
 Tsapanos, N., Tefas, A., Nikolaidis, N., & Pitas, I. (2015). Large graph
clustering using DCT-based graph clustering. In 2014 IEEE Symposium on
Computational Intelligence in Big Data (CIBD 2014): Proceedings of a
meeting held 9-12 December 2014, Orlando, Florida, USA. Institute of
Electrical and Electronics Engineers (IEEE). DOI:
10.1109/CIBD.2014.7011536

Peer reviewed version

Link to published version (if available):
10.1109/CIBD.2014.7011536

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7011536. Please refer to any applicable terms
of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73983044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/CIBD.2014.7011536
http://research-information.bristol.ac.uk/en/publications/large-graph-clustering-using-dctbased-graph-clustering(4ef8b49e-64f3-4f2f-af57-20a753d34819).html
http://research-information.bristol.ac.uk/en/publications/large-graph-clustering-using-dctbased-graph-clustering(4ef8b49e-64f3-4f2f-af57-20a753d34819).html

Large Graph Clustering Using DCT-Based Graph
Clustering

Nikolaos Tsapanos, Anastasios Tefas, Nikolaos Nikolaidis and Ioannis Pitas
Department of Informatics

Aristotle University of Thessaloniki
Box 451, Thessaloniki, GR 54124

Email: niktsap@aiia.csd.auth.gr, tefas@aiia.csd.auth.gr, nikolaid@aiia.csd.auth.gr, pitas@aiia.csd.auth.gr

Abstract—With the proliferation of the World Wide Web,
graph structures have arisen on social network/media sites. Such
graphs usually number several million nodes, i.e., they can be
characterized as Big Data. Graph clustering is an important
analysis tool for other graph related tasks, such as compression,
community discovery and recommendation systems, to name a
few. We propose a novel extension to a graph clustering algorithm,
that attempts to cluster a graph, through the optimization of
selected terms of the graph weight/adjacency matrix Discrete
Cosine Transform.

I. INTRODUCTION

Graph clustering, i.e., grouping graph nodes that are closely
interconnected has an important role in graph analysis appli-
cations. In this paper, we will present a genetic algorithm for
graph clustering that is designed to be fast and whose memory
requirements are linear with respect to the number of both
graph nodes and graph edges.

There has been an abundance of works that deal with the
clustering of graph nodes. For an in-depth survey on graph
clustering, the interested reader can refer to [1]. One of the
more theoretically elegant types of approaches is using the
graph spectrum [2] to perform the clustering. Such methods
are referred to as spectral graph clustering methods, a popular
example of which is the Normalized Cut, or NCUT, algorithm
[3].

We base the method proposed in this paper on a novel
approach to graph node clustering presented in [4], which
uses optimization on selected terms of the Discrete Cosine
Transform (DCT) [5] of the graph adjacency matrix to perform
the clustering. We will attempt to solve the parameterization
issues that were observed in that work, by a) constructing a
padded graph based on the input graph, b) defining a different
DCT-related objective function to optimize, c) restricting the
way optimization can be performed and d) using the new
method to recursively split the clusters into subclusters.

The paper is organized as follows: Section II briefly de-
scribes the initial idea presented in [4], section III details the
modifications that are proposed on a theoretical level, while
section IV describes how the computations can be significantly
sped up. Section V provides the results of the comparative
evaluation experiments and Section VI concludes the paper.

(a) (b)

Fig. 1. a) The adjacency matrix of a graph with 3 clusters when the node
order is random (edges are marked in black), b) The adjacency matrix of the
same graph, when the nodes are placed in consecutive rows/columns for each
cluster.

II. DCT-BASED GRAPH CLUSTERING

As proposed in [4], the main idea behind using the DCT
of the graph adjacency matrix to perform clustering on a
graph, stems from a simple observation. When the nodes of
each cluster appear in consecutive places in the order used
to construct the adjacency matrix, then large blocks of edges
appear along the image diagonal. This is illustrated in Figure
1.

In the DCT domain, large, square blocks along the diagonal
correspond to large values in the diagonal terms of the DCT,
as can be seen in Figure 2. Swapping the order of nodes in
the graph adjacency matrix causes the DCT term values to
fluctuate. It is, therefore, possible to bring nodes of the same
cluster together in the adjacency matrix by maximizing the
sum of the first k terms of the DCT diagonal. This can be
achieved by using Simulated Annealing (SA) [4].

The issue that arises, however, is the determination of the
parameter k. In general, k should be close to the number
of clusters. As Figure 3 shows, using the wrong values for
this parameter can cause problems. In this example, there
are 3 clusters in the input graph. If the number of clusters
is underestimated, then the two smaller clusters are merged
together (Figure 3b). If the number of clusters is overestimated,
then the biggest cluster is split (Figure 3d). This can be useful,
if we want the graph to be clustered into a specific number
of clusters. However, in the general case, we must correctly
guess the number of clusters, otherwise the method will
underperform. Furthermore, depending on the size difference
between the smallest and biggest cluster, it may be impossible
to choose a value for k that will not split the biggest cluster
or merge the smaller one into another cluster. It is this issue
that we address in this paper.

Fig. 2. The basis functions of an 8× 8 matrix.

(a) (b) (c) (d)

Fig. 3. a) Input graph, b) number of clusters underestimated (k = 2),
c) number of clusters correctly estimated (k = 3), d) number of clusters
overestimated (k=5).

III. DIVISIVE DCT-BASED GRAPH CLUSTERING

This section details our proposed modifications to [4] that
aim to de-parameterize the method and improve clustering
performance. The optimization method remains Simulated
Annealing.

We will first describe the changes to the input graph
adjacency matrix of N nodes. We pad the matrix with dummy
nodes to obtain a padded graph with adjacency matrix B as
follows:

• Group 1: nodes in matrix places 1-N are dummy
nodes, not connected to any other node.

• Group 2: nodes in matrix places (N + 1)-(3N/2) are
auxiliary nodes, connected to every node in groups 2,
3 and 4 with weight 0.5.

• Group 3: nodes in matrix places (3N/2 + 1)-(5N/2)
are the real nodes of the input graph, connected in the
same way with each other and also groups 2 and 4
(weight 0.5).

• Group 4: nodes in matrix places (5N/2 + 1)-3N are
auxiliary nodes, connected to every node in groups 2,
3 and 4 with weight 0.5.

• Group 5: nodes in matrix places (3N + 1)-8N are
dummy nodes, not connected to any other node.

This creates an 8N × 8N matrix, as illustrated in Figure 4.

8N

N

2N

N

2

Fig. 4. The padded graph. The black square is the original graph (node group
3 with input graph weights), surrounding it is the gray square (node groups
2 and 4 with weights 0.5), while surrounding everything is the white square
(node groups 1 and 5 with weights 0).

Now we will describe the restrictions we place on node
swapping. Instead of allowing any two nodes to swap places
in the adjacency weight matrix, we attempt to optimize the
objective function f(B) by swapping nodes in the following
way:

• Select a random node with position i in the range of
N -3N .

• Swap the selected node with the node in position 5N+
i.

• Calculate the change in the objective function f(B).

• Accept the swap (transition) with the appropriate
probability, as per SA operation.

In order to visualize what happens with these swap, please
refer to Figure 5. When the optimization starts, all the non-
zero weights are concentrated in the square marked C1. When
the first node is swapped from C1, some of its weights move to
squares C2, I1 and I2. As the optimization continues weights
move between these squares. Note that squares I1 and I2
contain the weights of the edges connecting the nodes in C1

with the nodes in C2. Suppose that the graph has 2 clusters. It
is easy to see that, if every node of one cluster was in C1 and
every node of the other cluster was in C2, then the weights in
C1 and C2 would be very strong, as they correspond to internal
edges between nodes of the same cluster. Respectively, weights
in I1 and I2 would be fairly weaker, as they correspond to
inter-cluster edges between the 2 clusters. If there are more
than 2 clusters in the graph, it suffices that I1 and I2 only
contain inter-cluster edges, since we can recursively cluster
the nodes of C1 and C2 in the same way, until a stopping
criterion is met.

The task, at this point, is to devise an objective function
that a) minimizes the inter-cluster weights in I1 and I2 and

C1 I1

I2 C2

Fig. 5. All the possible positions in which the non-zero weights can be
found, under the swap restriction we placed. Ideally, when the optimization
ends, all the nodes of one cluster will end up in C1 and all the nodes of the
other cluster in C2, with the inter-cluster edge weights residing in I1 and I2

b) splits the graph somewhat evenly, as we don’t want C2

to be empty. Let DCTB(x, y) refer to the (x, y) term of the
DCT of matrix B. Looking back at Figure 2, we can see
that DCTB(4, 2) and DCTB(2, 4) have high values, when
there are weights in I1 and I2. As it follows, we want to
minimize q1 = DCTB(4, 2) + DCTB(2, 4). The problem
is that q1 is already at its minimum value, when every
node is in C1. We, therefore, need to force the objective
function to move at least some nodes to C2. Note that the
DCT terms DCTB(1, 2) and DCTB(2, 1) have high values,
when the nodes are concentrated in C1 and low values, when
the nodes are concentrated in C2. We must also minimize
q2 = |DCTB(1, 2)| + |DCTB(2, 1)|. One last problem stems
from the conflict between these two goals, as reducing one
increases the other. Focusing on minimizing q1 will not split
the graph. Focusing on minimizing q2 may split clusters, as it
will force the graph to be split exactly evenly. Our solution is to
employ an exponential function e−αq2 so that, when q2 is high,
e−αq2 >> q1. This forces the optimization to move at least
some nodes in C2. Additionally, once q2 reaches a fraction of
its initial value (dictated by α), then e−αq2 becomes almost
a constant and will not force exactly even graph splits. The
objective function for the optimization is, therefore, defined to
be:

f(B) = q1 +Ne−αq2 .

When the minimization is over, the input graph has been
partitioned into 2 subgraphs. We can apply the same method
again to each subgraphs and keep splitting the resulting graphs,
until a subgraph is considered too dense to be further split.

IV. FAST IMPLEMENTATION

In our explanation of the algorithm, we used the DCT
of a padded graph matrix. Using such a matrix in practice
requires O(n2) memory and such an implementation would
be infeasible. Additionally, recomputing the DCT is extremely

inefficient. It is, in fact, possible to perform all the required
computations through a node adjacency list. This is even more
useful, when the graph is rather sparse.

Let us consider DCTB(4, 2), as all the other terms are
similar with this one. Note that

DCTB(4, 2) =

n∑
i=1

n∑
j=1

bij cos(
π

n
(j +

1

2
)2) cos(

π

n
(i+

1

2
)4).

The DCT is computed once at the start of the process.
We maintain the current position of each node in a global
vector and its adjacency list in its own adjacency vectors. The
contribution of graph node k that is currently in position i to
DCTB(4, 2) is

n∑
j=1

bij cos(
π

n
(j +

1

2
)2) cos(

π

n
(i+

1

2
)4).

Moving a node from one group to the other essentially
changes the position of the node from i to i′. We can calculate
the current contribution, by going through its adjacency list
vector and retrieving the current positions of its neighbors from
the global vector, thus determining the value for bij . Nodes
that are not connected to node k yield bij = 0 and are not
considered in the calculation.

After computing the contribution, we can subtract it from
DCTB(4, 2). We can then move the node by updating its
position in the global position vector, calculate the node’s con-
tribution in the new position and add it back into DCTB(4, 2).
In this way, the changes in the objective function can be
calculated in a minimal way.

In this implementation, if N is the bumber of nodes and
M is the number of edges, then the memory requirements for
each node i are storing its adjacency lists, which has a size of
di, where di is the node’s degree, plus its place in the padded
matrix. Note that

∑
i di =M and, therefore, the total memory

requirements are O(M +N).

V. EXPERIMENTS

In order to compare our novel clustering method with
NCUT, we ran our experiments on the same data as the
facial image clustering method, presented in [6], which uses
NCUT. The facial images were extracted from the movies
included in the database described in [7]. The weight matrix
A was constructed using a Normalized Mutual Information
measure, as described in [8]. The matrix was then normalized
as follows: 1

max(A) (A−min(A)). The clustering was achieved
through the optimization process detailed in Section III. The
criterion for stopping the recursive cluster splitting process was
checking whether max(A)−min(A) ≤ 0.7. Results for the
proposed method and the method in [6] are shown in Table I.
Overviewing the results, we conclude that the performance of
the proposed method is comparable to that of [6].

In order to evaluate our approach on a large graph, we se-
lected the youtube dataset from the Stanford Network Analysis
Project [9]. The dataset is provided with community ground
truth. We selected to only include communities, which have
more than 100 members. This resulted in 105 communities.

The extracted graph of users that belong to these communities
contains 17126 nodes and 212136 edges. The ground truth
labels for each node were determined, according the largest
community the node belonged to. The comparison between
the labels provided by the proposed approach and the ground
truth was carried out using the F-measure [10]. The runtime
was 33 seconds and the recorded F-measure was 0.1482, which
is consistent with the NMI performance, another measure
closely related to F-measure, of other state of the art clustering
algorithms on Big Data graph clustering [11].

VI. CONCLUSIONS

In this paper we have presented a novel improvement on
an original approach to graph clustering and used it to perform
facial image clustering and youtube community clustering.
By properly constructing a padded graph and only allowing
very specific node swaps we were able to define an objective
function, whose minimization leads to splitting the graphs in
such a way that clusters remain mostly together. Experimental
results indicate that this approach performs very comparably
with the spectral graph clustering approach in [6]. Also note
that the approach in [6] requires providing different values
for 2 parameters in order to perform this well, while the
method presented here does not require changing values for
any parameters. Additionally, we used our approach to perform
fast and efficient clustering on a large graph.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 316564 (IM-
PART). This publication reflects only the authors views. The
European Union is not liable for any use that may be made of
the information contained therein.

REFERENCES

[1] Satu Elisa Schaeffer, “Graph clustering,” Computer Science Review,
vol. 1, no. 1, pp. 27–64, 2007.

[2] Fan R. K. Chung, Spectral Graph Theory.
[3] Jianbo Shi and Jitendra Malik, “Normalized cuts and image segmenta-

tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, pp. 888–905, 1997.

[4] N. Tsapanos, I. Pitas, and N. Nikolaidis, “Graph representations
using adjacency matrix transforms for clustering,” in Electrotechnical
Conference (MELECON), 2012 16th IEEE Mediterranean, March 2012,
pp. 383 –386.

TABLE I. COMPARATIVE EVALUATION BETWEEN [6] AND THE
PROPOSED METHOD.

Movie [6] Proposed
Bringing out the dead 87.31% 100%

Erin Brockovich 100% 96.49%
Forest Gump 98.63% 92.85%

Gandhi 97.62% 93.13%
I am Sam 93.69% 93.69%

Indiana Jones and the last crusade 90.21% 99.02%
Kids 90.56% 93.64%

Lord of the rings 96.00% 96.00%
Mission to Mars 87.69% 81.27%

The pianist 97.20% 98.83%
Pulp fiction 98.52% 100%

The Godfather 100% 98.29%

[5] I. Pitas, Digital Image Processing Algorithms and Applications, A
Wiley-Interscience publication. Wiley, 2000.

[6] N.Vretos C.Chrysouli and I.Pitas, “Face clustering in videos based
on spectral clustering techniques,” in Asian Conference on Pattern
Recognition (ACPR2011), November 2011.

[7] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, Benjamin Rozenfeld,
Inria Rennes, Irisa Inria Grenoble, and Lear Ljk, “Learning realistic
human actions from movies,” in In: CVPR. (2008, 2008.

[8] N. Vretos, V. Solachidis, and I. Pitas, “A mutual information based
face clustering algorithm for movie content analysis,” Image Vision
Comput., vol. 29, pp. 693–705, Sept. 2011.

[9] Jaewon Yang and Jure Leskovec, “Defining and evaluating network
communities based on ground-truth,” in Proceedings of the ACM
SIGKDD Workshop on Mining Data Semantics, New York, NY, USA,
2012, MDS ’12, pp. 3:1–3:8, ACM.

[10] David M. W. Powers, “Evaluation: From Precision, Recall and F-Factor
to ROC, Informedness, Markedness & Correlation,” Tech. Rep. SIE-
07-001, School of Informatics and Engineering, Flinders University,
Adelaide, Australia, 2007.

[11] Xiao Cai, Feiping Nie, and Heng Huang, “Multi-view k-means cluster-
ing on big data.,” in IJCAI, Francesca Rossi, Ed. 2013, IJCAI/AAAI.

