . ,XN} another video database
that contains N salient video segments Xi. We would like
to employ the video segments in X in order to train a
classifier that can determine whether the video segments
Vi are salient or not. To this end, we employ the Dense
Trajectory-based video description [12] in order to describe the
video segments in X and V . This video description calculates
five descriptor types on the trajectory of densely-sampled
video frame interest points that are tracked for a number
of consecutive video frames. The five descriptor types are:
Histogram of Oriented Gradients (HOG), Histogram of Optical
Flow (HOF), Motion Boundary Histogram along direction
x (MBHx), Motion Boundary Histogram along direction y
(MBHy) and the normalized trajectory coordinates (Traj). We
employ these video segment descriptions in order to obtain
five video segment representations by using the Bag-of-Words
model. That is, the descriptors calculated for the training video
segments Xi, i = 1, . . . , N are clustered in order to determine
five sets of descriptor prototypes (each for a descriptor type).
Subsequently, each of the video segments Xi and Vi are
represented by five vectors xv

i , vv
i , v = 1, . . . , 5, respectively.

In order to fuse the information appearing in different video
representations, we combine the video segment representations
with kernel methods, as in [12]. That is, we employ the
RBF-χ2 kernel function, where different descriptor types are
combined following a multi-channel approach [19]:

K(Xi,Xj) = exp
(
−

∑
v

1

4Av
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xv
i ,x

v
j

) )
, (1)

D
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v
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)
is the χ2 distance between the BoW-based video

representation of xi and xj with respect to the v-th channel.
Av is the mean value of the χ2 distances between the training
samples for the v-th channel.

After calculating the kernel matrices for the training and
test video segments, we would like to calculate a vectorial
representation for each of the video segments in X and V . We
apply the kernel Principal Component Analysis [20] to this
end, in order to determine two vector sets Ṽ = {v1, . . . ,vM}
and X̃ = {x1, . . . ,xN} that represent the video shots in V
and X , respectively.

III. HIERARCHICAL LEARNING SCHEME

In this Section, we describe in detail the proposed hierarchi-
cal learning scheme for video summarization. We assume that
the video segments in X correspond to video shots belonging
to K scene types, e.g., action scenes, comedy scenes, etc.
Since we expect the actions appearing in different scene types
to be different, we group Xi, i = 1, . . . , N in K groups
based on their visual (activity) information. In order to do this
automatically, we cluster the vectors xi in K clusters without
taking into account the movie type labels that are available for
the movie trailer shots in the training phase. This is due to the
fact that we expect a movie trailer to contain shots belonging
to several scene types. We apply K-Means [21] to this end and



determine K video segment groups Ck, where
∪K

k=1 Ck = X .
After the determination of the K video segment groups Ck, we
train K one-class classifiers (one for each video segment group
Ck). We employ Support Vector Data Description [17] to this
end, that aims at determining a hypersphere enclosing most of
(possibly all) the vectors xi belonging to video segment group
Ck. However, such an approach does not take into account the
subclass information that may appear in video segment group
Ck. In video summarization in unconstrained environments it
is expected that scene types will be multimodal, due to camera
movement, illumination changes, different camera observation
angles, etc. We will describe an extension of the SVDD
method that is able to incorporate subclass information in its
training process in the next Section.

After training the K one-class classifiers, each of the video
segments in V , represented by the corresponding vector vi,
is introduced to the K one-class classifiers and K responses
oki , k = 1, . . . ,K. Finally, the video segment i is assigned to
the classifier that provides the maximal response, i.e.:

oi = max
k

oki , k = 1, . . . ,K. (2)

IV. SUBCLASS SUPPORT VECTOR DATA DESCRIPTION

In this Section, we describe the proposed Subclass SVDD
method. For notation convenience, let us denote by yk

i , i =
1, . . . , |Ck| the i-th training vector belonging to the k-th
video segment group. Let us assume that the vectors yk

i

form ck subclasses. The variance of Ck with respect to the
corresponding subclass mean vectors vk

j , j = 1, . . . , ck is
given by:

Sk =

ck∑
j=1

βk
ij

(
yk
i − vk

j

) (
yk
i − vk

j

)T
, (3)

where βk
ij is an index denoting if yk

i belongs to subclass j.
The number of subclasses ck can either be set manually based
on the properties of the problem at hand, or be automatically
determined by applying k-fold (e.g., 5-fold) cross-validation.

The minimum bounding hypersphere that encloses most of
(possibly all) the vectors yk

i and exploits subclass information
encoded in Sk can be determined by the corresponding center
uk and radius R calculated by optimizing for:

min
R,ξ,a

R2 + c

|Ck|∑
i

ξi (4)

s.t. : ∥S− 1
2

k yk
i − uk∥22 ≤ R2 + ξi, (5)

ξi ≥ 0, i = 1, ..., |Ck|, (6)

where ξi are the slack variables and c is a parameter denoting
the importance of the error in the optimization problem.

Based on the Karush-Kuhn-Tucker (KKT) theorem [22], the
above described optimization problem can be solved by finding

the saddle point of the Lagrangian:

L (R, ξi,α,β) = R2 + c

|Ck|∑
i

ξi −
|Ck|∑
i=1

βiξi

−
|Ck|∑
i=1

αi

(
R2 + ξi − ∥S− 1

2

k yk
i − uk∥22

)
.(7)

leading to the following optimality conditions:

ϑL
ϑuk

= 0 ⇒
|Ck|∑
i=1

αiuk =

|Ck|∑
i=1

αiS
− 1

2

k yk
i , (8)

ϑL
ϑR

= 0 ⇒
|Ck|∑
i=1

αi = 1, (9)

ϑL
ϑξi

= 0 ⇒ αi = c− βi. (10)

From (8), (9) the center uk is given by:

uk =

|Ck|∑
i=1

αiS
− 1

2

k yk
i (11)

Replacing (8),(9) and (10) in L (R, ξi,α,β) and using
the KKT conditions, the optimization problem in (4) can be
reformulated to its dual form:

max
α

|Ck|∑
j=1

αiy
k T
i S−1yk

i −
N∑
i=1

N∑
j=1

αiαjy
k T
i S−1yk

i , (12)

subject to 0 ≤ αi ≤ c and
∑

i αi = 1.
After solving (12), the radius R is the one that:

R2 = {min ∥S− 1
2

k yk
i − uk∥22, yk

i is a SV }. (13)

A test vector vi can be introduced to the classifier and its
response is given by:

f(vi) = R− ∥S− 1
2

k vi − uk∥2. (14)

By observing (12) it can be seen that the solution of the
proposed SSVDD classifier is similar to that of SVDD. In
order to exploit standard SVDD implementations [23], we can
use an approach similar to the one proposed in [24]. We can
apply eigenanalysis on the matrix Sk in order to decompose it
to Sk = VkΣkV

T
k , where Vk is an orthonormal matrix that

contains the eigenvectors of Sk and Σk is a diagonal matrix
containing the eigenvalues of Sk. Then, we can employ the
matrix Pk = VkΣ

− 1
2

k in order to map the original training
vectors yk

i , i = 1, . . . , |Ck| to vectors zki by:

zki = PTyk
i . (15)

It can be shown that:

zk T
i zkj = yk T

i PkP
T
k y

k
j = yiS

−1
k yk

j . (16)

Thus, by applying SVDD on the vectors zki corresponds to
applying the proposed SSVDD with the optimization problem
given in (4). In the case where Sk is singular, one can choose
to keep fewer eigenvectors (the ones corresponding to the non-
zero eigenvalues) for zki calculation.



V. EXPERIMENTAL RESULTS

In this Section, we present experiments conducted in order
to evaluate the proposed video summarization method and
the performance of the proposed SSVDD classifier. We have
employed three Hollywood movies of full length, belonging
to action, adventure and drama categories, respectively. In
order to train the one-class classifiers we have employed
thirty Hollywood movie trailers belonging to action, adventure,
comedy, thriller and drama categories. The trailers of the three
(test) movies are not included in the training set.

Here we should note that usually, dynamic video summa-
rization techniques are evaluated based on qualitative criteria
[6], [7], e.g., by calculating criteria like the ‘informativeness’,
or the ‘enjoyability’ based on the ratings provided by users
for the entire video summary. However, such criteria are too
subjective. In order to perform quantitative evaluation of the
performance of each classifier in video summarization, we
employ the trailers of the three (test) movies and manually
create ground truth labels denoting whether a video segment
(shot) of each movie has been employed in order to form the
trailer, or not. We introduce the test vectors vi, i = 1, . . . ,M
to the classifiers trained on the video shots of the training
movie trailers and obtain their responses. Subsequently, we
keep the video shots corresponding to the L = pN maximal
response values, where 0 < p < 1, and calculate the
percentage of the movie trailer belonging to the created video
summary.

We set the dimensionality of the BoW-based video segment
representations xv

i , vv
i equal to 4000 and test for a number of

video segments Ck, using values K = 1, . . . , 10. We employ
the training vectors belonging to each of the video segment
groups Ck in order to train the proposed SSVDD classifier
formed by ck subclasses, using the values ck = 5, . . . , 15.
For comparison reasons, we also train the standard SVDD
classifier [17] and a variant of SVDD exploiting the variance
of the training data [25] (noted as MCSVDD hereafter). In
addition, we test the performance of each classifier in the case
of a non-hierarchical learning.

The performance of each classifier for different values of p
in the case of non-hierarchical learning (averaged over three
movies) is illustrated Table I. As can be seen in this Table, by
exploiting the variance of the training data, the MCVSVDD
classifier outperforms SVDD in all the cases. The exploitation
of subclass information further enhances classification perfor-
mance and the proposed SSVDD algorithm provides the best
performance in all the cases presented in Table I. This can be
explained by the fact that the results reported in this Table have
been obtained by using only one one-class classifier. Thus,
by exploiting the subclass information appearing in different
movie trailer shot types enhanced performance is obtained.

In our second set of experiments, we have employed the
proposed hierarchical classification scheme. The performance
of each classifier for different values of p in this case (averaged
over three movies) is illustrated Table II. Similar to the non-
hierarchical learning case, the proposed SSVDD classifier out-

TABLE I
PERFORMANCE (%) FOR NON-HIERARCHICAL LEARNING

0.1 0.2 0.3 0.4 0.5
SVDD [17] 13.69 25.48 33.91 44.33 52.97

MCSVDD [25] 18.38 30.79 42.33 52.21 57.86
SSVDD 18.66 32.03 44.68 56.62 67.06

TABLE II
PERFORMANCE (%) FOR HIERARCHICAL LEARNING

0.1 0.2 0.3 0.4 0.5
SVDD [17] 15.61 26.73 34.86 45.22 52.19

MCVSVDD [25] 17.72 31.39 43.3 52.78 63.91
SSVDD 19.73 33.08 45.31 57.14 66.83

performs both SVDD and MCVSVDD choices in all the cases.
In addition, by comparing the classification rates appearing in
Tables I and II, it can be seen that the adoption of a hierarchical
learning approach enhances performance in most cases.

In an attempt to explain the classification rates obtained
in the above described experiments, we have created the
summaries of the three movies by exploiting the order of the
video segments in V . We have observed that video segments
forming the different video summaries are quite similar to
each other in terms of video saliency. This means that the
proposed approach can be employed in order to assign saliency
scores to the various video segments in terms of saliency
and produce video segment suggestions that can be used in
order to accelerate video post-processing, or to provide a good
summarization of a video in terms of saliency.

VI. CONCLUSION

In this paper, we described a method for video summariza-
tion by exploiting an activity-based video segment description.
We have formulated the problem as the one of automatic video
segment selection based on a hierarchical learning process
exploiting salient video segment paradigms. In order to take
into account subclass information that may appear in different
video segment types, e.g., shots depicting action schemes, we
have proposed a Support Vector Data Description method that
exploits subclass information in its optimization process. We
evaluated the proposed approach in three Hollywood movies,
where it has been shown that the adoption of a hierarchical
learning approach enhances performance. In addition, exper-
imental results show that the proposed SSVDD method is
able to outperform other related methods. Future work could
include parallel implementation of this method, since the
multiple classifiers used are independent with each other.
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