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Declaratively Capturing Local Label Correlations with
Multi-Label Trees

Reem Al-Otaibi 1 2 and Meelis Kull 1 3 and Peter Flach 1

Abstract. The goal of multi-label classification is to predict mul-
tiple labels per data point simultaneously. Real-world applications
tend to have high-dimensional label spaces, employing hundreds or
even thousands of labels. While these labels could be predicted sepa-
rately, by capturing label correlation we might achieve better predic-
tive performance. In contrast with previous attempts in the literature
that have modelled label correlations globally, this paper proposes a
novel algorithm to model correlations and cluster labels locally. La-

CovaC is a multi-label decision tree classifier that clusters labels into
several dependent subsets at various points during training. The clus-
ters are obtained locally by identifying the conditionally-dependent
labels in localised regions of the feature space using the label correla-
tion matrix. LaCovaC interleaves between two main decisions on the
label matrix with training instances in rows and labels in columns:
splitting this matrix vertically by partitioning the labels into subsets,
or splitting it horizontally using features in the conventional way. Ex-
periments on 13 benchmark datasets demonstrate that our proposal
achieves competitive performance over a wide range of evaluation
metrics when compared with the state-of-the-art multi-label classi-
fiers.

1 Introduction and Motivation

In traditional classification each data point is assigned to a single
label. In binary classification each point can belong to one of two
classes, whereas in multi-class classification the setting is more gen-
eral, allowing each training point to belong to one of more than two
classes. Multi-label classification generalises both by allowing more
than one label for each data point [20, 28]. Thus, it allows for a wide
range of applications, such as text categorisation, image and movie
tagging, and gene function prediction. For example, a medical diag-
nosis might find a patient has multiple diseases at one time; an article
that gives statistics about the number of students who have applied
to Medical schools in a country could be categorised as both edu-
cational and medical; and an image that captures a beach at sunset
could belong to both beach and sunset groups. Thus, all these exam-
ples naturally yield multiple labels.

Existing approaches in multi-label learning can be categorised
into two main types. Problem transformation approaches decompose
multi-label data into several binary problems, in order to use a binary
classifier. For example, a multi-label problem with |L| labels can be
solved with |L| binary classifiers, in which all predictions are then
merged to produce final predictions. In the second type of approaches
the algorithms handle multi-label data directly.
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The main challenge to note is that labels in real-world applica-
tions often have a relationship or connection, whereby the presence
of one label affects or depends on another. Several studies argue that
exploiting label correlations is important in the area of multi-label
classification [7, 27, 28]. Although a considerable amount of work
has been done in this area, these have chiefly focused on a global ap-
proach, in which label correlations are identified as a pre-processing
step prior to training the model.

Decision tree algorithms are among the most widely used algo-
rithms for classification [13, 17]. Considering the advantages of de-
cision tree models, this paper proposes LaCovaC, which is a multi-
label decision tree classifier. LaCovaC utilises the label correlation
matrix at every node of the tree to find possible clusters among the
labels. In addition to internal nodes that split the dataset horizontally
based on selected features, LaCovaC introduces a second kind of
node for splitting the label space vertically. At deployment, a hori-
zontal split routes to exactly one child node according to a feature
value as per normal, while a vertical split tests all outgoing edges to
collect predictions about the entire labelset.

The remainder of this paper is organised as follows. Section 2 pro-
vides an overview of existing approaches to exploit correlations in
multi-label classification. LaCovaC is presented in Section 3, and
an experimental evaluation is presented and discussed in Section 4.
Section 5 concludes the paper by stating the main findings and pos-
sible avenues for further work.

2 Related Work

Two well-known baseline algorithms have been considered for use as
problem transformation methods: Binary Relevance (BR) [19] and
Label Powerset (LP) [23]. BR applies one binary classifier to each
individual label. It transforms the original dataset D into |L| datasets,
each of which comprises all examples of the original dataset. The ex-
amples are labelled positively if the labelset for the original example
contains this label, and negatively if not. To classify a new instance,
BR outputs the union of labels that have been positively predicted by
the |L| classifiers. Label Powerset (LP), also known as Label Combi-
nation, considers each unique set of labels that exists in a multi-label
training set as a new class in a multi-class classification task. It is ap-
parent that BR does not model label dependency, whereas LP does.
However, overfitting and the exponential number of label combina-
tions are potential difficulties affecting LP. Therefore, many different
directions have been taken in the literature to address label correla-
tions. We summarise these into several distinct approaches below.

The first approach is to transform a multi-label problem into sev-
eral binary classification tasks by considering label correlations. A
well-known algorithm called the Classifier Chain (CC) involves |L|
binary classifiers as in BR, but orders them along a chain, wherein
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each classifier deals with the binary relevance problem associated
with a label. Importantly, the feature space of each link in the chain
is extended with the 0/1 label predictions for all previous links [16].

The same authors of CC have proposed the Ensembles of Classi-
fier Chains (ECC), an ensemble method where the individual clas-
sifiers are trained with different orders of labels in the chain and a
random subset of the training data, encouraging variability among
the classifiers. These predictions are summed per label so that each
label receives a number of votes. A threshold is used to select the
most popular labels, which form the final predicted label set [16].

Clearly, CC and ECC are sensitive to the label order in the training
process. A number of extensions to the original CC method have
been proposed in [6, 7, 11, 15, 26], aiming at eliminating the key
drawback in the CC, which is the lack of a principled way to decide
on the label ordering.

Although CC considers label correlations by inserting the labels as
new features, there is an important point to consider. It is the fact that
all labels are inserted as additional features along the chain until the
last label in the chain contains all previous labels as extra input fea-
tures. This can be a limiting factor in high-dimensional label spaces.
Furthermore, these methods force all preceding labels to be addi-
tional features for the examined label which might not be relevant or
useful.

The second approach is to exploit correlations between labels by
clustering them. The hierarchy of multi-label classifier (Homer) or-
ganises all labels into a tree-shaped hierarchy, with leaf nodes con-
taining a single label [21]. Each node has training instances that are
annotated with at least one of its labels. In the training phase, a multi-
label classifier is trained for each node to predict a subset of labels in
that node. In particular, a leaf node constructs a binary classifier to
predict its single label. Given an unseen instance, Homer starts from
the root node and proceeds to any successor node only if at least one
of its labels was predicted by its parent node. In the end, this process
reaches a subset of leaves and the final prediction is combined from
predictions of these leaves. A recent work proposed in [4] combines
the LP and BR methods, and is called LPBR. Its first step is to ex-
plore the dependencies between labels and then to cluster these labels
into several independent subsets, according to the chi-squared statis-
tic. Subsequently, a multi-label classifier is learnt: if the set contains
only one label, BR is applied; for a group of dependent labels, LP
is used. LPBR implements a greedy clustering algorithm that con-
tinues clustering as long as the loss function improves. While LPBR
showed an improvement in terms of classification accuracy, it is com-
putationally expensive.

In [12] the authors propose a method ML-LOC which first clusters
the instances with respect to similarity of features and labels jointly.
Subsequently, the feature space is extended with an additional fea-
ture encoding the cluster membership. Given a test instance, this ad-
ditional feature is predicted using a regression model. The final pre-
dictions are then obtained from any standard multi-label classifier,
trained on the extended feature space.

The final approach is to adopt decision tree algorithms in a multi-
label setting. ML-C4.5 was proposed by [5] to deal with multi-label
data, while the basic strategy was to define multi-label entropy sepa-
rately over a set of multi-label examples. The modified entropy sums
the entropies for each individual label. Another recent work was pro-
posed in [10], and also builds a single tree for a multi-label dataset.
They proposed a hybrid decision tree architecture to utilise support
vector machines (SVMs) at its leaves. This approach, known as ML-
SVMDT, combines two models: ML-C4.5 and BR. It builds a single
decision tree, similar to ML-C4.5, whose leaves contain BR clas-

sifiers giving multi-label predictions using SVM. LaCova was pro-
posed in [2] and is a tree based multi-label classifier that uses label
covariance as a splitting criterion. The principle of LaCova is to use
the label covariance matrix at each node of the tree to treat labels
independently (i.e., learn a BR model from then on) or keep them
together (LP) for now.

In this work we explore the value of mediating between these
extreme decisions at each node in the tree. We propose LaCovaC

which – different from previous methods – clusters labels dynami-
cally during the construction of the decision tree, and hence mod-
els conditional label correlations at every node of the tree. Although
other models attempt to cluster labels, they do so over the entire
dataset, e.g. Homer and LPBR. In practice, conditional correlations
that are used for clustering may be local, and depend on specific fea-
ture values. Hence LaCovaC will not separate labels automatically
as happens in BR, but only in cases when labels are uncorrelated.
Additionally, LaCovaC would not model the joint distribution at all
times, as this can cause overfitting, as in LP. These decisions are
taken locally at every node in the tree.

3 The Proposed Model

The key theoretical underpinning of decision trees is that they iden-
tify regions in instance space with low label variance, which is built
into the splitting criterion. Naive extensions to the multi-label setting
would either lead to a separate tree for each label (as in BR) or keep-
ing all labels together (as in LP). Learning a separate tree for each
label would result in as many trees as there are labels, which can be
hundreds or thousands in some domains (in our experiments it can be
up to 374). Furthermore, the explanatory power of the decision tree
models would be reduced, which is an important factor in medical
domains, among many others.

3.1 An Illustrative Example

Before providing a formal definition, a simple example is introduced
here to illustrate the proposed algorithm. IMDB4 is a multi-label
dataset that contains keywords describing movies, and the classifica-
tion task is to predict the movie’s genre. Each movie can be assigned
multiple genres from among 27 labels. For simplicity, we have se-
lected two input features: dark and love; and three movie genres:
crime, horror and drama.

Table 1: A small multi-label dataset with 12 instances as might be
used in movie genre classification.

labels features
crime horror drama love dark

1 1 1 1 1 1
2 1 0 0 0 1
3 1 0 1 1 1
4 1 0 0 0 1
5 1 0 1 1 1
6 0 1 0 0 1
7 0 1 1 1 1
8 0 1 0 0 1
9 0 1 1 1 1
10 1 1 1 1 0
11 1 0 0 0 0
12 0 1 1 1 0

Inspired by the IMDB dataset we have created a toy dataset, shown
in Table 1, which we use to demonstrate the advantages of LaCovaC

4 http://meka.sourceforge.net/
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Figure 1: An example of a tree learned by LaCovaC. VS and HS
stand for vertical and horizontal splits, respectively. The leaves show
the probabilities of each label subset, except for the empty subset
which can be calculated as 1 minus the sum of the given probabilities.

over binary relevance. Figure 1 shows the tree generated using La-

CovaC. In this example, LaCovaC initially finds two label clusters:
{crime, horror} and {drama}. Therefore, it splits the dataset
vertically, and recursively creates a tree for each cluster of labels. On
the left-hand side of the tree a horizontal split can be observed at the
next level using the feature dark, leading to another vertical split on
the left and a node that requires further horizontal splitting. Note that
the second vertical split did not split further due to a minimum cardi-
nality constraint (2 instances in this toy example). As can be seen on
the left-hand side of the tree, {crime, horror} are independent
when dark is false, and dependent otherwise.

When the feature love is true both labels share the same es-
timated marginal probability of 0.6, which can lead to predicting
both of them as relevant labels, assuming 0.5 as a threshold. How-
ever, the proposed model suggests that the two subsets {crime=0,
horror=1} or {crime=1, horror=0} with the highest proba-
bility among other subsets can lead to a better prediction. In other
words, leaves predict the label subset that has the highest probability
among others, regardless of their marginal probabilities. With re-
gards to the third label {drama}, the proposed algorithm learns it
separately as can be seen on the right-hand side of the tree.

This example demonstrates the power of modelling label correla-
tions locally in the tree instead of globally in pre-processing, and also
that the tree model represents such local correlations in a declarative
way.

When applying the learned model on a test instance, one outgoing
branch of a horizontal split should be followed based on the feature
value as in a standard decision tree. In contrast, in a vertical split, all
outgoing branches should be followed to collect predictions for all la-
bels reaching the node. For example, in order to label a movie which
has features {dark=1, love=1}, the two branches of the first verti-
cal split should be visited. On the right-hand side of the tree, we find
that the drama label does apply. On the left-hand side of the tree, we
will have a horizontal split based on the dark feature leading to the
second horizontal node based on the love feature. The right leaf of
this second horizontal split suggests two label subsets: {crime=1,
horror=0} or {crime=0, horror=1}. Suppose that the first set
is chosen, then the overall predictions for this movie will be the fol-

lowing labels {crime=1, horror=0, drama=1}.
Figure 2 shows the result of binary relevance on this example with

single-label decision trees as base model. The leftmost tree is for
the crime label; the root node splits on the feature dark, when
dark=0 it leads to a leaf due to a minimum cardinality constraint (2
instances). On the right-hand side of the tree, it splits further based
on the feature love. Leaves show the estimated probabilities and
the predicted label. The middle and right-most tree were constructed
using the same method to learn labels horror and drama, respec-
tively.

In order to predict genres for a new movie with {dark=1 and
love=1} all three trees should be tested. The prediction for this
movie will be {crime, horror, drama}, using 0.5 as a threshold.
This is different from what the proposed model LaCovaC predicts.

3.2 The Main Algorithm

LaCovaC implements three key decisions at every node of the de-
cision tree, and the process can be summarised as follows. Firstly, if
labels are pure or the set of instances reaches the minimum number
of data points, the algorithm stops and returns a leaf. Secondly, if the
label’s correlation matrix suggests the presence of cluster structure,
the algorithm splits the dataset reaching that node according to the
label clusters (vertical split). Finally, a set of labels located together
at a node are learned, and the best features to split are determined
(horizontal split).

The first decision requires a threshold on the label variance. In our
experiments we found that, in combination with a minimum num-
ber of instances at a leaf, a variance threshold of 0 (i.e. all labels are
pure) works well. The detection of cluster structure is presented in the
next section. The third decision that splits instance space horizontally
also demands a splitting criterion. The most popular splitting crite-
ria in standard decision trees learning are Gini-split (which uses the
Gini index to measure impurity) and information gain (which uses
Shannon entropy). However, LaCovaC implements a splitting crite-
rion designed specifically for multi-label data, following a previous
work [2], which can be summarised as follows. It evaluates for each
child both its sum of label variances and its sum of absolute label co-
variances, and assigns as a splitting measure the minimum of these
two (low is better). Then, it selects the feature that has the lowest
splitting measure. This criterion can identify regions with either low
multi-label variance or low label covariance. We improve on this by
clustering the labels in a principled way into independent groups of
correlated labels.

Algorithm 1 details the main algorithm implementing the ap-
proach described here.

3.3 Label Clustering

The labels are clustered based on the correlation matrix Cor, which
is a square |L| by |L| matrix that contains the Pearson correlation co-
efficients cor jk between pair of labels l j and lk. As labels are binary
in the multi-label setting, the Pearson coefficient is reduced to the Phi
coefficient, a well-known measure of association between two binary
(dichotomous) variables [3, 24]. Whenever the absolute value of cor-
relation between two labels is greater than a threshold λ|D| calculated
from the number of instances (derivation given below), we decide
that these labels are correlated and should be in the same cluster.

Algorithmically, this can be achieved by single linkage agglomer-
ative hierarchical clustering as shown in Algorithm 2. The algorithm
starts by creating a separate cluster for each label. It then proceeds
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Figure 2: A separate decision tree for each label as learned by the binary relevance baseline method.

Algorithm 1 LaCovaC (D,L): Learn a tree-based multi-label classi-
fier from training data.

Input: Dataset D; Labelset L; Minimum number m of instances to
split
Output: Tree-based multi-label classifier
if Labels are pure or |D|<m then

Return Leaf with relative frequencies of labelsets, predicted la-
belset that has the highest probability

else

clust=CLUST(D,L)
if |clust|> 1 then

for each set s in clust do

Ds = Split D vertically based on the label cluster s
/* Learn a decision tree for the label cluster s */
Ts = LaCovaC (Ds,s).

end for

Return Node splitting on clust with subtrees Ts
else

f ,{Di}= SelectBestFeature(D)
for each child node Di do

Ti = LaCovaC (Di,L)
end for

Return Node splitting on f with subtrees Ti
end if

end if

iteratively by taking pairs of labels in the order of increasing distance
between them, where distance is defined as one minus absolute cor-
relation, dist jk = 1−|cor jk|. For each pair of labels, the clusters con-
taining these labels are merged (unless they belong to the same clus-
ter already). Such merges are performed until the distance between
labels becomes greater than 1−λ|D| (that is, absolute correlation less
than λ|D|).

We now derive the threshold λn to decide whether a pair of labels
are correlated or not, before merging them into one cluster. The idea
is to set this threshold equal to two standard deviations in the dis-
tribution of correlation under the assumption of independent labels,
hence enclosing a 95% confidence interval. The threshold depends on
n, which is the number of instances reaching the current node in the
tree. To derive the threshold we consider two labels with empirical
frequencies p j and pk, respectively. The empirical Pearson correla-
tion between these labels as Bernoulli variables can be calculated as

Algorithm 2 CLUST(D,L): Cluster labels based on the correlation
matrix

Input: Dataset D; a set of labels L = l1, · · · , l|L|;
Output: currClust - the clusters of labels
/* Compute the Pearson correlation coefficients between each pair
of labels.*/
Cor = Correlation Matrix
/* Compute the distance between each pair of labels using the ab-
solute correlations.*/
Dist = 1−|Cor|
/* Build initial clusters with each label in a separate cluster.*/
currClust = {l1},{l2}, · · · ,{l|L|}
/* Create a list of label pairs sorted in ascending order of distance
value.*/
pairList = all pairs of labels (l j, lk) with dist jk < 1−λ|D|, sorted
by dist jk ascendingly
for each label pair (l j, lk) in pairList do

if labels l j and lk are in different clusters then

merge clusters containing l j and lk within currClust
end if

end for

Return currClust

follows:

ĉor jk ≈
Cjk/n− p j pk√

p j pk(1− p j)(1− pk)
, (1)

where Cjk is the the number of instances with both of those la-
bels, and hence Cjk/n is the proportion of such instances. The terms
p j(1− p j) and pk(1− pk) in the denominator are the variances of
these Bernoulli variables.

Next, we study the distribution of ĉor jk under the assumption that
labels l j and lk are independent. This distribution can be generated
by randomly reassigning one of those labels between the instances,
keeping the total frequency constant. In such case Cjk has a hyper-
geometric distribution, and we can then directly calculate its mean μ
and variance σ2:

Cjk ∼ Hypergeometric(np j,npk,n)

μ = np j pk

σ2 =
n2

n−1
p j pk(1− p j)(1− pk)
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From this we can calculate the mean and variance of the correla-
tion ĉor jk between labels l j and lk, as follows:

mean(ĉor jk) =
np j pk/n− p j pk√

p j pk(1− p j)(1− pk)
= 0

var(ĉor jk) =
n2

n−1 p j pk(1− p j)(1− pk)/n2

p j pk(1− p j)(1− pk)
=

1
n−1

We define λn as the value enclosing a 95% confidence interval as-
suming a normal distribution for ĉor jk which can be calculated in
the usual way:

λn = 1.96 ·
√

var(ĉor jk) =
1.96√
n−1

(2)

where n is the number of instances reaching a particular decision
node in the tree. Note that this threshold is always less than 1 as
n > 5 in our experiments.

4 Experimental Evaluation

In total, 13 common benchmarks were retrieved for use from the
Meka5 and Mulan [22] repositories. The key statistics of these
datasets are shown in Table 2.

Table 2: The statistics for the datasets used in the experiments. |L|
is the number of labels, |D| is the number of instances, att is the
number of attributes (features), card is the average number of labels
per instance, and dens is the label density.

|L| |D| att card dens
Corel5k 374 5000 499 3.522 0.94%
Cal500 174 502 68 26.044 14.96%
Bibtex 159 7395 1836 2.402 1.51%
Language log 75 1460 1004 1.179 1.57%
Enron 53 1702 1001 3.378 6.37%
Medical 45 978 1449 1.245 2.76%
Genebase 27 662 1186 1.252 4.63 %
Slashdot 22 3782 1079 1.180 5.36%
Birds 19 645 260 1.014 5.30%
Yeast 14 2417 103 4.237 30.26%
Flags 7 194 19 3.392 48.45%
Emotions 6 593 66 1.869 31.14%
Scene 6 2407 294 1.074 17.89%

4.1 Experimental Setup

BR, LP, and CC algorithms were run in Meka, whereas Mulan was
used for the Homer and LPBR algorithms. When employing all these
methods, the trees were produced with Weka’s J48 algorithm 6. The
Homer algorithm was run using the best setting, as reported by [21].
LPBR requires parameter configurations, such as non-improving
counter to prevent clustering. The default parameters settings in Mu-
lan were 5 for the non-improving counter and a 5-fold cross valida-
tion for testing the clustering performance. The target loss function
to evaluate the clustering was set to exact-match according to Mulan.
Exact-match is a strict measure that examines whether the predicted
and actual label sets are equal or not.

5 http://meka.sourceforge.net/
6 http://sourceforge.net/projects/weka

LaCovaC was implemented in Java on the Meka platform. The
LaCova and ML-C4.5 implementations are provided in [2]. The min-
imal number of instances in the leaves in ML-C4.5, LaCova, and La-

CovaC was set to 5.
10-fold cross-validation was performed throughout except the two

largest datasets in terms of both number of labels and number of in-
stances: Corel5k and Bibtex. The exception is because cross valida-
tion was intensive for LPBR as we were not able to run this algorithm
using the available resources 7. Therefore, a train/test split was used
instead, which was provided by Mulan.

For all methods we used the Pcut method to convert the label prob-
abilities into relevant labels [1, 25]. This method uses a single thresh-
old for all labels, chosen such that the average label density in test
data is the same as in the training data.

4.2 Evaluation Metrics

All algorithms were evaluated under the Meka framework. We used
the most common multi-label metrics, namely multi-label accuracy
(Jaccard index), exact-match (subset accuracy), Hamming loss and
three versions of the F1 score: micro-averaged over all instance-label
combinations, macro-averaged per label, and macro-averaged per in-
stance. We also used a multi-label version of log-loss [16] to evalu-
ate the predicted probabilities. Log-loss evaluates a classifier’s con-
fidence by punishing errors with higher probability more severely.
We used a dataset-dependent maximum of log( 1

|D| ) to limit the mag-
nitudes of penalty as suggested in [16]. The description and formal
definition of these evaluation measures for multi-label data are given
below.

Multi-label accuracy calculates the ratio of the union and inter-
section of the predicted and actual labelsets, averaged over all exam-
ples [28]:

mla =
1
|D|

|D|
∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

(3)

where Yi and Ŷi are the set of actual labels and predicted labels for an
instance, respectively.

Exact-match examines if the predicted and actual label subsets
are equal or not [9]:

em =
1
|D|

|D|
∑
i=1

I(Yi = Ŷi) (4)

where I(true) = 1 and I( f alse) = 0.

Hamming loss takes the proportion of misclassified labels (labels
predicted incorrectly and correct labels that are not predicted) aver-
aged over all examples [18]:

hl =
1

|L| ∗ |D|
|D|
∑
i=1

|Yi � Ŷi| (5)

where � is the symmetric difference.

7 2.7 GHz Intel Core i5 processor and 8GB of memory
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Log-loss evaluates a classifier’s confidence by punishing errors
with higher probability more severely [16]:

ls =
1
|D|

|D|
∑
i=1

|L|
∑
j=1

log(pri j) · yi j + log(1− pri j) · (1− yi j) (6)

where yi j indicates whether the jth label is relevant for the ith in-
stance (value 1) or irrelevant (value 0). pri j is the probability estimate
for the ith instance and the jth label.

Micro F1 corresponds to the harmonic mean of precision and re-
call [14]. It put all predictions on all labels in one vector as in binary
classification and then calculates the F1:

micro F1 =
∑|D|

i=1 ∑|L|
j=1 2 · yi j · ŷi j

∑|D|
i=1 ∑|L|

j=1(yi j + ŷi j)
(7)

Macro fl is the averaged F1 score over labels [14]:

macro fl =
1
|L|

|L|
∑
j=1

F( j)
1 (8)

where F( j)
1 is the F1 score for the jth label vector.

Macro fe is the averaged F1 score over examples [14]:

macro fe =
1
|D|

|D|
∑
i=1

Fi
1 (9)

where Fi
1 is the F1 score for the ith instance row vector.

4.3 Results and Discussion

We conducted the Friedman test based on the average ranks for all
datasets [8]. This test ranks the algorithms for each dataset separately,
thus the best algorithm gets the rank of 1, the second best the rank
of 2, etc. Then, it calculates the test statistic on the ranks averaged
over all datasets in order to verify whether the differences between
algorithms are statistically significant.

Table 3 shows the average ranks for each algorithm over 13
datasets and seven evaluation measures. We also show the mean of
these average ranks aggregated over all evaluation measures, which
shows that overall LaCovaC scores highest, followed by CC and
BR. The Friedman test gave a significant difference at 5% confidence
for all metrics except multi-label accuracy; therefore, we carried out
post-hoc Nemenyi tests as shown in Figure 3.

It can be seen that LaCovaC outperforms Homer, ML-C4.5, and
LPBR in the average ranks with respect to all the evaluation measures
used in this paper, and in several cases statistically significantly. La-

CovaC is not significantly worse than the best performing algorithm
(LP) in terms of exact-match. In fact, according to Table 4 LaCovaC

loses to LP in the 4 datasets with the smallest numbers of labels (up
to 14), but wins in 6 out of the 9 datasets with more labels. This fact
confirms the assumption that LP can overfit the training data in case
of large number of labels and label combinations because it can only
model labelsets observed in the training. Notably, for exact-match
the proposed algorithm LaCovaC is the overall best method or tied
with the best in the three datasets with the biggest numbers of labels

(Corel5k, Cal500 and Bibtex with 374, 174 and 159 labels, respec-
tively). The proposed algorithm has better Hamming loss than LP in
9 out of 13 datasets.

Additionally, LaCovaC outperforms BR in terms of exact-match,
log-loss and Hamming loss. BR has the best average rank consid-
ering F1 score per instance average fe, F1 per label average fl and
micro F1 as it decomposes the multi-label problem into several bi-
nary classifiers, which can be better for F1 score.

We can further observe that LaCovaC has the best average rank
in terms of log-loss that evaluates the classifiers’ scores regardless
of the thresholding technique. It is significantly better than CC, ML-
C4.5, Homer and LP.

Finally, CC gets top average rank for Hamming loss and LaCo-

vaC is the second best without significant loss against CC. Detailed
results of the experiments are given in Tables 4, 5 and 6.

Table 3: Average ranks obtained by the Friedman test over 13
datasets. The last column shows the mean of the average ranks ob-
tained by each algorithm over all the evaluation measures, and the
algorithms are sorted on decreasing mean. mla, em, hl and ls denote
multi-label accuracy, exact-match, Hamming loss and log-loss, re-
spectively. micro F1 is the micro averaged F1. macro fl and macro
fe are F1 scores averaged in terms of labels and examples, respec-
tively.

mla em hl ls micro F1 macro fl macro fe mean
LaCovaC 3.57 2.69 2.73 2.23 3.88 4.34 3.96 3.34
CC 3.46 2.8 1.69 5.19 3.38 4.19 3.69 3.49
BR 4.57 6.8 4.8 2.3 2.69 1.92 3.26 3.76
LaCova 3.65 5.46 5.03 3.38 3.69 4.15 3.46 4.12
LP 4.92 2.42 4.34 6.46 6 5.57 5.61 5.05
LPBR 4.84 4.61 6.57 4.88 5.38 4.53 4.8 5.09
Homer 5.3 6.03 4.88 6.07 4.61 4.61 5.15 5.24
ML-C4.5 5.65 5.15 5.92 5.46 6.34 6.65 5.76 5.85
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Figure 3: Critical Difference diagrams using pairwise comparisons
for experiments where the Friedman test yields significance at 0.05.
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Table 4: Results on 13 datasets with regards to multi-label accuracy and exact-match, the higher the value the better.

BR LP CC Homer LPBR ML-C4.5 LaCova LaCovaC
multi-label accuracy

Corel5k 0.089(2) 0.080(7) 0.083(6) 0.092(1) 0.023(8) 0.087(4) 0.084(5) 0.088(3)
Cal500 0.201(6) 0.204(5) 0.208(4) 0.197(7) 0.067(8) 0.278(1) 0.254(2) 0.209(3)
Bibtex 0.259(5) 0.244(6) 0.276(3) 0.208(7) 0.296(1) 0.176(8) 0.267(4) 0.280(2)
Language log 0.245(2) 0.234(4) 0.247(1) 0.233(5) 0.184(8) 0.224(7) 0.235(3) 0.232(6)
Enron 0.296(3) 0.277(5) 0.315(2) 0.281(4) 0.320(1) 0.207(8) 0.256(6) 0.246(7)
Medical 0.729(4) 0.724(6) 0.728(5) 0.700(7) 0.745(2) 0.363(8) 0.732(3) 0.762(1)
Genebase 0.901(8) 0.980(3) 0.986(1) 0.952(5) 0.955(4) 0.946(7) 0.950(6) 0.981(2)
Slashdot 0.425(4) 0.420(5) 0.429(3) 0.379(6) 0.376(7) 0.372(8) 0.439(2) 0.449(1)
Birds 0.491(3) 0.453(7) 0.486(4) 0.493(2) 0.411(8) 0.466(6) 0.481(5) 0.499(1)
Yeast 0.391(6.5) 0.396(4.5) 0.397(3) 0.381(8) 0.411(2) 0.396(4.5) 0.416(1) 0.391(6.5)
Flags 0.534(6) 0.531(7) 0.540(5) 0.544(4) 0.509(8) 0.572(1) 0.556(3) 0.561(2)
Emotions 0.402(4) 0.416(2) 0.388(7) 0.390(6) 0.417(1) 0.406(3) 0.400(5) 0.384(8)
Scene 0.403(6) 0.432(2.5) 0.464(1) 0.380(7) 0.421(5) 0.366(8) 0.432(2.5) 0.429(4)
Average ranks 4.57 4.92 3.46 5.30 4.84 5.65 3.65 3.57

exact-match
Corel5k 0.000(8) 0.008(2) 0.006(3) 0.004(4.5) 0.002(6.5) 0.002(6.5) 0.004(4.5) 0.018(1)
Cal500 0.000(4.5) 0.000(4.5) 0.000(4.5) 0.000(4.5) 0.000(4.5) 0.000(4.5) 0.000(4.5) 0.000(4.5)
Bibtex 0.079(8) 0.137(2) 0.122(4) 0.084(7) 0.123(3) 0.092(6) 0.108(5) 0.149(1)
Language log 0.184(5) 0.205(1) 0.203(2) 0.183(6) 0.153(8) 0.195(4) 0.177(7) 0.197(3)
Enron 0.022(7) 0.079(1) 0.076(2) 0.031(5.5) 0.045(3) 0.020(8) 0.031(5.5) 0.032(4)
Medical 0.607(6) 0.642(3) 0.641(4) 0.598(7) 0.655(2) 0.293(8) 0.625(5) 0.673(1)
Genebase 0.809(8) 0.962(3) 0.971(1) 0.921(6) 0.938(4) 0.923(5) 0.914(7) 0.967(2)
Slashdot 0.296(7) 0.368(2) 0.356(3) 0.262(8) 0.306(6) 0.308(5) 0.353(4) 0.392(1)
Birds 0.398(4) 0.376(7) 0.410(1) 0.404(3) 0.339(8) 0.379(6) 0.395(5) 0.407(2)
Yeast 0.035(8) 0.134(1) 0.118(4) 0.050(7) 0.122(3) 0.109(5) 0.107(6) 0.124(2)
Flags 0.119(8) 0.202(2) 0.182(3) 0.155(5) 0.145(6) 0.207(1) 0.135(7) 0.171(4)
Emotions 0.125(8) 0.202(1) 0.157(4) 0.142(7) 0.165(3) 0.179(2) 0.143(5.5) 0.143(5.5)
Scene 0.284(7) 0.393(2) 0.416(1) 0.277(8) 0.375(3) 0.307(6) 0.354(5) 0.366(4)
Average ranks 6.80 2.42 2.80 6.03 4.61 5.15 5.46 2.69

Table 5: Results on 13 datasets with regards to Hamming loss and log-loss, the lower the value the better.

BR LP CC Homer LPBR ML-C4.5 LaCova LaCovaC
Hamming loss

Corel5k 0.017(5.5) 0.016(3) 0.011(1) 0.016(3) 0.023(7) 0.203(8) 0.016(3) 0.017(5.5)
Cal500 0.223(7) 0.201(5) 0.189(2.5) 0.204(6) 0.540(8) 0.188(1) 0.189(2.5) 0.198(4)
Bibtex 0.022(5.5) 0.020(4) 0.017(1) 0.022(5.5) 0.018(2.5) 0.026(8) 0.024(7) 0.018(2.5)
Language log 0.031(6) 0.026(3) 0.023(1) 0.027(4) 0.069(8) 0.029(5) 0.033(7) 0.025(2)
Enron 0.082(6) 0.078(4.5) 0.062(1) 0.078(4.5) 0.077(2.5) 0.202(8) 0.085(7) 0.077(2.5)
Medical 0.013(3.5) 0.014(5.5) 0.011(2) 0.016(7) 0.013(3.5) 0.163(8) 0.014(5.5) 0.010(1)
Genebase 0.008(4.5) 0.002(2.5) 0.001(1) 0.008(4.5) 0.019(7.5) 0.019(7.5) 0.012(6) 0.002(2.5)
Slashdot 0.055(3) 0.058(4.5) 0.045(2) 0.075(7) 0.086(8) 0.066(6) 0.058(4.5) 0.028(1)
Birds 0.072(3) 0.076(5.5) 0.063(1.5) 0.075(4) 0.113(8) 0.077(7) 0.076(5.5) 0.063(1.5)
Yeast 0.296(7) 0.288(4) 0.281(2) 0.290(6) 0.363(8) 0.289(5) 0.276(1) 0.285(3)
Flags 0.307(6) 0.309(7) 0.302(5) 0.301(4) 0.332(8) 0.273(1) 0.293(3) 0.280(2)
Emotions 0.296(2) 0.304(3) 0.286(1) 0.305(4.5) 0.309(7.5) 0.305(4.5) 0.309(7.5) 0.306(6)
Scene 0.193(3.5) 0.200(5) 0.185(1) 0.193(3.5) 0.238(7) 0.294(8) 0.201(6) 0.188(2)
Average ranks 4.80 4.34 1.69 4.88 6.57 5.92 5.03 2.73

log-loss
Corel5k 0.048(1) 0.101(5) 0.070(4) 0.206(6) 0.275(8) 0.216(7) 0.064(3) 0.061(2)
Cal500 0.481(4) 0.786(7) 0.741(6) 0.586(5) 0.853(8) 0.381(1) 0.407(3) 0.394(2)
Bibtex 0.068(1) 0.158(6) 0.132(5) 0.194(7) 0.075(3) 0.220(8) 0.078(4) 0.070(2)
Language log 0.080(1) 0.130(6) 0.113(4) 0.165(7) 0.122(5) 0.349(8) 0.085(2) 0.093(3)
Enron 0.197(1) 0.402(7) 0.353(5) 0.367(6) 0.230(3) 0.437(8) 0.261(4) 0.218(2)
Medical 0.035(1) 0.064(5) 0.052(3.5) 0.084(7) 0.052(3.5) 0.364(8) 0.066(6) 0.037(2)
Genebase 0.008(3) 0.007(2) 0.005(1) 0.022(6) 0.012(4) 0.064(8) 0.032(7) 0.017(5)
Slashdot 0.163(1) 0.346(7) 0.269(5) 0.333(6) 0.241(4) 0.368(8) 0.204(3) 0.171(2)
Birds 0.181(2) 0.262(8) 0.217(5) 0.238(6) 0.215(4) 0.239(7) 0.190(3) 0.180(1)
Yeast 0.671(4) 1.583(8) 1.540(7) 0.900(6) 0.799(5) 0.585(2) 0.566(1) 0.603(3)
Flags 0.619(4) 0.918(8) 0.897(7) 0.716(6) 0.713(5) 0.546(1) 0.616(3) 0.559(2)
Emotions 0.640(4) 1.243(7) 1.245(8) 0.832(6) 0.815(5) 0.603(1) 0.630(3) 0.619(2)
Scene 0.492(3) 1.095(8) 1.014(7) 0.726(5) 0.733(6) 0.530(4) 0.482(2) 0.475(1)
Average ranks 2.30 6.46 5.19 6.07 4.88 5.46 3.38 2.23
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Table 6: Results on 13 datasets with regards to micro F1, macro fl and macro fe, the higher the value the better.

BR LP CC Homer LPBR ML-C4.5 LaCova LaCovaC
micro F1

Corel5k 0.149(2) 0.114(6) 0.148(3) 0.154(1) 0.038(7) 0.031(8) 0.141(4) 0.126(5)
Cal500 0.334(5) 0.332(6) 0.338(4) 0.328(7) 0.182(8) 0.420(1) 0.397(2) 0.341(3)
Bibtex 0.345(4) 0.285(6) 0.361(2) 0.272(7) 0.391(1) 0.195(8) 0.311(5) 0.351(3)
Language log 0.175(2) 0.122(7) 0.177(1) 0.158(3) 0.123(6) 0.106(8) 0.152(4) 0.142(5)
Enron 0.428(2) 0.364(7) 0.426(3) 0.399(4) 0.442(1) 0.313(8) 0.373(5) 0.366(6)
Medical 0.778(3) 0.744(6) 0.786(2) 0.726(7) 0.774(4) 0.355(8) 0.761(5) 0.806(1)
Genebase 0.921(4) 0.982(2) 0.988(1) 0.920(5) 0.853(7) 0.841(8) 0.893(6) 0.981(3)
Slashdot 0.506(2) 0.429(6) 0.512(1) 0.456(5) 0.381(8) 0.383(7) 0.468(4) 0.496(3)
Birds 0.366(1) 0.295(7) 0.312(6) 0.334(4) 0.281(8) 0.330(5) 0.336(3) 0.346(2)
Yeast 0.541(2) 0.522(8) 0.528(5) 0.531(3) 0.530(4) 0.525(6) 0.549(1) 0.523(7)
Flags 0.690(5) 0.677(7) 0.680(6) 0.696(4) 0.665(8) 0.718(1) 0.704(3) 0.706(2)
Emotions 0.539(2) 0.521(4) 0.499(8) 0.520(5) 0.540(1) 0.511(6.5) 0.526(3) 0.511(6.5)
Scene 0.493(1) 0.445(6) 0.487(2) 0.466(5) 0.429(7) 0.380(8) 0.473(3) 0.472(4)
Average ranks 2.69 6.00 3.38 4.61 5.38 6.34 3.69 3.88

macro fl
Corel5k 0.040(1) 0.030(2) 0.027(4) 0.024(6) 0.012(8) 0.021(7) 0.029(3) 0.026(5)
Cal500 0.161(2) 0.147(6.5) 0.146(8) 0.156(3.5) 0.168(1) 0.147(6.5) 0.155(5) 0.156(3.5)
Bibtex 0.275(2) 0.193(6) 0.258(3) 0.147(7) 0.280(1) 0.118(8) 0.240(5) 0.248(4)
Language log 0.068(1) 0.039(6) 0.057(2) 0.050(4.5) 0.050(4.5) 0.038(7.5) 0.054(3) 0.038(7.5)
Enron 0.132(1) 0.090(7.5) 0.122(3) 0.123(2) 0.111(4) 0.098(5) 0.097(6) 0.090(7.5)
Medical 0.342(1) 0.311(6) 0.329(3) 0.304(7) 0.323(4) 0.172(8) 0.314(5) 0.334(2)
Genebase 0.518(4) 0.556(1.5) 0.556(1.5) 0.510(5) 0.504(6) 0.474(8) 0.492(7) 0.544(3)
Slashdot 0.332(1) 0.267(6) 0.315(2) 0.280(5) 0.235(8) 0.239(7) 0.294(4) 0.310(3)
Birds 0.208(1) 0.140(8) 0.143(7) 0.182(4) 0.164(5.5) 0.164(5.5) 0.190(2) 0.185(3)
Yeast 0.394(2) 0.372(7) 0.381(5) 0.389(3) 0.406(1) 0.359(8) 0.385(4) 0.379(6)
Flags 0.600(6) 0.601(5) 0.581(7) 0.616(3) 0.567(8) 0.622(1) 0.610(4) 0.620(2)
Emotions 0.530(1) 0.503(4) 0.488(8) 0.502(5) 0.527(2) 0.494(7) 0.511(3) 0.495(6)
Scene 0.244(2) 0.221(7) 0.247(1) 0.233(5) 0.223(6) 0.213(8) 0.236(3) 0.235(4)
Average ranks 1.92 5.57 4.19 4.61 4.53 6.65 4.15 4.34

macro fe
Corel5k 0.140(2) 0.115(7) 0.121(6) 0.143(1) 0.032(8) 0.131(3) 0.127(4) 0.125(5)
Cal500 0.330(5) 0.327(6) 0.334(4) 0.323(7) 0.119(8) 0.424(1) 0.393(2) 0.335(3)
Bibtex 0.339(4) 0.292(6) 0.341(2) 0.266(7) 0.369(1) 0.216(8) 0.338(5) 0.340(3)
Language log 0.133(1) 0.104(6) 0.124(2) 0.115(4) 0.096(7) 0.094(8) 0.121(3) 0.106(5)
Enron 0.416(2.5) 0.368(5) 0.416(2.5) 0.392(4) 0.434(1) 0.297(8) 0.360(6) 0.342(7)
Medical 0.770(3) 0.752(6) 0.757(5) 0.735(7) 0.776(2) 0.389(8) 0.769(4) 0.793(1)
Genebase 0.931(8) 0.985(3) 0.990(1) 0.962(4) 0.961(5) 0.952(7) 0.960(6) 0.986(2)
Slashdot 0.473(1) 0.438(5) 0.454(4) 0.422(6) 0.408(7) 0.394(8) 0.471(2) 0.469(3)
Birds 0.182(1) 0.142(6) 0.138(7.5) 0.150(4) 0.138(7.5) 0.146(5) 0.172(2) 0.160(3)
Yeast 0.520(3) 0.495(8) 0.502(4) 0.500(6) 0.526(1) 0.501(5) 0.524(2) 0.498(7)
Flags 0.647(6) 0.636(7) 0.650(5) 0.655(4) 0.618(8) 0.678(1) 0.673(3) 0.674(2)
Emotions 0.500(2) 0.494(3) 0.469(7.5) 0.483(6) 0.505(1) 0.487(5) 0.488(4) 0.469(7.5)
Scene 0.446(4) 0.445(5) 0.481(1) 0.416(7) 0.441(6) 0.394(8) 0.460(2) 0.451(3)
Average ranks 3.26 5.61 3.96 5.15 4.80 5.76 3.46 3.96

5 Concluding Remarks

We presented a novel decision tree algorithm for multi-label classi-
fication called LaCovaC. The key idea of this algorithm is to com-
pute the label correlation matrix at each node of the tree in order
to identify label correlations and then cluster them locally. Its main
innovation is to introduce vertical splits that separate locally inde-
pendent labels, in addition to the traditional feature-based horizontal
splits that divide the instance space as in the standard decision tree
algorithms.

To evaluate LaCovaC we compared it to state-of-the-art ap-
proaches. We used seven common evaluation metrics and 13 datasets.
LaCovaC has the best average rank for log-loss and the second best
for multi-label accuracy, exact-match and Hamming loss (without
significant loss). For exact-match, LaCovaC shows a comparable
performance to the best algorithm LP, which is a strong baseline for
exact-match and hard to beat. In addition, it outperforms LP on 6 of
the 9 largest datasets in terms of number of labels. This suggests that
combining LP and BR as in LaCovaC leads to improvement over
those metrics and reduces the overfitting risk.

Overall, the main strength of LaCovaC is its strong performance
across all these metrics, as can be seen in the right-most column of
Table 3. Furthermore, on each of the metrics individually LaCovaC

is not significantly worse than the top contender. It is widely recog-
nised in the literature that different multi-label evaluation metrics
measure different things; hence there is value in demonstrating that
an algorithm performs well across the board.

Several directions can be taken for further work. We plan to in-
vestigate the parameter configuration for LaCovaC, for example, a
stopping criterion for the clustering algorithm. Moreover, it would

be interesting to investigate alternative clustering approaches, such
as spectral clustering. Furthermore, to counteract the large variance
associated with decision tree learning – which carries over to the
proposed model – we could use bootstrap aggregates as in random
forests. Finally, using the significance threshold on correlation bal-
ances the sample size and the strength of the correlation, such that
both low correlation on a large sample size and high correlation on
a small sample are detected as significant. However, finding an even
better balance between effect size and sample size is an interesting
future research direction.
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