
 Cebamanos, L., Shterenlikht, A., Arregui-Mena, J. D., & Margetts, L. (2016).
Scaling hybrid coarray/MPI miniapps on Archer. In CUG2016, Cray User
Group meeting.

Publisher's PDF, also known as Version of record

License (if available):
Unspecified

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73983019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-information.bristol.ac.uk/en/publications/scaling-hybrid-coarraympi-miniapps-on-archer(4f04c35c-ee64-4a75-a698-7f6d89dba2e0).html
http://research-information.bristol.ac.uk/en/publications/scaling-hybrid-coarraympi-miniapps-on-archer(4f04c35c-ee64-4a75-a698-7f6d89dba2e0).html

Scaling hybrid coarray/MPI miniapps on Archer

Luis Cebamanos�, Anton Shterenlikhty, Jose D. Arregui-Menaz and Lee Margettsz
�Edinburgh Parallel Computing Centre (EPCC), The University of Edinburgh, King’s Buildings, Edinburgh EH9 3FD, UK

Email: l.cebamanos@epcc.ed.ac.uk
yDepartment of Mechanical Engineering, The University of Bristol, Bristol BS8 1TR, UK, Email: mexas@bris.ac.uk

zSchool of Mechanical, Aero and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK
Email: jose.arregui-mena@manchester.ac.uk, Lee.Margetts@manchester.ac.uk

Abstract—We have developed miniapps from MPI finite
element library ParaFEM and Fortran 2008 coarray cellular
automata library CGPACK. The miniapps represent multi-
scale fracture models of polycrystalline solids. The software
from which these miniapps have been derived will improve
predictive modelling in the automotive, aerospace, power
generation, defense and manufacturing sectors. The libraries
and miniapps are distributed under BSD license, so these
can be used by computer scientists and hardware vendors
to test various tools including compilers and performance
monitoring applications. CrayPAT tools have been used for
sampling and tracing analysis of the miniapps. Two routines
with all-to-all communication structures have been identified
a primary candidates for optimisation. New routines have
been written implementing the nearest neighbour algorithm
and using coarray collectives. Scaling limit for miniapps has
been increased by a factor of 3, from about 2k to over 7k
cores. The miniapps uncovered several issues in CrayPAT and
Cray implementation of Fortran coarrays. We are working
with Cray engineers to resolve these. Hybrid coarray/MPI
programming is uniquely enabled on Cray systems. This
work is of particular interest to Cray developers, because it
details real experiences of using hybrid Fortran coarray/MPI
programming for scientific computing in an area of cutting
edge research.

Keywords-miniapps; Fortran; coarrays; MPI; library; pro-
filing; CrayPAT, ARCHER;

I. INTRODUCTION

Fortran coarrays are a feature of Fortran 2008 standard
published in 2010 [1], [2], [3]. To date there are very few
mixed coarray/MPI programs, or platforms which support
this. Cray is perhaps still the only such platform, and
ECMWF codes are probably the best example [4].

We have developed a two-way hierarchical concurrent
multi-scale fracture model [5]. The structural level is rep-
resented via finite element (FE) approximation using the
ParaFEM MPI library, http://parafem.org.uk, [6]
The microstructural level is represented by cellular au-
tomata (CA) [7] using CGPACK Fortran coarray library,
https://sf.net/p/cgpack, [8]. Both libraries are
written in modern Fortran and distributed under 2-clause
BSD license.

ParaFEM is a highly scalable MPI finite element library
written in Fortran 95 [9]. It has been used in large scale

simulations, e.g. in nuclear fusion research [10], [11] and
biomechanics [12], [13].

CGPACK is a scalable cellular automata library writ-
ten in Fortran 2008 with extensive use of coarrays. Work
on CGPACK started in 2013 [14] on HECToR. It has
since been ported to Intel and OpenCoarray/GCC plat-
forms, http://www.opencoarrays.org, [15], [16].
CGPACK is being actively developed, including con-
tributions from the Software Sustainability Institute,
www.software.ac.uk, and a grant from the embedded
CSE programme of ARCHER.

Although the idea of a multi-scale CAFE model is not
new, [17], [18], [19], the current CAFE framework was
designed specifically for HPC systems. Fortran coarrays
is a PGAS language, which some HPC experts predict to
be better suited to exa-scale hardware [20], [21]. Coarrays
exploit the power and simple syntax of multi-dimensional
Fortran arrays, while MPI allows for very fine tuning of par-
allelisation, thus hybrid MPI/coarray algorithms can deliver
highly optimised parallel code.

A. ParaFEM/CGPACK (MPI/coarray) interface

The CA space is implemented as a 4D array coarray, with
a 3D coindex set: space(:,:,:,:)[:,:,:]. The first
3 array dimensions are used to store each cell’s Cartesian
coordinates. The fourth array dimension allows for multiple
types (layers) of microstructural information to be stored
and processed simultaneously. At present two layers are
used - grains and fracture surfaces. In contrast to the ”box-
shaped” CA space, the FE model can be of arbitrary shape.
In other words CA uses a structured grid, whereas FE uses
an unstructured grid. In addition, partition of the FE model
into MPI chunks is totally independent of coarray images.
This presents severe problems for linking coarray CA part
of the model with the MPI FE part as described below.

In general the FE domain in solid mechanics can be very
irregular. A schematic example is shown in Fig. 1. The
microstructural CA space is always a structured grid, as
shown schematically in Fig. 2. Sometimes, the CA space will
be fully inside the FE model, but in general, the CA space
can be of arbitrary size and orientation with respect to the
FE domain, depending on what deformation and/or fracture

body (domain)

Figure 1. Schematic of the FE domain.

material

Figure 2. Schematic of the CA space.

multi−scale model

Figure 3. Schematic of a multi-scale CAFE model composed of the FE
domain superimposed with the CA material space.

phenomena are to be studied with it, as shown in Fig. 3.
Some FEs will occupy the same physical space as some
CA cells. These FEs and cells form a two-way macro/micro
multi-scale CAFE model. However, as indicated in Fig. 3, in
general, there will be cells occupying physical space outside
of the body, and there will be FEs occupying physical space
not covered by the CA material. These FEs and cells must
be excluded from the analysis.

It is assumed in the following that in a hybrid coarray/MPI
program there is always identical number of MPI processes
and coarray images, which on Cray is just a number of
processing elements, PEs.

A schematic partition of the CAFE model on 4 PEs
is shown in Fig. 4. The labels denote on which PE the

MPI 1

MPI 4

MPI 2

multi−scale model

MPI 3

image 2

image 4

image 3

image 1

Figure 4. Possible partition of the multi-scale model on 4 PEs.

PE 4

PE 2PE 1

PE 3

Figure 5. Schematic of communications between the MPI (FE) and the
coarray (CA) parts of the coarray/MPI (CAFE) hybrid model on 4 PEs.

corresponding parts of the model are stored. For example,
”image 1” and ”MPI 1” parts of the model are stored on
PE 1. However, these FEs do not share physical space with
these CA cells. Instead cells on image 1 share physical space
with FEs on PE 3, labelled ”MPI 3”. This is important
because information transfer is required only between CA
and FE which occupy the same physical space. So in this
example MPI part of the model stored on PE 3 will have to
communicate with coarray part of the model stored on PEs
1 and 3.

Communications between the MPI (FE) and the coarray
(CA) parts of the coarray/MPI (CAFE) hybrid model are
shown schematically with arrows in Fig. 5. The imbalance
in the communication pattern is clear. The FE part of the
model stored on PE 4 will not communicate with CA at all.
However, the FE part of the model stored on PE 1 will need
to communicate with CA coarrays stored on PEs 2 and 4.

The mapping of FE to CA is established via a private
allocatable array of derived type:

type mcen
integer :: image
integer :: elnum
real :: centr(3)

end type mcen
type(mcen), allocatable :: lcentr(:)

based on coordinates of FE centroids calculated by each
MPI process and stored in a coarray of derived type with
allocatable array component:

type rca
real, allocatable :: r(:,:)

end type rca
type(rca) :: centroid_tmp[*]

which is allocated as

allocate(centroid_tmp%r(3, nels_pp))

where nels_pp is the number of FE stored on this PE.
There are two different routines which establish

lcentr on each image from centroid_tmp. Subroutine
cgca_pfem_cenc implements an all-to-all communica-
tion pattern, i.e. each images reads centroid_tmp from
every image. Subroutine cgca_pfem_map uses temporary
arrays and coarray collectives CO_SUM and CO_MAX, which
are described in TS18508 [22] and will be included in the
next revision of the Fortran standard, Fortran 2015. At the
time of writing coarray collectives are available on Cray
systems as extension to the standard [1]. The two routines
differ in their use of remote communications. However,
both routines implement the same algorithm for establishing
lcentr - if the centroid of an FE on any image is within
the coarray CA array of this image, then this FE is added
to lcentr on this image.

Fig. 6 schematically shows lcentr arrays established
on two images P and Q. In this example finite element
n, stored on image Q, has centroid coordinates r, which
identify a physical location within CA coarray on image P.
So this element is stored in lcentr array on image P. Finite
element m, also stored on image Q, has centroid coordinates
u, which identify a physical location within CA coarray also
on image Q. So this element is stored in lcentr array on
image Q. FEs with centroids outside of the CA space are
not entered in lcentr.
lcentr plays the key role in information transfer be-

tween the FE and the CA parts of the multi-scale CAFE
model.

After lcentr has been established, the second important
mapping issue can be resolved. CA cells which are outside of
the FE model must not be processed. This means no fracture
propagation can occur in such cells. However, since there is
finite resolution in FE model and in CA, this problem cannot

PE, image, MPI process P

.

.

b
.

.

.

.

a
.

.

.

elements

image

elnum

centr

. . . Q . . . P . . .

CA

r

s

lcentr

. . . n . . . b . . .

. . . r . . . s . . .

PE, image, MPI process Q

.

.

m
.

.

.

.

n
.

.

.

elements

image

elnum

centr

. . . Q . . . P . . .

CA

lcentr

. . . m . . . a . . .

. . . u . . . t . . .

u
t

Figure 6. lcentr arrays on two images P and Q.

be posed precisely. Depending on the FE size and the CA
cell size, a cell can be deemed to lie inside the FE model or
out. The algorithm implemented in the ParaFEM/CGPACK
interface uses some characteristic distance measure, Lc. The
criterion is this - if the distance between a cell and the
centroid of any FE in lcentr is less than Lc, then this
cell is considered to lie inside the FE model, otherwise it
is considered to lie outside of the FE model. Cell which
lie outside of the FE model are not processed at all in
any of the fracture routines. Although these cells represent
microstructure in the material layer, this microstructure is
simply ignored in all fracture calculations.

This mapping is established with a divide and conquer
approach. The algorithm starts by checking boxes of CA
cells the size of the whole coarray on each image. If a box
in partially in and partially out, it is split into two smaller
boxes and the process continues until each box is either
fully in, or fully out. If necessary, CA boxes are divided
down to single CA cells. This algorithm is implemented in
the routines cgca_pfem_partin, cgca_pfem_boxin
and cgca_pfem_cellin.

B. Separate scaling of ParaFEM and CGPACK

Individually both ParaFEM and CGPACK libraries
showed the potential to scale well into tens of thousands
of cores on HECToR, as seen in Figs. 7 and 8, although
parallel efficiency of CGPACK is only about 25%.

However, scaling of a library can be understood only as
scaling of particular programs using various routines from
the library. Scaling might change dramatically depending on
which library routines are invoked in a particular executable
and in which order. Too many permutations exist for a
comprehensive scaling analysis of a library.

1

10

100

1000

10000

10 100 1000 10000 100000

Ti
m

e
 in

 s
ec

o
n

d
s

Number of MPI processes

Actual

Ideal

Figure 7. ParaFEM scaling for a 3D transient flow explicit analysis.
Reproduced from [6].

 1

 10

 100

 1000

 8 64 512 4096 32768

sp
e
e
d
-u

p

Number of cores, Hector XE6

sync all
sync images serial

sync images d&c
co_sum

Figure 8. CGPACK 3D solidification scaling with different synchronisation
methods. Reproduced from [14].

Figure 9. CGPACK simulated crystal boundaries in a polycrystalline
material.

II. PARAFEM/CGPACK MINIAPPS

Several driver programs (miniapps) [23] were constructed
using both ParaFEM and CGPACK libraries. The programs
simulate progressive cleavage propagation in polycrystalline
iron. Examples of the miniapp results are shown in Figs.
9-11.

Figure 10. Example of the ParaFEM/CGPACK miniapp simulation. Cracks
on f110g planes are shown in green and on f100g planes are shown in
yellow.

Figure 11. Example of the ParaFEM/CGPACK miniapp simulation. The
CA space (blue) intersects the FE domain (red). The cleavage cracks (dark
blue) are confined to the CA space.

Crack propagation across crystal boundaries is of partic-
ular interest in structural integrity analysis of polycrystal
structures and components. A typical CA simulation of
equiaxed crystal boundaries is shown in Fig. 9.

Fig. 10 shows the emerging macro-crack, visualised on the
CA scale. In this example cracks in individual iron crystals
merge to form a macro-crack. The process is driven by the
FE stress field.

Fig. 11 shows results from a miniapp where the CA
space intersected with the FE domain. Mapping rou-
tines cgca_pfem_partin, cgca_pfem_boxin and

 100

 1000

 10000

 100 1000 10000 100000

 1

 10
ti

m
e
,
s

sc
a
lin

g

runtime
scaling

Figure 12. ParaFEM/CGPACK MPI/coarray miniapp scaling on ARCHER
XC30 for a 3D problem with 1M FE and 800M CA cells.

cgca_pfem_cellin, described in Sec. I-A, were used
in this miniapp.

When a crystal boundary is crossed by a crack in the
CA coarray on any image, it is important that all other
images are notified as soon as possible [8]. If the crack
propagation speed is relatively low, and the model reso-
lution is high enough, then it is sufficient to inform the
nearest neighbouring images. Subroutine cgca_gcupdn
implements the nearest neighbour algorithm. In cases when
crack propagation speed can be so high that the CA changes
can propagate more than the length of the CA coarray in
one model iteration an all-to-all algorithm has to be used.
It is implemented in subroutine cgca_gcupda. Profil-
ing of the miniapps with both these routines, as well as
with the nearest neighbour cgca_pfem_map and all-to-all
cgca_pfem_cenc FE to CA mapping routines, see Sec.
I, is presented in the next section.

III. PROFILING

CrayPat on ARCHER (Cray XC30 system) was used for
profiling work. The model with 1M FE and 800M CA cells
was used.

Although both ParaFEM and CGPACK independently can
scale well to tens of thousands of cores (see Figs. 7 and 8),
the initial profiling study showed limited scalability mainly
due to an all-to-all remote read routine cgca_gcupda.
Strong scaling of one of our miniapps which simulates a
3D trans-granular cleavage in polycrystalline iron is shown
in Fig. 12. It is clear that this miniapp scales well up to
2000 cores from where the scalability drops dramatically.

As shown in Figs. 13 and 14, a large portion of the total
time (over 38%) is spent on cgca_gcupda subroutine
which indicates it is a clear candidate for further optimiza-
tion.

The key fragment from this all-to-all routine is shown be-
low. In this routine each coarray image reads a coarray value
from all the other images which becomes a communication
problem at large number of images. The outer loop starting
counter (remote image number) is chosen at random to even
out communication load.

Figure 13. Profiling function distribution for ParaFEM/CGPACK
MPI/coarray miniapp with all-to-all routine cgca_gcupda at 7200 cores.

Figure 14. Raw profiling data for ParaFEM/CGPACK MPI/coarray
miniapp with all-to-all routine cgca_gcupda at 7200 cores.

integer :: gcupd(100,3)[*], rndint, j,&
img, gcupd_local(100,3)

real :: rnd
:
call random_number(rnd)
rndint = int(rnd*num_images())+1
do j=rndint, rndint+num_images()-1
img = j
if (img .gt. num_images()) &

img = img - num_images()
if (img .eq. this_image()) cycle
:
gcupd_local(:,:) = gcupd(:,:)[img]

Figure 15. Raw profiling data for ParaFEM/CGPACK MPI/coarray
miniapp with the neareast neighbour routine cgca_gcupdn at 7200 cores.

:
end do

An alternative to an all-to-all algorithm is the nearest
neighbour algorithm. As mentioned before, this has been
implemented in subroutine cgca_gcupdn. The key frag-
ment is shown below.

do i = -1 , 1
do j = -1 , 1
do k = -1 , 1
! Get the coindex set of the neighbour
ncod = mycod + (/ i, j, k /)
:
gcupd_local(:,:) = &
gcupd(:,:)[ncod(1),ncod(2),ncod(3)]
:

end do
end do
end do

It must be emphasised that the nearest neighbour and all-
to-all are not identical. In the nearest neighbour case the
information is propagated only one image away from the
current image. Multiple invocations of the nearest neighbour
algorithm are required for changes on any image to reach all
images. However, because the nearest neighbour algorithm
is known to scale well, it might still outperform all-to-all
at high core counts, even if multiple invocations are used.
Moreover, for some fracture propagation problems a single
invocation of the nearest neighbour will suffice, if crack
propagation rates are such that no crack is likely to cross
the whole of CA array on an image in one CA iteration.

The execution of the mentioned miniapp execising the

Figure 16. Profiling function distribution for ParaFEM/CGPACK
MPI/coarray miniapp with the neareast neighbour routine cgca_gcupdn
at 7200 cores.

 10

 100

 1000

 10000

 100 1000 10000 100000

 1

 10

 100

ti
m

e
,

s

sc
a
lin

g

cgca_gcupda runtime
cgca_gcupdn runtime
cgca_gcupdn scaling

Figure 17. Runtimes and scaling for ParaFEM/CGPACK MPI/coarray
miniapp with the nearest neighbour, cgca_gcupdn, and all-to-all,
cgca_gcupda, algorithms.

nearest neighbourgh algorithm clearly demonstrates a con-
siderable reduction in the number of remote reads. This
can be seen on Figs. 15 and 16 where the user time is no
longer dominated by remote reads between images with the
exception of subroutine cgca_pfem_cenc.

This optimisation should also be reflected in the miniapp
performance since now it will be able to scale to much larger
of core counts. Fig. 17 shows that the scaling limit has been
increased from 2k, when using all-to-all cgca_gcupda, to
7k cores, when cgca_gcupdn is used.

As previously mentioned, subroutine cgca_pfem_cenc
also implements an all-to-all communication pattern which
could be replaced with subroutine cgca_pfem_map. Sub-
routine cgca_pfem_map relies on the use of temporary
arrays and coarray collectives CO_SUM and CO_MAX.

At present Cray collectives specification differs slightly

Figure 18. Profiling function distribution with cgca_gcupdn and
cgca_pfem_map at 7200 cores.

from TS 18508 [22]. However, the differences are immaterial
for this work, so in the following we just use ”collectives”
to mean the features of both Cray implementation and TS
18508.

The key fragment of cgca_pfem_map is shown below.
See Sec. I for details of centroid_tmp coarray.

integer :: maxfe, pos_start, pos_end, &
ctmpsize

real, allocatable :: tmp(:,:)
! Calculate the max number of FE
! stored on this image
maxfe = size(centroid_tmp%r, dim=2)
ctmpsize = maxfe
call co_max(source = maxfe)
allocate(tmp(maxfe*num_images(), 5), &
source=0.0)

! Each image writes its data in a unique
! portion of tmp.
pos_start = (this_image() - 1)*maxfe + 1
pos_end = pos_start + ctmpsize - 1
tmp(pos_start : pos_end, 1) = &
real(this_image(), kind=4)

! Write element number *as real*
tmp(pos_start : pos_end, 2) = &
real((/ (j, j = 1, ctmpsize) /), kind=4)

! Write centroid coord
tmp(pos_start : pos_end, 3:5) = &
transpose(centroid_tmp%r(:,:))

call co_sum(source = tmp)

A large temporary array, of length in the order of the
maximum number of FE on any image times the number of
images, is required. This approach might prove problematic

Figure 19. Raw profiling data for ParaFEM/CGPACK MPI/coarray
miniapp cgca_gcupdn and cgca_pfem_map at 7200 cores.

 10

 100

 1000

 10000

 100 1000 10000 100000

 1

 10

 100

ti
m

e
,

s

sc
a
lin

g

_map runtime
_cenc runtime
_map scaling

Figure 20. Runtimes and scaling for ParaFEM/CGPACK MPI/coarray
miniapp with cgca_pfem_map and cgca_pfem_cenc.

at very high core counts due to memory limitations.
In addition, all variables have to be recast in the same real

kind before writing to tmp array. This is because CO_SUM
and CO_MAX work only with numeric types.

Finally we note that CO_SUM and CO_MAX allow non-
coarray SOURCE argument. This is an interesting feature of
coarray design.

Figs. 18 and 19 show that although the total percentage of
time spent on cgca_clvgp has slightly increased, the time
corresponding to the user group functions has been reduced.
As a result, this miniapp manages to improve the perfor-
mance achieved by miniapps running cgca_pfem_cenc.

Since cgca_pfem_map or cgca_pfem_cenc are

Figure 21. Sampling ParaFEM/CGPACK MPI/coarray miniapp with
cgca_gcupda on 7200 cores.

called only once during the execution of the miniapp,
only a minor overall performance improvement is expected.
This is shown in Fig. 20. The miniapp implementing
cgca_pfem_map shows some performance improvement
only from around 1000 cores, where the overhead of remote
read statements becomes noticeable.

A. CrayPat issues

During the course of this investigation, a small number
of issues have been identified with CrayPat. Theses issues
have been already submitted to Cray developers for further
investigation.

Tracing ParaFEM/CGPACK MPI/coarray has been report-
ing an inconsistent percentage of time for some user routines
which were highlighted in sampling experiments. Figs. 21
and 22 illustrate this effect on subroutine cgca_gcupda.
Although the sampling report indicates that this subroutine
is the most time consuming user function, this routine
is not present at all in the tracing report, even when
cgca_gcupda was specifically traced. However, it the
miniapp, cgca_gcupda and cgca_hxi are called exactly
the same number of times. Indeed a call to cgca_gcupd
is immediately followed by a call to cgca_hxi in
cgca_clvgp. The key fragment is shown below.

module subroutine cgca_clvgp(coarray, &
... gcus, ...)

integer, allocatable, intent(inout) :: &
coarray(:,:,:,:)[:,:,:]

procedure(gcupd_abstract) :: gcus
:

end subroutine cgca_clvgp

module procedure cgca_clvgp
:

! update all local GC arrays using
! the given subroutine
call gcus(periodicbc)

! halo exchange after a cleavage
! propagation step
call cgca_hxi(coarray)
:

end procedure cgca_clvgp

where cgca_gcupda is passed for dummy gcus.

Figure 22. Tracing ParaFEM/CGPACK MPI/coarray miniapp with
cgca_gcupda on 7200 cores.

Figure 23. Incorrect number of threads indentified by CrayPAT in
a tracing experiment of ParaFEM/CGPACK MPI/coarray miniapp with
cgca_gcupda.

Another issue is the number of threads reported by
CrayPat when profiling our different ParaFEM/CGPACK
MPI/coarray miniapps. Although profiling has always been
carried out using a single thread, CrayPat indicates other-
wise. An example is shown in Fig. 23 where in this case
CrayPat reports that the miniapp has been run with 3 threads.

B. Cray Reveal

Fortran 2008 standard says that allocatable coarrays must
be allocated with the same dimensions and codimensions
on all images. Moreover this allocation must be done at
the same time on all images, because coarray allocation
involves synchronisation between all images. When more
flexible data structures are desired, e.g. coarray arrays of
different length, as in this work, the only solution currently
is to use coarray variables of derived type with allocatable
components. Such variables provide excellent flexibility and
potential for extension. However, the price for such flexi-
bility is poor optimisation of remote operations with such
variables. This problem was highlighted with Cray Reveal.

The following fragment is from the CGPACK/ParaFEM
interface module cgca_m3pfem, subroutine
cgca_pfem_yum, which updates the FE Young’s
modulus based on the accummulated fracture.

! how many elements
ndims=size(&
centroid_tmp[img_curr] % r, dim=1)

nelements=size(&
centroid_tmp[img_curr] % r, dim=2)

! use a temp array to pull
! all centroids data in one call
allocate(tmp(ndims, nelements))
tmp = centroid_tmp[img_curr] % r

where img_curr is the neighbouring image number.
Here an attempt is made to minimise the number of

remote operations by reading the whole array from another
image into a local array tmp. However, the size of the
array on the remote image is not known. Hence the first
two remote operations are reading just the two dimensions
of the array. Then the local array is allocated accordingly.
Finally the remote array can be read into the local array.

The last statement in the above fragment is at line 571.
It attracted five separate messages from Cray Reveal, which
are reproduced below.

� ”A loop starting at line 571 is flat (contains no external
calls).”

� ”A loop starting at line 571 was not vectorized because
it contains a definition of reference to a coarray variable
on line 571.”

� ”A loop starting at line 571 was unrolled 8 times.”
� ”An implicit non-blocking operation was used for this

statement.”
� ”The coarray assignment in the loop starting at line

571 was not replaced by a block remote data transfer
operation because it is not recognizable as a supported
pattern.”

More information is obtained about the last message with
explain ftn-6239: ”The list of patterns recognizable
by the compiler is as follows: memory copy, get, or put with
loop invariant strides.” This indicates that coarray support
in CCE is still maturing and there is scope for further
optimisation.

IV. FUTURE WORK

The focus of this work was optimisation of user routines.
Another important area with a significant scope for optimi-
sation is synchronisation.

The Fortran standard [1] contains very strict rules on
coarray synchronisation. The rules are designed to ensure
that a standard conforming Fortran coarray program will
neither deadlock nor suffer from race conditions. The price
of this guarantee of coarray integrity is potentially excessive
synchronisation. This is particularly pertinent to a coarray
library such as CGPACK, where multiple synchronisation
paradigms are possible.

At one extreme, all synchronisation is removed from
the library routines and is left as the responsibility of the
library user. This approach might be the most efficient but
is definitely the most error-prone. At the other extreme
synchronisation is used inside all, or most, library routines.
This approach is most likely to guarantee coarray integrity
but is very inefficient.

The search of an efficient coarray synchronisation
paradigm, for the CGPACK library and for
ParaFEM/CGPACK miniapps, which will ensure full
standard conformance and coarray integrity, is left for
future work. We are keen to test new coarray features of TS

18508, as soon as these are available on Cray. In particular,
coarray EVENTS might be useful for implementing more
flexible synchronisation between images.

V. CONCLUSION

Successful usage of Fortran coarray and MPI parallel
libraries on ARCHER (Cray XC30 system), to create what
may be the first multi-scale cellular automata finite element
(CAFE) ”miniapp” for proof-of-concept modelling is novel.
It is uniquely enabled on a Cray system. CrayPAT sampling
and tracing led to identification of optimisation hotspots.
Replacement of all-to-all algorithms by the nearest neigh-
bour algorithms and coarray collectives increased the scaling
limit by a factor of 3. The hybrid MPI/coarray miniapps
stress tested CrayPAT tools and identified several issues in
these tools. This highlights the usefulness of MPI/coarray
miniapps to Cray developers, because these small driver
programs represent complexity of real engineering codes for
structural integrity and solid mechanics calculations. The
libraries and miniapps are BSD-licensed, so they can be
used by computer scientists and hardware vendors to test
compilers, performance monitoring applications, etc.

ACKNOWLEDGMENT

This work was funded under the embedded CSE pro-
gramme of the ARCHER UK National Supercomputing
Service (http://www.archer.ac.uk)

REFERENCES

[1] ISO/IEC 1539-1:2010, Fortran – Part 1: Base language,
International Standard, 2010.

[2] A. Shterenlikht, L. Margetts, L. Cebamanos, and D. Henty,
“Fortran 2008 coarrays,” ACM Fortran Forum, vol. 34,
pp. 10–30, 2015. [Online]. Available: http://eis.bris.ac.uk/
�mexas/pub/2015acmff.pdf

[3] A. Shterenlikht, “Writing parallel programs with Fortran
2008 coarrays,” Institute of Physics, Computational Physics
Group Newsletter, pp. 12–20, Summer 2014. [Online].
Available: http://www.iop.org/activity/groups/subject/comp/
news/file 64129.pdf

[4] G. Mozdzynski, M. Hamrud, and N. Wedi, “A partitioned
global address space implementation of the European centre
for medium range weather forecasts integrated forecasting
system,” Int. J. High Perf. Comp. Appl., vol. 29, pp. 261–
273, 2015.

[5] V. Kouznetsova, W. A. M. Brekelmans, and F. P. T. Baaijens,
“An approach to micro-macro modeling of heterogeneous
materials,” Comp. Mech., vol. 27, pp. 37–48, 2001.

[6] I. M. Smith, D. V. Griffiths, and L. Margetts, Programming
the Finite Element Method, 5th ed. Wiley, 2014.

[7] J. Phillips, A. Shterenlikht, and M. J. Pavier, “Cellular
automata modelling of nano-crystalline instability,” in
Proc. 20th UK ACME Conf. 27-28 March 2012, The
University of Manchester, UK, 2012. [Online]. Available:
http://eis.bris.ac.uk/�mexas/pub/2012 ACME.pdf

[8] A. Shterenlikht and L. Margetts, “Three-dimensional cellular
automata modelling of cleavage propagation across crystal
boundaries in polycrystalline microstructures,” Proc. Roy.
Soc. A, vol. 471, p. 20150039, 2015. [Online]. Available:
http://eis.bris.ac.uk/�mexas/pub/2015prsa.pdf

[9] I. M. Smith and L. Margetts, “The convergence variability
of parallel iterative solvers,” Eng. Computations, vol. 23, pp.
154–165, 2006.

[10] L. M. Evans, L. Margetts, V. Casalegno, L. M. Lever,
J. Bushell, T. Lowe, A. Wallwork, P. Young, A. Lindemann,
M. Schmidt, and P. M. Mummery, “Transient thermal finite
element analysis of CFC-Cu ITER monoblock using x-ray
tomography data,” Fusion Eng. Des., vol. 100, pp. 100–111,
2015.

[11] J. D. Arregui-Mena, L. Margetts, D. V. Griffiths, L. Lever,
G. Hall, and P. M. Mummery, “Spatial variability in the
coefficient of thermal expansion induces pre-service stresses
in computer models of virgin gilsocarbon bricks,” J. Nuclear
Materials, vol. 465, pp. 793–804, 2015.

[12] S. D. Rawson, L. Margetts, J. K. F. Wong, and S. H. Cartmell,
“Sutured tendon repair; a multi-scale finite element model,”
Biomechanics Modelling Mechanobiology, vol. 14, pp. 123–
133, 2015.

[13] W. I. Sellers, L. Margetts, R. A. Coria, and P. L. Manning,
“March of the titans: The locomotor capabilities of sauropod
dinosaurs,” Plos one, vol. 8, p. e78733, 2013.

[14] A. Shterenlikht, “Fortran coarray library for 3D
cellular automata microstructure simulation,” in Proc. 7th
PGAS Conf., 3-4 October 2013, Edinburgh, Scotland,
UK, M. Weiland, A. Jackson, and N. Johnson,
Eds. The University of Edinburgh, 2014, pp. 16–
24. [Online]. Available: http://www.pgas2013.org.uk/sites/
default/files/pgas2013proceedings.pdf

[15] A. Fanfarillo, “Parallel programming techniques for
heterogeneous exascale computing platforms,” Ph.D.
dissertation, Università degli Studi di Roma Tor Vergata,
2016. [Online]. Available: http://www.opencoarrays.org/
uploads/6/9/7/4/69747895/fanfarillophd.pdf

[16] A. Fanfarillo, T. Burnus, S. Filippone, V. Cardellini,
D. Nagle, and D. Rouson, “OpenCoarrays: open-source
transport layers supporting coarray Fortran compilers,”
in Proc. PGAS 2014, Eugene, Oregon, USA, 2014.
[Online]. Available: http://www.opencoarrays.org/uploads/6/
9/7/4/69747895/pgas14 submission 7-2.pdf

[17] A. Shterenlikht and I. C. Howard, “The CAFE model of
fracture – application to a TMCR steel,” Fatigue Fract. Eng.
Mater. Struct., vol. 29, pp. 770–787, 2006.

[18] S. Das, A. Shterenlikht, I. C. Howard, and E. J. Palmiere, “A
general method for coupling microstructural response with
structural performance,” Proc. Roy. Soc. A, vol. 462, pp.
2085–2096, 2006.

[19] S. J. Wu, C. L. Davis, A. Shterenlikht, and I. C. Howard,
“Modeling the ductile-brittle transition behavior in thermo-
mechanically contolled rolled steels,” Met. Mater. Trans. A,
vol. 36, pp. 989–997, 2005.

[20] A. Vishnu, S. Song, A. Marquez, K. Barker, D. Kerbyson,
K. Cameron, and P. Balaji, “Designing energy efficient com-
munication runtime systems: a view from PGAS models,” J.
Supercomputing, vol. 63, pp. 691–709, 2013.

[21] C. Teijeiro, G. Sutmann, G. L. Taboada, and J. Touriño,
“Parallel Brownian dynamics simulations with the message-
passing and PGAS programming models,” Comp. Physics
Comms, vol. 184, pp. 1191–1202, 2013.

[22] ISO/IEC JTC1/SC22/WG5 N2074, TS 18508 Additional Par-
allel Features in Fortran, 2015.

[23] M. A. Heroux, D. W. Doerfler, P. S. Crozier,
J. M. Willenbring, H. C. Edwards, A. Williams,
M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-
applications,” Sandia National Laboratories, Albuquerque,
New Mexico 87185 and Livermore, California 94550,
Tech. Rep. SAND2009-5574, 2009. [Online]. Available:
https://mantevo.org/MantevoOverview.pdf

