
                          Maronidis, A., Tefas, A., & Pitas, I. (2016). Graph Embedding Exploiting
Subclasses. In 2015 IEEE Symposium Series on Computational Intelligence
(SSCI 2015): Proceedings of a meeting held 7-10 December 2015, Cape
Town, South Africa. (pp. 1452-1459). Institute of Electrical and Electronics
Engineers (IEEE). DOI: 10.1109/SSCI.2015.206

Peer reviewed version

Link to published version (if available):
10.1109/SSCI.2015.206

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73982925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/SSCI.2015.206
http://research-information.bristol.ac.uk/en/publications/graph-embedding-exploiting-subclasses(b8b6e9b5-ee6e-4ebd-b25b-3b5d18e70a10).html
http://research-information.bristol.ac.uk/en/publications/graph-embedding-exploiting-subclasses(b8b6e9b5-ee6e-4ebd-b25b-3b5d18e70a10).html


Graph Embedding Exploiting Subclasses

Anastasios Maronidis, Anastasios Tefas and Ioannis Pitas
Department of Informatics,

Aristotle University of Thessaloniki,
P.O.Box 451, 54124
Thessaloniki, Greece

Email: amaronidis@iti.gr, tefas@aiia.csd.auth.gr, pitas@aiia.csd.auth.gr

Abstract—Recently, subspace learning methods for
Dimensionality Reduction (DR), like Subclass Discrim-
inant Analysis (SDA) and Clustering-based Discrimi-
nant Analysis (CDA), which use subclass information
for the discrimination between the data classes, have
attracted much attention. In parallel, important work
has been accomplished on Graph Embedding (GE),
which is a general framework unifying several sub-
space learning techniques. In this paper, GE has been
extended in order to integrate subclass discriminant
information resulting to the novel Subclass Graph
Embedding (SGE) framework. The kernelization of
SGE is also presented. It is shown that SGE comprises a
generalization of the typical GE including subclass DR
methods. In this vein, the theoretical link of SDA and
CDA methods with SGE is established. The efficacy and
power of the SGE has been substantiated by comparing
subclass DR methods versus a diversity of unimodal
methods all pertaining to the SGE framework via a
series of experiments on various real-world data.

I. INTRODUCTION

In recent years, a variety of subspace learn-
ing algorithms for dimensionality reduction (DR)
has been developed. Locality Preserving Projections
(LPP) [1], [2] and Principal Component Analysis
(PCA) [3] are two of the most popular unsupervised
linear DR algorithms with a wide range of applica-
tions. Besides, supervised methods like Linear Dis-
criminant Analysis (LDA) [4] have shown superior
performance in many classification problems, since
through the DR process they aim at achieving data
class discrimination.

Usually in practice, there is the case where
many data clusters appear inside the same class
imposing the need to integrate this information in
the DR approach. Along these lines, techniques
such as Clustering Discriminant Analysis (CDA)
[5] and Subclass Discriminant Analysis (SDA) [6]
have been proposed. Both of them utilize a specific
objective criterion that incorporates the data subclass
information in an attempt to discriminate subclasses
that belong to different classes, while they put no
constraints to subclasses within the same class.

In parallel to the development of subspace learn-
ing techniques, a lot of work has been carried out
in DR from a graph theoretic perspective. Towards
this direction, Graph Embedding (GE) has been
introduced as a generalized framework, which unifies
several existing DR methods and furthermore offers
as a platform for developing novel algorithms [7].
In [2], [7] the connection of LPP, PCA and LDA
with the GE framework has been illustrated and in
[7], employing GE, the authors propose Marginal
Fisher Analysis (MFA). In addition, the ISOMAP
[8], Locally Linear Embedding (LLE) [9] and Lapla-
cian Eigenmaps (LE) [10] algorithms have also been
interpreted within the GE framework [7].

From the perspective of GE, the data are consid-
ered as vertices of a graph, which is accompanied by
two matrices, the intrinsic and the penalty matrix,
weighing the edges among vertices. The intrinsic
matrix encodes the similarity relationships, while the
penalty matrix encodes the undesirable connections
among the data. In this context, the DR task is
translated to the problem of transforming the initial
graph into a new one in a way that the weights of
the intrinsic matrix are reinforced, while the weights
of the penalty matrix are suppressed.

Apart from the core ideas on GE presented in
[7], some other interesting works have also been
published recently in the literature. A graph-based
supervised DR method has been proposed in [11]
for circumventing the problem of non-Gaussian dis-
tributed data. The importance degrees of the same-
class and not-same-class vertices are encoded by the
intrinsic and extrinsic graphs, respectively, based on
a strictly monotonically decreasing function. More-
over, the kernel extension of the proposed approach
is also presented. In [12], the selection of the neigh-
bor parameters of the intrinsic and extrinsic graph
matrices is adaptively performed based on the dif-
ferent local manifold structure of different samples,
enhancing in this way the intra-class similarity and
inter-class separability.

Methodologies that convert a set of graphs into a



vector space have also been presented. For instane,
a novel prototype selection method from a class-
labeled set of graphs has been proposed in [13].
A dissimilarity metric between a pair of graphs
is established and the dissimilarities of a graph
from a set of prototypes are calculated providing an
n-dimensional feature vector. Several deterministic
algorithms are used to select the prototypes with
the most discriminative power [13]. The flexibility
of GE has also been combined with the generaliza-
tion ability of the support vector machine classifier
resulting to improved classification performance. In
[14], the authors propose the substitution of the
support vector machine kernel with sub-space or sub-
manifold kernels, that are constructed based on the
GE framework.

Despite the intense activity around GE, no ex-
tension of GE has been proposed, so as to integrate
subclass information. In this paper, such an extension
is proposed, leading to the novel Subclass Graph
Embedding (SGE) framework, which is the main
contribution of our work. Using subclass block form
in both the intrinsic and penalty graph matrices, SGE
optimizes a criterion which preserves the subclass
structure and simultaneously the local geometry of
the data. The local geometry may be modelled by
any similarity or distance measure, while subclass
structure may be extracted by any clustering algo-
rithm.

Choosing the appropriate parameters, SGE be-
comes one of the well-known aforementioned algo-
rithms. Along these lines, in this paper it is shown
that a variety of unimodal DR algorithms are encap-
sulated within SGE. Furthermore, the theoretical link
between SGE and CDA, SDA methods is also estab-
lished, which is another novelty of our work. Finally,
the kernelization of SGE (K-SGE) is also presented.
The efficacy of SGE and K-SGE is demonstrated
through a comparison between subclass DR methods
and a diversity of unimodal ones – all pertaining to
the SGE framework – via a series of experiments on
various datasets.

The remainder of this paper is organized as
follows. The subspace learning algorithms CDA and
SDA are presented in Section II in order to pave
the way for their connection with SGE. The novel
SGE framework along with its kernelization is pre-
sented in Section III. The connection between the
SGE framework and the several subspace learning
techniques is given in Section IV. A comparison of
the aforementioned methods on real-world datasets
is presented in Section V. Finally, conclusions are
drawn in Section VI.

II. SUBSPACE LEARNING TECHNIQUES

In this section, we provide the mathematical for-
mulation of the subspace learning techniques CDA
and SDA in order to allow their connection with the
SGE framework. The other methods mentioned in
the Introduction are encapsulated in the proposed
SGE framework as well. However, their detailed
description is omitted, as they have already been
described in [7].

In the following analysis, we consider that each
data sample denoted by x is an m-dimensional real
vector, i.e., x ∈ Rm. We also denote by y ∈ Rm′

its projection y = VTx to a new m′-dimensional
space using a projection matrix V ∈ Rm×m′ . CDA
and SDA attempt to minimize:

J(v) =
vTSWv

vTSBv
, (1)

where SW is called the within and SB the between
scatter matrix [15]. These matrices are symmetric
and positive semi-definite. The minimization of the
ratio (1) leads to the following generalized eigen-
value decomposition problem to find the optimal
discriminant projection eigenvectors:

SWv = λSBv . (2)

The eigenvalues λi of the above eigenproblem are
by definition positive or zero:

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm . (3)

Let v1,v2, · · · ,vm be the corresponding eigen-
vectors. Then the projection y = VTx, from
the initial space to the new space of reduced di-
mensionality employs the projection matrix V =
[v1,v2, · · · ,vm′ ] whose columns are the eigenvec-
tors vi, i = 1, . . . ,m′ and m′ � m.

Looking for a linear transform that effectively
separates the projected data of each class, CDA
makes use of potential subclass structure. Let us
denote the total number of subclasses inside the i-th
class by di and, for the j-th subclass of the i-th class,
the number of its samples by nij , its q-th sample by
xijq and its mean vector by µij . CDA attempts to
minimize (1), where S

(CDA)
W is the within-subclass

and S
(CDA)
B the between-subclass scatter matrix,

defined in [5]:

S
(CDA)
W =

c∑
i=1

di∑
j=1

nij∑
q=1

(
xijq − µij

) (
xijq − µij

)T
,

(4)

S
(CDA)
B =

c−1∑
i=1

c∑
l=i+1

di∑
j=1

dl∑
h=1

(
µij − µlh

)(
µij − µlh

)T
.

(5)



The difference between SDA and CDA mainly
lies on the definition of the within scatter matrix,
while the between scatter matrix of SDA is a mod-
ified version of that of CDA. The exact definitions
of the two matrices are:

S
(SDA)
W =

n∑
q=1

(xq − µ) (xq − µ)
T
, (6)

S
(SDA)
B =

c−1∑
i=1

c∑
l=i+1

di∑
j=1

dl∑
h=1

pijplh
(
µij−µlh

)(
µij−µlh

)T
,

(7)
where pij =

nij
n is the relative frequency of the j-th

cluster of the i-th class [6]. It is worth mentioning
that S

(SDA)
W is actually the total covariance matrix

of the data.

The previously described DR methods along with
LPP, PCA and LDA can be seen under a common
prism, since their basic calculation element towards
the construction of the corresponding optimization
criteria is the similaritiy among the samples. Thus
we can unify them in a common framework if we
consider that the samples form a graph and we set
criteria on the similarities between the nodes of this
graph. In the following section we describe in detail
this approach.

III. SUBCLASS GRAPH EMBEDDING

In this section, the problem of dimensionality
reduction is described from a graph theoretic per-
spective. Before we present the novel SGE, let us
first briefly provide the main ideas of the core GE
framework.

A. Graph Embedding

In the GE framework, the set of the data samples
to be projected in a low dimensionality space is rep-
resented by two graphs, namely, the intrinsic Gint =
{X ,Wint} and the penalty Gpen = {X ,Wpen}
graph, where X = {x1,x2, · · · ,xn} is the set
of the data samples in both graphs. The intrinsic
graph models the similarity connections between
every pair of data samples that have to be reinforced
after the projection. The penalty graph contains the
connections between the data samples that must
be suppressed after the projection. For both of the
above matrices these connections might have nega-
tive values imposing the opposite results. Choosing
the values of both the intrinsic and the penalty graph
matrices, may lead to either supervised, unsupervised
or semi-supervised DR algorithms.

Now, the problem of DR could be interpreted
in another way. It is desirable to project the initial

data to the new low dimensional space, such that the
geometrical structure of the data is preserved. The
corresponding objective function for optimization is:

argmin
tr{YBYT }=d

J(Y) , (8)

J(Y)=
1

2
tr{
∑
q

∑
p

(yq−yp)Wint(q, p)(yq−yp)T } ,

(9)
where Y = [y1,y2, · · · ,yn] are the projected
vectors, d is a constant, B is a constraint matrix,
defined to remove an arbitrary scaling factor in the
embedding and Wint(q, p) is the value of Wint at
position (q, p) [7]. The structure of the objective
function (9) postulates that, the larger the value
Wint(q, p) is, the smaller the distance between the
projections of the data samples xq and xp has to
be. By using some simple algebraic manipulations,
equation (9) becomes:

J(Y) = tr{YLintY
T } , (10)

where Lint = Dint−Wint is the intrinsic Laplacian
matrix and Dint is the degree matrix defined as
the diagonal matrix, which has at position (q, q) the
value Dint(q, q) =

∑
pWint(q, p).

The Laplacian matrix Lpen = Dpen −Wpen of
the penalty graph is often used as the constraint
matrix B. Thus, the above optimization problem
becomes:

argmin
tr{YLintY

T }
tr{YLpenYT }

. (11)

The optimization of the above objective function is
achieved by solving the generalized eigenproblem:

Lintv = λLpenv , (12)

keeping the eigenvectors, which correspond to the
smallest eigenvalues.

This approach leads to the optimal projection of
the given data samples. In order to achieve the out of
sample projection, the linearization [7] of the above
approach should be used. If we employ y = VTx,
the objective function (9) becomes:

argmin
tr{VTXLpenXTV}=d

J(V) , (13)

where J(V) is defined as:

1

2
tr{VT

(∑
q

∑
p

(xq−xp)Wint(q, p)(xq−xp)T
)
V} ,

(14)
where X = [x1,x2, . . . ,xn]. By using simple alge-
braic manipulations, we have:

J(V) = tr{VTXLintX
TV} . (15)



Similarly to the straight approach, the optimal eigen-
vectors are given by solving the generalized eigen-
problem:

XLintX
Tv = λXLpenX

Tv . (16)

B. Linear Subclass Graph Embedding

In this section, we propose a GE framework that
allows the exploitation of subclass information. In
the following analysis, it is assumed that the subclass
labels are known. We attempt to minimize the scatter
of the data samples within the same subclass, while
separating data samples from subclasses that belong
to different classes. Finally, we are not concerned
about samples that belong to different subclasses of
the same class.

Usually, in real-world problems, local geome-
try of the data is related to the global supervised
structure. Samples that belong to the same class or
subclass, should be “sufficiently close” to each other.
SGE actually exploits this fact. It simultaneously
handles supervised and unsupervised information.
As a consequence, it combines the global labeling
information with the local geometrical characteristics
of the data samples. This is achieved by weighing the
above connections with the similarities of the data
samples. The Gaussian similarity function (see eq.
17), has been used in this paper for this purpose.

Sqp = S(xq,xp) = exp

(
−d

2(xq,xp)

σ2

)
, (17)

where d(xq,xp) is a distance metric (e.g., Euclidean)
and σ2 is a parameter (variance) that determines the
distance scale.

Let us denote as P an affinity matrix. Without
limiting the generality, we assume that this matrix
has block form, depending on the subclass and
the class of the data samples. Using the linearized
approach, we attempt to optimize a more general
discrimination criterion. We consider again that y =
VTx is the projection of x to the new subspace. Let
Pij(q, p) be the value of P at position (q, p) of the
submatrix that contains the j-th subclass of the i-th
class. Then, the proposed criterion is:

argmin J(Y) , (18)

J(Y) =
1

2
tr{

c∑
i=1

di∑
j=1

nij∑
q=1

nij∑
p=1

(
yijq − yijp

)
Pij(q, p)

(
yijq − yijp

)T } (19)

=
1

2
tr{VT

(
c∑
i=1

di∑
j=1

nij∑
q=1

nij∑
p=1

(
xijq − xijp

)
Pij(q, p)

(
xijq − xijp

)T)
V} (20)

= tr{VTX (Dint −Wint)X
TV} (21)

= tr{VTXLintX
TV} . (22)

The derivation of (22) is omitted due to lack of space.
The matrix Wint is block diagonal with blocks that
correspond to each class and is given by:

Wint =


W1

int

W2
int 0

0
. . .

Wc
int

 . (23)

Wi
int are block diagonal submatrices, with blocks

that correspond to the subclasses and are given by:

Wi
int =


Pi1

Pi2 0

0
. . .

Pidi

 . (24)

Pij is the submatrix of P that corresponds to the
data of the j-th cluster of the i-th class. By looking
carefully at the form of Wint, it is clear that the
degree intrinsic matrix Dint has values

Dint(

i−1∑
s=0

j−1∑
t=0

nst+q,

i−1∑
s=0

j−1∑
t=0

nst+q) =
∑
p

Pij(q, p) ,

(25)
where p runs over the indices of the j-th cluster of
i-th class.

In parallel, we demand to maximize a criterion,
which encodes the similarities among the centroid
vectors of the subclasses. Let the value Qlhij express
the similarity between the centroid vectors µij and
µlh. The more similar two centroids that belong to
different classes are, the further apart their projec-
tions mij = VTµij have to be from each other:

argmaxG(mij) , (26)

G(mij) = tr{
c−1∑
i=1

c∑
l=i+1

di∑
j=1

dl∑
h=1

(
mij −mlh

)
Qlhij

(
mij −mlh

)T } (27)



= tr{VT

c−1∑
i=1

c∑
l=i+1

di∑
j=1

dl∑
h=1

(
µij − µlh


Qlhij

(
µij − µlh

)T )
V} (28)

= tr{VTX (Dpen −Wpen)X
TV} (29)

= tr{VTXLpenX
TV} . (30)

Again, the derivation of (30) is omitted due to lack
of space. The block matrix Wpen in (29) consists of
block submatrices:

Wpen =


W1,1

pen W1,2
pen · · · W1,c

pen

W2,1
pen W2,2

pen · · · W2,c
pen

...
...

. . .
...

Wc,1
pen Wc,2

pen · · · Wc,c
pen

 .

(31)
The submatrices Wi,i

pen lying on the main block
diagonal are given by:

Wi,i
pen =


Wi1

Wi2 0

0
. . .

Widi

 , (32)

where Wij corresponds to the j-th subclass of the
i-th class and is given by:

Wij = −

(∑
ω 6=i

(∑dω
t=1Q

ωt
ij

))
(nij)

2 enij (enij )
T
,

(33)

where enij = [

nij-times︷ ︸︸ ︷
11 · · · 1 ]T . Respectively, the off-

diagonal submatrices of Wpen are given by:

Wi,l
pen =


Wl1

i1 Wl2
i1 · · · Wldl

i1

Wl1
i2 Wl2

i2 · · · Wldl
i2

...
...

. . .
...

Wl1
idi

Wl2
idi

· · · Wldl
idi

 , i 6= l ,

(34)
where:

Wlh
ij =

Qlhij
nijnlh

enij (enlh)
T
. (35)

It can be easily shown that D = 0, so that Lpen =
−Wpen.

C. Kernel Subclass Graph Embedding

In this section, the kernelization of SGE is pre-
sented. Let us denote by X the initial data space, by
F a Hilbert space and by f the non-linear mapping
function from X to F . The main idea is to firstly map

the original data from the initial space into another
high-dimensional Hilbert space and then perform
linear subspace analysis in that space. If we denote
by mF the dimensionality of the Hilbert space, then
the above procedure is described as:

X 3xq→yq=f(xq)=

( ∑n
p=1 a1pk(xq,xp)

...∑n
p=1 amFpk(xq,xp)

)
∈F ,

(36)
where k is the kernel function. From the above
equation it is obvious that

Y = ATK , (37)

where K is the Gram matrix, which has at position
(q, p) the value Kqp = k(xq,xp) and

A = [a1 · · ·amF ] =

 a11 · · · amF1
...

. . .
...

a1n · · · amFn

 (38)

is the map coefficient matrix. Consequently, the final
SGE optimization becomes:

argmin
tr{ATKLintKA}
tr{ATKLpenKA}

. (39)

Similarly to the linear case, in order to find the op-
timal projections, we resolve the generalized eigen-
problem:

KLintKa = λKLpenKa , (40)

keeping the eigenvectors that correspond to the
smallest eigenvalues.

IV. SGE AS A GENERAL DIMENSIONALITY
REDUCTION FRAMEWORK

In this section, it is shown that SGE is a gen-
eralized framework that can be used for subspace
learning, since all the standard approaches are spe-
cific cases of SGE. Let us use the Gaussian simi-
larity function (17), in order to construct the affinity
matrix.

In the following analysis, we initially let the
variance of Gaussian σ2 tend to infinity. Hence,

S(xq,xp) = 1, ∀(q, p) ∈ {1, 2, · · · , n}2 .

Let the intrinsic matrix elements be:

Pij(q, p) =

{
S(xq,xp)
nij

= 1
nij

, if xq,xp ∈ Cij
0 , otherwise

,

(41)
where Cij is the set of the samples that belong to
the j-th subclass of the i-th class. Obviously, (20)
becomes the within-subclass criterion of CDA (also



see eq. 4). Thus, in this case, Wint is the intrinsic
graph matrix of CDA. Let also:

Qlhij = S(µij ,µlh) = 1,∀ i, j, h, l (42)

the penalty matrix elements. Then, (28) becomes the
between-subclass criterion of CDA (also see eq. 5).
Thus, Wpen is the penalty graph matrix of CDA
and the connection between CDA and GE has been
established.

Let us consider that each data sample constitutes
its own class, i.e., c = n, di = 1 andni = 1, ∀i ∈
{1, 2, · · · , c}. Thus, each class-block of the penalty
graph matrix reduces to a single element of the
matrix. Obviously, each data sample coincides with
the mean of its class. By setting:

Ql1i1 =
S(µi,µl)

n
=

1

n
, ∀ (i, l) ∈ {1, 2, · · · , c}2 ,

(43)
then:

−

(∑
ω 6=i

(∑dω
t=1Q

ωt
i1

))
(ni)

2 = −
∑
ω 6=i

(
1

n

)
=

1

n
− 1 .

(44)
These values lie on the main diagonal of the penalty
graph matrix. Regarding the off diagonal elements
we have:

Ql1i1
ninl

=
1

n
. (45)

It can be easily shown that the degree penalty matrix
is D = 0, so that Lpen = −Wpen. Obviously,
Lpen = I − 1

ne
n (en)

T and XLpenX
T becomes

the covariance matrix C of the data. By using
as intrinsic graph matrix the identity matrix, SGE
becomes identical to PCA:

argmin
tr{VTXLintX

TV}
tr{VTXLpenXTV}

= argmin
tr{VT IV}
tr{VTCV}

(46)
leading to the following generalized eigenproblem:

Iv = λCv , (47)

solved by keeping the smallest eigenvalues, or by
setting µ = 1

λ , since λ 6= 0, this leads to:

Cv = µIv , (48)

solved by keeping the greatest eigenvalues, which is
obviously the PCA solution.

Now, consider that every class consists of a
unique subclass, thus di = 1,∀i ∈ {1, 2, . . . , c}. If
we set:

P(q, p) =

{
S(xq,xp)

ni
= 1

ni
, if xq,xp ∈ Ci

0 , otherwise
,

(49)

then the intrinsic graph matrix becomes that of LDA.
Furthermore, if we set:

Ql1i1 =
ninl
n

,∀ (i, l) ∈ {1, . . . , c}2 (50)

then

−

(∑
ω 6=i

(∑dω
t=1Q

ωt
i1

))
(ni)

2 =
ni − n
nni

(51)

and
Ql1i1
ninl

=
1

n
. (52)

These are the values of the penalty graph matrix
of LDA. So, by taking the Laplacians of the above
matrices, we end up to the LDA algorithm.

Let us now reject the assumption that the vari-
ance of Gaussian tends to infinity. Consider that there
is only one class which contains the whole set of
the data, i.e., c = 1. Also consider that there are no
subclasses within this unique class, i.e., d1 = 1. In
this case the intrinsic graph matrix becomes equal to
P. Thus, by setting P equal to the affinity matrix S,
the intrinsic Laplacian matrix becomes that of LPP.

We observe that by utilizing the identity matrix
as the penalty Laplacian matrix, obviously we get
the LPP algorithm. Since we consider a unique class,
which contains a unique subclass, from (31) and (32)
we have that Wpen = W11. The values of W11 are
given from (33), which in this case reduces to:

W11 = −Q
11
11

n2
en (en)

T
. (53)

If we set:

Q11
11 =

n2

1− n
, (54)

then Wpen = W11 = 1
n−1e

n (en)
T . Consequently,

Lpen =


1 1

1−n · · · 1
1−n

1
1−n 1 · · · 1

1−n
...

...
. . .

...
1

1−n
1

1−n · · · 1

 . (55)

Thus, if we make the assumption that the number of
the data-samples becomes very large, then asymp-
totically we have Lpen = I.

Finally, to complete the analysis, if we consider
as the intrinsic Laplacian matrix, the matrix

Lint = I− 1

n
en (en)

T (56)

and if we set:

Qlhij =
nijnlh
n

, (57)



TABLE I: Dimensionality Reduction Using SGE Framework

P(Lint) Q(Lpen) σ2 c di d

LPP P11(q, p) = exp

(
− d

2(xq,xp)

σ2

)
, ∀xq,xp Q11

11 = n2

1−n (Lpen = I) σ2 1 1 1

PCA Lint = I Ql1i1 = 1
n ∞ n 1 n

LDA Pi1(q, p) = 1
ni
,xq,xp ∈ ci Ql1i1 =

ninl
n ∞ c 1 c

CDA Pij(q, p) = 1
nij

,xq,xp ∈ cij Qlhij = 1 ∞ c di d

SDA Lint = I− 1
nen (en)T Qlhij =

nijnlh
n ∞ c di d

in (33) and (35), SGE becomes identical to SDA.
The parameters that determine the connection of the
several methods with SGE are summarized in Table
I.

V. EXPERIMENTAL RESULTS

We conducted 5-fold cross-validation classifica-
tion experiments on several real-world datasets using
the proposed linear and kernel SGE framework.
For extracting automatically the subclass structure,
we have utilized the multiple Spectral Clustering
technique [16], keeping the most plausible partition
for each dataset. For classifying the data, the Nearest
Centroid (NC) classifier has been used with LPP,
PCA and LDA algorithms, while the Nearest Cluster
Centroid (NCC) [17] has been used with CDA and
SDA algorithms. In NCC, the cluster centroids are
calculated and the test sample is assigned to the class
of the nearest cluster centroid. NC and NCC were se-
lected because they provide the optimal classification
solutions in Bayesian terms, thus proving whether
the DR methods have reached the goal described by
their specific criterion.

A. Classification experiments

For the classification experiments, we have used
diverse publicly available datasets offered for vari-
ous classification problems. More specifically, FER-
AIIA, BU, JAFFE and KANADE were used for
facial expression recognition, XM2VTS for face
frontal view recognition, while MNIST and SE-
MEION for optical digit recognition. Finally, IONO-
SPHERE, MONK and PIMA were used in order to
further extend our experimental study to diverse data
classification problems.

The cross-validation classification accuracy rates
for the several subspace learning methods over the
utilized datasets, are summarized in Table II. The
optimal dimensionality of the projected space that
returned the above results is depicted in parenthesis.
For each dataset, the best performance rate among
linear and kernel methods separately is highlighted
with bold, while the best overall performance rate

among all methods, both linear and kernel, is sur-
rounded by a rectangle. The classification perfor-
mance rank of each method is also referred in the
last two rows of Table II. Specific Rank denotes the
method rank for the linear and the kernel methods,
independently. Overall Rank refers to the rank of
each method among both the linear and the kernel
methods. The ranking has been achieved through a
post-hoc Bonferroni test [18].

An immediate remark from Table II is that in
both linear and kernel case, multimodal methods
exhibit better classification performance than the
unimodal ones. In particular, the top overall perfor-
mance is shown by SDA followed by CDA, while the
worst performance is shown by KLPP and KPCA.
This result undoubtedly shows that the inclusion
of subclass information in the DR process offers a
strong potential to improve the performance of the
state-of-the-art in many classification domains.

In comparing linear with kernel methods, a sim-
ple calculation yields mean overall rank equal to 5.08
for the linear methods and 5.90 for the kernel ones.
Although the average performance of linear methods
is clearly better than that of kernel ones, we must
admit that there is ample space for improving the
kernel results by varying the RBF parameter, as the
selection of this parameter is not trivial and may eas-
ily lead to over-fitting. Actually, the top performance
rates presented in this paper have been obtained by
testing indicative values of the above parameter. As
a matter of fact, it is interesting to observe that
the use of kernels proves to be beneficial for some
methods in certain datasets, while deteriorates the
performance of others.

VI. CONCLUSIONS

In this paper, data subclass information has been
incorporated within Graph Embedding (GE) lead-
ing to a novel Subclass Graph Embedding (SGE)
framework, which constitutes the main contribution
of our work. In particular, it has been shown that
SGE comprises a generalization of GE, encapsu-
lating a number of state-of-the-art unimodal sub-
space learning techniques already integrated within



TABLE II: Cross Validation Classification Accuracies (%) of Linear Methods on Several Real-World
Datasets

DATASET LPP PCA LDA CDA SDA KLPP KPCA KDA KCDA KSDA

FER-AIIA 40.9(3) 31.0(120) 64.6(6) 73.2 75.5(11) 50.2(252) 41.5(29) 54.9(6) 56.1(12) 53.5(12)
BU 39.4(298) 38.1(49) 51.6(6) 49.1(16) 52.3(15) 52.7(317) 35.9(290) 46.6(6) 41.0(13) 48.0(14)
JAFFE 46.8(18) 37.6(39) 53.2(6) 40.0(15) 54.1(6) 28.8(98) 25.9(58) 42.4(6) 36.1(18) 46.3(5)
KANADE 34.2(92) 43.3(46) 67.1(6) 59.7(7) 67.1(5) 32.7(99) 33.2(88) 44.3(6) 40.0(6) 38.5(6)
MNIST 71.1(259) 79.9(135) 84.6(9) 84.8(15) 85.1(14) 81.4(299) 64.5(155) 86.0(9) 83.4(19) 85.2(15)
SEMEION 53.6(99) 83.2(55) 88.2(9) 89.2(19) 89.4(19) 83.8(99) 77.4(77) 95.3(9) 94.1(19) 95.9(19)
XM2VTS 95.7(54) 92.0(86) 70.5(1) 98.1(3) 97.4(2) 71.3(297) 74.7(56) 61.3(1) 71.5(3) 57.3(4)
IONOSPHERE 84.6(23) 72.3(15) 78.9(1) 80.6(2) 83.4(2) 83.7(23) 70.3(2) 92.9(1) 93.1(1) 92.9(1)
MONK 1 66.7(3) 68.3(5) 50.8(1) 70.0(4) 74.2(3) 63.3(2) 72.5(1) 55.8(1) 58.3(4) 61.7(3)
MONK 2 56.0(1) 53.3(4) 52.0(1) 54.2(1) 54.0(2) 54.8(1) 59.8(3) 69.7(1) 78.7(1) 54.5(1)
MONK 3 77.2(5) 80.9(4) 49.4(1) 74.6(2) 66.3(2) 62.5(2) 79.2(5) 51.7(1) 67.5(2) 58.3(1)
PIMA 61.8(1) 63.5(6) 56.5(1) 60.5(3) 73.5(3) 50.7(3) 67.5(4) 48.9(1) 52.5(3) 52.9(1)

SPECIFIC RANK 3.3 3.8 3.6 2.5 1.6 3.5 3.4 2.9 2.4 2.7
OVERALL RANK 5.8 6.4 6.0 4.2 3.0 6.7 6.7 5.4 5.2 5.5

GE. Besides, the connection of SGE with subspace
learning algorithms that use subclass information in
the embedding process has been also analytically
proven. The kernelization of SGE has also been
presented.

Through an extensive experimental study, it has
been shown that subclass learning techniques outper-
form a number of state-of-the-art unimodal learning
methods in many real-world datasets pertaining to
various classification domains. In addition, the exper-
imental results highlight the superiority in terms of
classification performance of linear methods against
kernel ones.

In the near future, we intend to employ SGE as a
template to design novel DR methods. For instance,
as current subclass methods are strongly dependent
on the underlying distribution of the data, we antic-
ipate that novel methods, which use neighbourhood
information among the data of the several subclasses,
will succeed in alleviating this sort of limitations.
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