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Single-hidden Layer Feedforward Neual
network training using class geometric
information

Alexandros Iosifidis, Anastasios Tefas and Ioannis Pitas

Abstract Single-hidden Layer Feedforward (SLFN) networks have been proven to
be effective in many pattern classification problems. In this chapter, we provide
an overview of a relatively new approach for SLFN network training that is based
on Extreme Learning. Subsequently, extended versions of the Extreme Learning
Machine algorithm that exploit local class data geometric information in the op-
timization process followed for the calculation of the network output weights are
discussed. An experimental study comparing the two approaches on facial image
classification problems concludes this chapter.

1 INTRODUCTION

Single-hidden Layer Feedforward (SLFN) networks have been proven to be effec-
tive in many pattern classification problems, since they are able to approximate any
continuous function arbitrary well [1]. Extreme Learning Machine is a relatively
new algorithm for Single-hidden Layer Feedforward Neural (SLFN) networks train-
ing [2] that leads to fast network training requiring low human supervision. Conven-
tional SLFN network training algorithms require the input weights and the hidden
layer biases to be adjusted using a parameter optimization approach, like gradient
descend. However, gradient descend-based learning techniques are generally slow
and may decrease the network’s generalization ability, since they may lead to lo-
cal minima. Unlike the popular thinking that the network’s parameters need to be
tuned, in ELM the input weights and the hidden layer biases are randomly assigned.
The network output weights are, subsequently, analytically calculated. ELM not
only tends to reach the smallest training error, but also the smallest norm of out-
put weights. For feedforward networks reaching a small training error, the smaller
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the norm of weights is, the better generalization performance the networks tend to
have [3]. Despite the fact that the determination of the network hidden layer output
is a result of randomly assigned weights, it has been shown that SLFN networks
trained by using the ELM algorithm have the properties of global approximators
[4]. Due to its effectiveness and its fast learning process, the ELM network has been
widely adopted in many classification problems, including facial image classifica-
tion [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

Despite its success in many classification problems, the ability of the original
ELM algorithm to calculate the output weights is limited due to the fact that the
network hidden layer output matrix is, usually, singular. In order to address this is-
sue, the Effective ELM (EELM) algorithm has been proposed in [15], where the
strictly diagonally dominant criterion for nonsingular matrices is exploited, in or-
der to choose proper network input weights and bias values. However, the EELM
algorithm has been designed only for a special case of SLFN networks employ-
ing Gaussian Radial Basis Functions (RBF) for the input layer neurons. In [9], an
optimization-based regularized version of the ELM algorithm (RELM) aiming at
both overcoming the full rank assumption for the network hidden layer output ma-
trix and at enhancing the generalization properties of the ELM algorithm has been
proposed. RELM has been evaluated on a large number of classification problems
providing very satisfactory classification performance.

By using a sufficiently large number of hidden layer neurons, the ELM classifi-
cation scheme, when approached from a Subspace Learning point of view, can be
considered as a learning process formed by two processing steps [16]. The first step
corresponds to a mapping process of the input space to a high-dimensional feature
space preserving some properties of interest for the training data. In the second step,
an optimization scheme is employed for the determination of a linear projection of
the high-dimensional data to a low-dimensional feature space determined by the net-
work target vectors, where classification is performed by a linear classifier. Based
on this observation, the RELM algorithm has been extended in order to exploit sub-
space learning criteria in its optimization process [16, 18]. Specifically, it has been
shown that the incorporation of the within-class and total scatter of the training data
(represented in the feature space determined by the network hidden layer outputs) in
the optimization process followed for the calculation of the network output weights
enhances the network classification performance.

In this Chapter, we provide an overview of the ELM algorithm for SLFN net-
work training [2, 9]. Extensions of the ELM algorithm exploiting subspace learning
criteria on its optimization process are also described. Subsequently, an extension of
the ELM algorithm which exploits local class information in the ELM optimization
problem is described in detail. The so-called Local Class Variance ELM (LCVELM)
algorithm aims at minimizing both the network output weights norm and the within
class variance of the training data in the ELM space, expressed by employing lo-
cality constraints. An experimental study comparing the performance of ELM [2],
RELM [9], MCVELM [16] and LCVELM [30] networks is facial image classifica-
tion problems is finally provided.
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The Chapter is structured as follows. In Section 2 we briefly describe the ELM
algorithms. RELM is described in Section 2. In Section 4 ELM algorithms exploit-
ing dispersion information in their optimization problem are described. In Section 5,
we describe the LCVELM algorithm exploiting intrinsic graph structures for SLFN
network training. Section 7 presents an experimental study evaluating the perfor-
mance of ELM-based classification in facial image classification problems.Finally,
conclusions are drawn in Section 8.

2 Extreme Learning Machine

ELM network has been proposed for SLFN network-based classification [2]. Let
us denote by {xi,ci}, i = 1, . . . ,N a set of N vectors xi ∈ RD and the corresponding
class labels ci ∈ {1, . . . ,C}. We employ {xi,ci}, i= 1, . . . ,N in order to train a SLFN
network. Such a network consists of D input (equal to the dimensionality of xi), L
hidden and C output (equal to the number of classes involved in the classification
problem) neurons. The number of hidden layer neurons is usually selected to be
much greater than the number of classes [9, 16], i.e., L ≫C.

The network target vectors ti = [ti1, ..., tiC]T , each corresponding to a training
vector xi, are set to tik = 1 for vectors belonging to class k, i.e., when ci = k, and
to tik = −1 when ci ̸= k. In ELMs, the network input weights Win ∈ RD×L and the
hidden layer bias values b ∈ RL are randomly assigned, while the network output
weights Wout ∈ RL×C are analytically calculated. Let us denote by v j the j-th col-
umn of Win, by wk the k-th row of Wout and by wk j the j-th element of wk. Given
activation function for the network hidden layer Φ(·) and by using a linear activation
function for the network output layer, the output oi = [o1, . . . ,oC]

T of the network
corresponding to xi is calculated by:

oik =
L

∑
j=1

wk j Φ(v j,b j,xi), k = 1, ...,C. (1)

It has been shown [4, 31, 9] that, almost any nonlinear piecewise continuous
activation function Φ(·) can be used for the calculation of the network hidden layer
outputs, like the sigmoid, sine, Gaussian, hard-limiting and Radial Basis Function
(RBF), Fourier series, etc. The most widely adopted choice is the sigmoid function,
defined by:

Φ(v j,b j,xi) =
1

1+ e−(vT
j xi+b j)

. (2)

By storing the network hidden layer outputs corresponding to the training vectors
xi, i = 1, . . . ,N in a matrix Φ :
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Φ =

Φ(v1,b1,x1) · · · Φ(v1,b1,xN)

· · ·
. . . · · ·

Φ(vL,bL,x1) · · · Φ(vL,bL,xN)

 , (3)

equation (1) can be expressed in a matrix form as:

O = WT
outΦ . (4)

ELM [2] assumes that the predicted network outputs are equal to the network targets,
i.e., oi = ti, i = 1, ...,N, Wout can be analytically calculated by solving the following
set of equation:

WT
outΦ = T (5)

and are given by:
Wout = Φ† TT , (6)

where Φ† =
(
ΦΦT )−1 Φ is the Moore-Penrose generalized pseudo-inverse of ΦT

and T = [t1, . . . , tN ] is a matrix containing the network target vectors.

3 Regularized Extreme Learning Machine

The ELM algorithm assumes zero training error. In cases where the training data
contain outliers, this assumption may reduce its potential in generalization. In addi-
tion, since the dimensionality of the ELM space is usually high, i.e., in some cases
L > N, the matrix B = ΦΦT is singular and, thus, the adoption of (6) for the cal-
culation of the network output weights is inappropriate. By allowing small training
errors and trying to minimize the norm of the network output weights, Wout can be
calculated by minimizing [9]:

JRELM =
1
2
∥Wout∥2

F +
c
2

N

∑
i=1

∥ξ i∥2
2, (7)

WT
outϕ i = ti −ξ i, i = 1, ...,N, (8)

where ξ i ∈ RC is the error vector corresponding to xi and c is a parameter denot-
ing the importance of the training error in the optimization problem. ϕ i is the i-th
column of Φ , i.e., the hidden layer output corresponding xi. That is, ϕ i is the repre-
sentation of xi in RL. By substituting (8) in JRELM (7) and determining the saddle
point of JRELM , Wout is given by:

Wout =

(
ΦΦT +

1
c

I
)−1

ΦTT (9)

or
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Wout = Φ
(

ΦT Φ +
1
c

I
)−1

TT (10)

The adoption of (9) for Wout calculation, instead of (6), has the advantage that the
matrices B =

(
ΦΦT + 1

c I
)

and B̃ =
(
ΦT Φ + 1

c I
)

are nonsingular, for c > 0.

4 Extreme Learning Machine exploiting dispersion criteria

By allowing small training errors and trying to minimize both the norm of the net-
work output weights and the within-class variance of the training vectors in the
feature space determined by the network outputs, Wout can be calculated by mini-
mizing [16]:

JMCV ELM = ∥S
1
2
wWout∥2

F +λ
N

∑
i=1

∥ξ i∥2
2, (11)

WT
outϕ i = ti −ξ i, i = 1, ...,N, (12)

where Sw is the within-class scatter matrix used in Linear Discriminant Analysis
(LDA) [17] describing the variance of the training classes in the ELM space and is
defined by:

Sw =
C

∑
j=1

∑
i,ci= j

1
N j

(ϕ i −µ j)(ϕ i −µ j)
T . (13)

In (13), N j is the number of training vectors belonging to class j and µ j =
1

N j
∑i,ci= j ϕ i is the mean vector of class j. By calculating the within-class scatter

matrix in the ELM space RL, rather than in the input space RD, nonlinear relation-
ships between training vectors forming the various classes can be better described.
By substituting (12) in JMCV ELM and determining the saddle point of JMCV ELM ,
Wout is given by:

Wout =

(
ΦΦT +

1
c

Sw

)−1

ΦTT . (14)

Since the matrix B =
(
ΦΦT + 1

c Sw
)

is not always nonsingular, an additional di-
mensionality reduction processing step perfomred by applying Principal Compo-
nent Analysis [17] on Φ has been proposed in [16]. Another variants that exploiting
the total scatter matrix of the entire training set and the within-class variance of
multi-modal classes have been proposed in [18] and [16], respectively.
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5 Extreme Learning Machine exploiting intrinsic graph
structures

In this Section, we describe the an extension of the ELM algorithm exploiting local
class dispersion criteria [30]. Similar to the ELM variance described in Section 2,
the Local Class Variance ELM (LCVELM) algorithm exploits randomly assigned
network input weights Win and bias values b, in order to perform a nonlinear map-
ping of the data in the (usually high-dimensional) ELM space RL. After the net-
work hidden layer outputs calculation, we assume that the data representations in
the ELM space ϕ i, i = 1, . . . ,N are embedded in a graph G = {V ,E ,W}, where V
denotes the graph vertex set, i.e., V = {ϕ i}N

i=1, E is the set of edges connecting ϕ i,
and W ∈ RN×N is the matrix containing the weight values of the edge connections.
Let us define a similarity measure s(·, ·) that will be used in order to measure the
similarity between two vectors [19]. That is, si j = s(ϕ i,ϕ j) is a value denoting the
similarity between ϕ i and ϕ j. s(·, ·) may be any similarity measure providing non-
negative values (usually 0 ≤ si j ≤ 1). The most widely adopted choice is the heat
kernel (also known as diffusion kernel) [20], defined by:

s(ϕ i,ϕ j) = exp

(
−
∥ϕ i −ϕ j∥2

2

2σ2

)
, (15)

where ∥ · ∥2 denotes the (squared) l2 norm of a vector and σ is a parameter used in
order to scale the Euclidean distance between ϕ i and ϕ j.

In order to express the local intra-class relationships of the training data in the
ELM space, we exploit the following two choices for the determination of the weight
matrix W:

W (1)
i j =

{
1 i f ci = c j and j ∈ Ni,
0, otherwise,

or

W (2)
i j =

{
si j i f ci = c j and j ∈ Ni,
0, otherwise.

In the above, Ni denotes the neighborhood of ϕ i (we have employed 5-NN graphs
in all our experiments). W(1) has been successfully exploited for discriminant sub-
space learning in Marginal Discriminant Analysis (MDA) [19], while W(2) can be
considered to be modification of W(1), exploiting geometric information of the class
data. A similar weight matrix has also been exploited in Local Fisher Discriminant
Analysis (LFDA) [21]. In both MDA and LFDA cases, it has been shown that by
exploiting local class information enhanced class discrimination can be achieved,
when compared to the standard LDA approach exploiting global class information,
by using (13).

After the calculation of the graph weight matrix W, the graph Laplacian matrix
LN×N is given by [22]:

L = D−W, (16)

where D is a diagonal matrix with elements Dii = ∑N
j=1 Wi j.
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By exploiting L, the network output weights Wout of the LCVELM network can
be calculated by minimizing:

JLCV ELM =
1
2
∥Wout∥2

F +
c
2

N

∑
i=1

∥ξ i∥2
2 +

λ
2

tr
(
WT

out(ΦLΦT )Wout
)
, (17)

WT
outϕ i = ti −ξ i, i = 1, ...,N, (18)

where tr(·) is the trace operator. By substituting the constraints (18) in JLCV ELM
and determining the saddle point of JLCV ELM , the network output weights Wout are
given by:

Wout =

(
Φ
(

I+
λ
c

L
)

ΦT +
1
c

I

)−1

ΦTT . (19)

Similar to (9), the calculation of the network output weights by employing (19) has

the advantage that the matrix B=

(
Φ
(

I+ λ
c L
)

ΦT + 1
c I

)
is nonsingular, for c> 0.

In addition, the calculation of the graph similarity values s(·, ·) in the ELM space
RL, rather than the input space RD has the advantage that nonlinear relationships
between the training vectors forming the various classes can be better expressed.

6 Data classification (test phase)

After the determination of the network output weights Wout by using (9), (10), (14)
or (19), a test vector xt ∈ RD can be introduced to the trained network and the
corresponding network output is obtained:

ot = WT
outϕ t , (20)

where ϕ t denotes the network hidden layer output for xt . xt is finally classified to
the class corresponding to the maximal network output:

ct = argmax
k

otk, k = 1, . . . ,C. (21)

7 Experimental study

In this section, we present experiments conducted in order to evaluate the perfor-
mance of the ELM algorithms described in Sections 2, 4 and 5. We have employed
six publicly available datasets to this end. These are: the ORL, AR and Extended
YALE-B (face recognition) and the COHN-KANADE, BU and JAFFE (facial ex-
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pression recognition). A brief description of the datasets is provided in the following
subsections. Experimental results are provided in subsection 7.3.

In all the presented experiments we compare the performance of the LCVELM
algorithm [30] with that of ELM [2], RELM [9] and MCVELM [16] algorithms.
The number of hidden layer neurons has been set equal to L = 1000 for all the
ELM variants, a value that has been shown to provide satisfactory performance in
many classification problems [9, 16]. For fair comparison, in all the experiments,
we make sure that the the same ELM space is used in all the ELM variants. That
is, we first map the training data in the ELM space and, subsequently, calculate the
network output weights according to each ELM algorithm. Regarding the optimal
values of the regularization parameters c, λ used in the ELM-based classification
schemes, they have been determined by following a grid search strategy. That is, for
each classifier, multiple experiments have been performed by employing different
parameter values (c = 10r, r = −3, . . . ,3 and λ = 10p, p = −3, . . . ,3) and the best
performance is reported.

7.1 Face recognition datasets

7.1.1 The ORL dataset

It consists of 400 facial images depicting 40 persons (10 images each) [23]. The im-
ages were captured at different times and with different conditions, in terms of light-
ing, facial expressions (smiling/not smiling) and facial details (open/closed eyes,
with/without glasses). Facial images were taken in frontal position with a tolerance
for face rotation and tilting up to 20 degrees. Example images of the dataset are
illustrated in Figure 1.

Fig. 1 Facial images depicting a person from the ORL dataset.

7.1.2 The AR dataset

It consists of over 4000 facial images depicting 70 male and 56 female faces [24].
In our experiments we have used the preprocessed (cropped) facial images pro-
vided by the database, depicting 100 persons (50 males and 50 females) having a
frontal facial pose, performing several expressions (anger, smiling and screaming),
in different illumination conditions (left and/or right light) and with some occlusions
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(sun glasses and scarf). Each person was recorded in two sessions, separated by two
weeks. Example images of the dataset are illustrated in Figure 2.

Fig. 2 Facial images depicting a person from the AR dataset.

7.1.3 The Extended YALE-B dataset

It consists of facial images depicting 38 persons in 9 poses, under 64 illumination
conditions [25]. In our experiments we have used the frontal cropped images pro-
vided by the database. Example images of the dataset are illustrated in Figure 3.

Fig. 3 Facial images depicting a person from the Extended YALE-B dataset.

7.2 Facial expression recognition datasets

7.2.1 The COHN-KANADE dataset

It consists of facial images depicting 210 persons of age between 18 and 50 (69%
female, 31% male, 81% Euro-American, 13% Afro-American and 6% other groups)
[26]. We have randomly selected 35 images for each facial expression, i.e., anger,
disgust, fear, happyness, sadness, surprise and neutral. Example images of the
dataset are illustrated in Figure 4.

7.2.2 The BU dataset

It consists of facial images depicting over 100 persons (60% feamale and 40% male)
with a variety of ethnic/racial background, including White, Black, East-Asian,
Middle-east Asian, Hispanic Latino and others [27]. All expressions, except the
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Fig. 4 Facial images from the COHN-KANADE dataset. From left to right: neutral, anger, disgust,
fear, happy, sad and surprise.

neutral one, are expressed at four intensity levels. In our experiments, we have em-
ployed the images depicting the most expressive intensity of each facial expression.
Example images of the dataset are illustrated in Figure 5.

Fig. 5 Facial images depicting a person from the BU dataset. From left to right: neutral, anger,
disgust, fear, happy, sad and surprise.

7.2.3 The JAFFE dataset

It consists of 210 facial images depicting 10 Japanese female persons [28]. Each
of the persons is depicted in 3 images for each expression. Example images of the
dataset are illustrated in Figure 6.

Fig. 6 Facial images depicting a person from the JAFFE dataset. From left to right: neutral, anger,
disgust, fear, happy, sad and surprise.
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7.3 Results

In our first set of experiments, we have applied the competing algorithms on the
face recognition datasets. Since there is not a widely adopted experimental protocol
for these datasets, we randomly partition the datasets in training and test sets as fol-
lows: we randomly select a subset of the facial images depicting each of the persons
in each dataset in order to form the training set and we keep the remaining facial
images for evaluation. We create five such dataset partitions, each corresponding
to a different training set cardinality. Experimental results obtained by applying the
competing algorithms are illustrated in Tables 1, 2 and 3 for the ORL, AR and the
Extended Yale-B datasets, respectively. As can be seen in these Tables, the incor-
poration of local class information in the optimization problem used for the deter-
mination of the network output weights, generally increases the performance of the
ELM network. In all the cases the best performance is achieved by one of the two
LCVELM variants. By comparing the two LCVELM algorithms, it can be seen that
the one exploiting the graph weight matrix used in MDA generally outperforms the
remaining choice.

Table 1 Classification rates on the ORL dataset.
ELM RELM MCVELM LCVELM (1) LCVELM (2)

10% 30.78% 40.65% 41.01% 41.26% 41.22%
20% 20.67% 39.76% 41.81% 41.81% 41.81%
30% 38.17% 52.11% 55% 55.78% 55.78%
40% 38.31% 53% 57% 57.19% 57.13%
50% 47% 77.62% 75.54% 77.69% 77.77%

Table 2 Classification rates on the AR dataset.
ELM RELM MCVELM LCVELM (1) LCVELM (2)

10% 66.47% 67.79% 68.87% 69.19% 69.15%
20% 70.49% 80.24% 80.91% 80.86% 80.96%
30% 65.26% 82.98% 81.81% 83.27% 83.1%
40% 75.33% 91.9% 92.94% 93.01% 93.01%
50% 80.33% 94.16% 94.65% 94.9% 94.9%

In our second set of experiments, we have applied the competing algorithms
on the facial expression recognition datasets. Since there is not a widely adopted
experimental protocol for these datasets too, we apply the five-fold crossvalidation
procedure [29] by employing the facial expression labels. That is, we randomly split
the facial images depicting the same expression in five sets and we use five splits of
all the expressions for training and the remaining splits for evaluation. This process
is performed five times, one for each evaluation split. Experimental results obtained
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Table 3 Classification rates on the YALE-B dataset.
ELM RELM MCVELM LCVELM (1) LCVELM (2)

10% 69.17% 72.22% 72.22% 72.22% 72.22%
20% 83.44% 84.38% 84.38% 85% 84.38%
30% 82.86% 85.36% 85.36% 88.21% 85.36%
40% 90% 92.08% 92.08% 92.5% 92.08%
50% 91% 93.5% 94.5% 94.5% 94.5%

by applying the competing algorithms are illustrated in Table 4. As can be seen in
this Table, the LCVELM algorithms outperform the remaining choices in all the
cases.

Table 4 Classification rates on the facial expression recognition dataset.

ELM RELM MCVELM LCVELM (1) LCVELM (2)
COHN-KANADE 49.8% 79.59% 80% 80.41% 80%
BU 65% 71,57% 71,57% 72% 72,86%
JAFFE 47.62% 58.57% 59.05% 60% 59.52%

Overall, enhanced facial image classification performance can be achieved by
exploiting class data geometric information in the ELM optimization process.

8 Conclusion

In this chapter an overview of Extreme Learning Machine-based Single-hidden
Layer Feedforward Neural networks training has been provided. Extended versions
of the ELM algorithm that exploit (local) class data geometric information in the op-
timization process followed for the calculation of the network output weights have
been also described. An experimental study comparing the two approaches on facial
image classification problems has been finally presented, showing that the exploita-
tion of class data geometric information in the ELM optimization process enhances
the performance of the ELM network.
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