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Abstract—We give an overview of wave scattering in open
cavities in which the ray dynamics is chaotic. In the limit of
short wavelengths certain properties emerge that are universal
and do not depend on the details of the cavity. These universal
features are described by random matrix theory. We discuss in
particular results that characterize the transmission probabilities
and transmission times of waves through the cavity. Short-
wavelength approximations that use statistical properties of long
rays are able to explain this universality.

I. OPEN CHAOTIC CAVITIES

Chaotic cavities are cavities in which the ray dynamics is
chaotic. They find applications, for example, in microwave
physics, in acoustics or in mesoscopics [1]–[5]. Here we give a
brief overview of wave transport through chaotic cavities that
are opened up by attaching semi-infinite leads. An example
is shown in Fig. 1 in the form of a quarter stadium. These
systems are motivated by the transport through quantum dots
[5], [6]. We concentrate on the case of two leads, but the
formalism can be generalised to an arbitrary number of leads.

Stationary waves inside the cavity and the leads satisfy the
Helmholtz equation

(∇2 + k2)ψ(r) = 0, (1)

where k is the wavenumber. In addition one has to require ap-
propriate boundary conditions, for example Dirichlet boundary
conditions for which the wave function ψ(r) vanishes at the
boundary of cavity and leads.

One way to characterise the wave solutions for this system
is to consider the corresponding scattering problem. In each
lead there is a finite number of incoming and outgoing modes.
These numbers are given by Mi = bkwi/πc where wi is the
width of the i-th lead.

The M × M scattering matrix S connects the M (flux
normalised) incoming modes to the M outgoing modes, where
M = M1 + M2. Due to flux conservation S is unitary,
S†S = 1, and it has the block structure

S =

(
r t′

t r′

)
. (2)

Here r and t refer to reflection and transmission for incoming
waves in lead 1, and r′ and t′ refer to reflection and trans-
mission for incoming waves in lead 2. There are a number of
quantities that can be obtained from the S-matrix and that can
be used to characterise the transmission through the cavity.
Some of them are discussed in the following section.
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Fig. 1. An open chaotic cavity in the form of a quarter stadium with two
attached semi-infinite leads. Also shown is a ray entering the cavity through
lead 1 with angle θ1, and leaving it through lead 2 with angle θ2.

II. TRANSMISSION EIGENVALUES AND TIME DELAYS

The total transmission coefficient T for incoming waves in
lead 1 is

T =

M1∑
a=1

M2∑
b=1

|tba|2 = Tr(t t†). (3)

Similarly, the reflection coefficient is R = Tr(r r†), and
unitarity of S requires that R+ T = M1.

The eigenvalues of tt† are the transmission eigenvalues

T1, . . . , Tn , Tj ∈ [0, 1] , n = min(M1,M2)

Many important transmission properties can be obtained from
the eigenvalues Tj . For example, the transmission coefficient
T =

∑
j Tj , the variance of T , the shot noise 〈

∑
j Tj(1−Tj)〉

or the transmission moments 1
n 〈
∑
j T

k
j 〉. The expression of

transmission properties in terms of the transmission eigenval-
ues is often referred to as Landauer-Büttiker formalism [7],
[8].

A second set of quantities are related to the Wigner-Smith
matrix Q [9], [10]

Q = −iS†
∂S

∂E
. (4)

The matrix Q is hermitian, Q = Q†, and its M eigenvalues
are the proper time delays τj . They characterise temporal
aspects of a wave scattering process. Similar as with the
transmission eigenvalues Tj , the proper time delays τj can
be used to express other quantities of interest. Among them
are the Wigner time delay τW = 1

MTrQ = 1
M

∑
j τj ,



the variance of τW and the moments of the proper time
delays 1

M 〈
∑
j τ

k
j 〉. Interesting properties of the Wigner time

delay include its relation to the total scattering phase shift
τW (E) = − i

M
d

dE ln detS(E) and to the density of states
τW (E) = 2π

M d(E).
A remarkable property of chaotic cavities is that the sta-

tistical distributions of the transmission eigenvalues Tj and
the proper time delays τj are expected to become universal
in the limit of short wavelengths (k → ∞) if the leads are
sufficiently thin. These universal distributions are described
by random matrix theory. This is discussed in the following.

III. RANDOM MATRIX THEORY

There are two different approaches for applying random
matrix theory to open chaotic cavities. In one approach the
M ×M scattering matrix is related to an N × N Hermitian
matrix H that describes the eigenmodes of the corresponding
closed cavity (without leads), and an N ×M coupling matrix
V that describes the coupling between inside and outside [11].
The relation is given by

S(E) = I − iV †
1

E −Heff
V , Heff = H − i

2
V V †. (5)

The matrix H can be chosen, for example, as a random
Gaussian matrix and the matrix V can either be taken fixed
or random [12].

In the second approach the scattering matrix is modelled
directly by a random matrix. Derived from an information
theoretic approach, the corresponding distribution of the S-
matrix is uniquely parametrised by the average scattering
matrix S̄ and is described by the so-called Poisson kernel [13].
For perfect coupling (S̄ = 0) the relevant ensembles are the
circular ensembles.

The two approaches for the scattering matrix can be shown
to be equivalent in some cases [14].

For the transmission eigenvalues the results are the follow-
ing. The joint probability density function is given by the
Jacobi ensemble which has the form [15], [16]

P (T1, T2, . . . , Tn) = Nβ
n∏
j=1

Tαj
∏

1≤j<k≤n

|Tj − Tk|β . (6)

Here α = β/2(|M2−M1|+ 1)−1 and Nβ is a normalisation
constant. The parameter β depends on time-reversal properties.
Chaotic cavities are invariant under time reversal and then
β = 2.

Using the distribution of the transmission eigenvalues (6),
results for related quantities can be obtained. As an example,
we state the result for the transmission coefficient (β = 2)

T =
M1M2

M + 1
=
M1M2

M
− M1M2

M2
+
M1M2

M3
− . . . . (7)

It deviates from the classical transmission that is given by the
first term in this expansion, M1M2/M .

The corresponding results for the proper time delays where
obtained in [17]. They are conveniently expressed in terms of
the inverses of the proper time delays γj = 1/τj . The joint

probability density function of the γj is given by the Laguerre
ensemble which has the form [17]

P (γ1, . . . , γn) = Nβ
n∏
j=1

γ
βM/2
j e−βγj/2

∏
1≤j<k≤n

|γj − γk|β .

(8)
The applicability of random matrix theory to chaotic cavities

was first established empirically, but it was later confirmed by
asymptotic methods in the limit of short wavelengths. The
following section discusses these asymptotic approaches.

IV. APPROXIMATIONS IN THE LIMIT OF SHORT
WAVELENGTHS

The elements tba of the transmission matrix t can be
approximated in the short-wavelength limit k → ∞ in terms
of rays that go from the incoming lead to the outgoing lead
[18]

tba ≈
∑
γ:a→b

Aγ exp(ikLγ). (9)

An example of such a ray is shown in Fig. 1. The incoming
and outgoing channels a and b determine the modulus of the
angles with which the rays enter and leave the cavity (with
respect to the normals at the openings)

sin θ1 = ± aπ

kw1
, sin θ2 = ± bπ

kw2
, (10)

where a ∈ {1, . . . ,M1} and b ∈ {1, . . . ,M2}. The sum over
γ in (9) runs over the infinite number of such trajectories, Lγ
is the length of the ray γ and Aγ an amplitude factor that
depends on stability properties.

We discuss in the following how this approximation can
be applied in order to reproduce the random matrix result (7)
for the transmission coefficient T . The approximation for T is
given by

T =

〈∑
a,b

tba tba

〉
k

(11)

≈

〈∑
a,b

∑
γ,γ′:a→b

Aγ Aγ′ exp(ik(Lγ − Lγ′))

〉
k

.

This expression contains a double sum over rays γ and γ′.
It involves a local average over the wavenumber k to smooth
out fluctuations and to obtain the mean transmission. A central
observation is that most terms in this double sum do not con-
tribute because the average over the wavenumber k removes
most of these highly oscillatory terms. The only important
contributions come from pairs of rays that are correlated.

In a first approximation expression (11) was considered in
the diagonal approximation where γ = γ′ [19]

Tdiag =
∑
a,b

∑
γ:a→b

|Aγ |2 . (12)

This approximation can be evaluated by using a classical sum
rule that is based on average properties of long rays in an
open chaotic cavity. It can be obtained by considering the
probability density that rays that enter the cavity with angle



2

lead 1

θ1

lead 2

θ

Fig. 2. A schematic view of a pair of trajectories that are correlated (blue
full line and red dashed line). The two rays differ by traversing the loop in
opposite directions. Both rays have a close self-encounter, indicated by the
rectangular box, in which two stretches of a ray become almost (anti-)parallel.

θ1 will leave it after time t with angle θ2. One the one
hand, this probability density can be related to the sum in
(12). On the other hand it can be evaluated asymptotically by
using the property of chaotic systems that long trajectories are
equally likely to be anywhere in the cavity. One has to take
furthermore into account that the trajectories have a probability
to escape in time t that is characterised by the dwell time. The
resulting sum rule for Tdiag is

Tdiag ∼
∑
a,b

1

MτD

∫ ∞
0

dt e−t/τD ∼ M1M2

M
, (13)

where τD is the classical dwell time. The result is the classical
transmission coefficient which is the leading order term in the
random matrix result (7).

The corrections to the leading term involve correlated pairs
of trajectories that are not identical. The first correction comes
from rays that are almost identical, except that they contain
a loop that is traversed by both rays in opposite directions.
This is possible because the rays have a close self-encounter.
A schematic view of such a correlated pair of rays is shown
in Fig. 2. In reality the rays consist of straight line segments
with specular reflections at the boundary as in Fig. 1, but the
mechanism of correlation is the same. The two rays have
a close self-encounter and they traverse the adjacent loop
in opposite directions. The contributions of these pairs of
rays were evaluated in [20], generalising methods for closed
systems [21], and they give the next-to-leading order term in
(7).

All higher order correlations were evaluated in [22], [23],
also generalising methods for closed systems [24], [25]. They
involve pairs of rays with arbitrary many self-encounters
and arbitrary links between them, and they reproduce the
complete expansion of the transmission coefficient T in (7)
in agreement with random matrix theory. A central step in the
evaluation in [22], [23] was the realisation that contributions
of rays to T could be expressed in terms of diagrammatic
rules. The diagrammatic rules reduced the calculations in the
short-wavelength limit to a purely combinatorial problem of
summing over various diagrams that expressed all possible
correlations between rays. It opened the door for applying the

ray approximation to the calculation of all moments of the
transmission eigenvalues.

To illustrate the diagrammatic rules, let us apply them to
the contributions of pairs of rays with one self-encounter as
in Fig. 2. The rules are the following: there is a factor 1/M for
every link. These are parts of the rays that connects encounter
with encounter or encounter with lead. Furthermore, there is
a factor (−M) for every encounter, and a further factor of
M1M2 for the number of incoming and outgoing leads. The
pair of rays in Fig. 2 have three links and one encounter and
their contribution is(

1

M

)3

(−M)M1M2 = −M1M2

M2
. (14)

This is in deed the second term in the expansion (7). Note that
these diagrammatic rules were obtained from the properties of
long rays in chaotic systems, similarly as the classical sum rule
in (13).

In summary, the following results for the transmission mo-
ments Mk = 1

n 〈
∑
j T

k
j 〉 were obtained: The first correction

to the first momentM1 [20], the leading order for the second
moment M2 [26], all orders for the first and second moment
M1 andM2 [22], [23], the leading order of all momentsMk

[27], the second order of all moments Mk [28], and finally
all orders of all moments Mk [29]–[32]. All results are in
agreement with random matrix theory.

For the proper time delays the results are not as complete, as
is discussed in the following. One can base short-wavelength
approximations for the moments of the proper time delays
on the definition of the Wigner-Smith matrix in (4). This
involves the same type of lead-connecting rays as for the
transmission moments. However, one does not have similar
diagrammatic rules in this case and this makes the calculations
more complicated. Results that have been obtained for the
moments of the proper time delays mk = 1

M 〈
∑
j τ

k
j 〉 in this

way are: All orders for the first moment m1 [33], the leading
order for all moments mk [34], and the first two orders for all
moments mk [28].

Recently, however, a different approximation in the short-
wavelength limit has been derived for the time delays [35].
It is based on the so-called resonance approximation for the
Wigner-Smith matrix [36]

Q = h̄ V †
1

(E −Heff)†
1

(E −Heff)
V, (15)

and it involves rays that start in a lead and end inside the
cavity. With this new approximation it has now been possible
to establish diagrammatic rules for the evaluation of ray
correlations, and they have been applied to derive all orders
for the second moment m2 and the leading five orders for all
moments mk [35]. A remaining open problem is to obtain all
orders for all moments mk as was possible for the transmission
eigenvalues.
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