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Abstract—In this paper, we propose an efficient method for
video characterization based on activity information. We employ
a state-of-the-art video representation in order to learn human
activity concepts, i.e., video groups formed by videos depicting
similar human activities. In order to exploit the enriched visual
information that is available in multi-view settings, we propose
the use of the circular shift invariance property of the coefficients
of the Discrete Fourier Transform (DFT) that leads to a view-
independent multi-view action representation. In the test phase,
in order to assign a test video to one (or multiple) activity groups,
we perform temporal video segmentation in order to determine
shorter videos depicting simple actions. Experimental results
on the i3DPost multi-view action database and a new multi-
view action database denote the effectiveness of the proposed
approach.

Index Terms—Video -characterization,
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Activity clustering,

I. INTRODUCTION

Understanding human activities in video sequences is a
challenging problem due to the large variability in temporal
scale and the periodicity of human actions, the complexity of
articulated motion, the prevalence of complex backgrounds,
variations in observation angles, etc. It has been primarily
approached by applying action/activity recognition techniques
that are able to exploit visual information coming from one
[11, [2] or multiple [3], [4] cameras. The adoption of multiple
cameras gives the advantage of exploiting information relating
to scene geometry and, thus, leads to higher classification
performance in general. However, this performance gain is
accompanied by a higher computational cost, since in multi-
view methods multiple video streams should be processed and
analyzed.

One of the disadvantages of the above-described approach
is that in an action recognition setting, the set of all possible
actions should be a priori defined. In addition, an adequate
number of (labelled) videos should be employed in order to
train classifiers that will be subsequently used for action video
characterization. Given the complexity of such a task due to
the aforementioned reasons, the cardinality of the training
set required in order to achieve satisfactory performance in
an unrestricted application scenario is enormous. This in
turn generates several problems, the most important being
the underlying financial and computational costs of such an
approach.

In several application scenarios, e.g., in movie
production/post-production and content-based video retrieval,
the objective is the determination of similar action/activity
patterns, rather than to perform a strict characterization (i.e.,
recognition) of the performed actions. This can, obviously,
been addressed by applying action recognition techniques
and determine video group depicting the same action/activity.
In addition, in an attempt to address the above-described

issues relating to human action recognition, an alternative
approach can be exploited that involves unsupervised learning.
Unsupervised learning of human actions in this sense is a
relatively new research topic [6] and it is expected to receive
considerable research interest in the next years.

In this paper, we propose a method for unsupervised video
characterization that exploits activity information. We employ
a video description, namely Dense Trajectory-based video
description [5], that has been shown to provide state-of-the-
art performance on a relating task, i.e., action recognition,
and combine it with the Bag-of-Words (BoW) model [7]
in order to represent videos depicting actions. In an offline
process, we determine K action video groups by clustering
training action videos depicting simple actions. During the
test phase, a Dense Trajectory-based video representation is
obtained in order to represent a new (unknown) video, which
is subsequently assigned to the label of the group formed
by the most similar to it videos. Since test videos are not
guaranteed to depict simple actions, we also propose a method
that exploits the same video description and is able to perform
automatic temporal segmentation of a test video to shorter
ones, each depicting a simpler action. Finally, we extend both
methods in order to be able to exploit multi-view information
that is is available in the cases where actions are observed by
using multi-camera setups. Experimental results denote that
the adoption of multi-view information provides considerable
performance gains, when compared to the single-view case,
confirming the findings that have come from other relating
studies [8], [9].

The rest of the paper is structured as follows. Section II de-
scribes the proposed methods. Experimental results conducted
in order to evaluate its performance are described in Section
III. Finally, conclusions are drawn in Section IV.

II. PROPOSED METHOD

Let us denote by U a video database containing videos
depicting N action instances, e.g., a walking instance. In the
case where the action instances have been recorded by using
one camera, these action instances are depicted in [N action
instances, while in the case whre a multi-camera setup formed
by N¢ cameras has been used, each action instance is depicted
in N¢ videos and U is formed by Ny = NyN¢ videos. We
would like to determine K video groups Uy, k = 1,..., K,
where Uszl U, = U, each of which will (ideally) be formed
by videos depicting the same activity type.

In order to determine the k video groups, we would like
to represent each video by using vectorial representations. We
have employed the Dense Trajectory-based video representa-
tion [5] to this end, since it has been shown to provide state-of-
the-art performance in a closely related task, i.e., human action
recognition. In Dense Trajectory-based video description, each
video is described by using a set of five descriptor types,



which are calculated along the trajectory of video frame
interest points that are tracked for a number of L (e.g.,
L = 15) consecutive video frames. Two properties of activity
are described: the shape of various subjects appearing in the
scene is described by the Histogram of Oriented Gradient
(HOG) descriptor, while motion is described by the remaining
four descriptors, i.e., Histogram of Optical Flow (HOF), two
channels of Motion Boundary Histogram (MBHx and MBHy)
and the (normalized) interest point trajectory coordinates. Even
though the four latter descriptors describe the depicted motion,
each of them describes a different property of motion. This is
important in order to distinguish different activity types [5],
[10]. In addition, the adopted video description by describing
local properties of videos is robust to occlusions. By adopting
such a video description, each video in U is represented by
five vectors z¥ € RP?, v = 1,...,V (V = 5), D, being the
dimensionality of each descriptor, obtained by using the Bow
model on each descriptor type independently.

In order to determine the K video groups in U, we apply
clustering on the previously determined video representations
x¢,¢ = 1,..., Ny. These will serve as train samples. Since
BoW-based video representations are better combined with
kernel methods, we employ kernel K-Means algorithm [11] to
this end. In order to combine the different activity properties
described in different BoW-based representations x;, v =
1,...,V, we employ the RBF-x? kernel, where different
descriptor types are combined in a multi-channel approach
[13]:
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where D(x7,x7) is the x? distance between the BoW-based
representation of videos ¢ and j with respect to the v-th
channel. A? is the mean value of y? distances between x?
for the v-th channel. After the determination of the cluster
labels for the vectors x; , each video ¢ is assigned to the

corresponding cluster label.

In the test phase, when a new (unknown) video appears,
we want to assign it to the video group containing similar
activity videos to it. In order to do this, we employ the Dense
Trajectory-based video representation in order to represented
the test video by using five vectors x; . Subsequently, we assign
the video to the group that provides the minimal (kernel x?)
distance from the corresponding cluster center.

In the case where action instances are depicted in multiple
(N¢) videos, each captured by a different viewpoint, we
can exploit the available multi-view information in order to
obtain a view-independent action representation. This can
be achieved by exploiting the circular shift invariance prop-
erty of the coefficients of the Discrete Fourier Transform
(DFT) [9]. In order to avoid confusion, let us denote by
X{ept = 1,...,N, ¢ = 1,....,N¢c, v = 1,...,V the
N¢ vectors representing action video ¢ by exploiting the v-
th descriptor type. By using the camera labeling information
that is available for both the training and test videos, we
create a multi-view action representation by concatenating
xi ., le, xj = [xf7gzl,xf7gz2, - ,xﬁl{:NC]T. In order to
obtain a view-independent action representation y? € RP,
where D = NgD,,, we calculate the coefficients of the DFT

by using x7, i.e.,:
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After the calculation of the multi-view action representa-
tions y;, we can proceed by following the above-described
unsupervised learning process for action video group determi-
nation. Accordingly, a test action instance can be represented
by employing a view-independent action representation y; and
assigned to the group containing similar activity instances to
it.

A. Temporal Video Segmentation

As has been previously described, test videos are not
guaranteed to depict simple actions. Thus, the assignment of
such videos in video groups containing simple actions would
be wrong. In order to address this issue, we propose a method
for automatic temporal video segmentation that exploits the
Dense Trajectory-based video description.

Let us assume that a test video appears. We employ the
Dense Trajectory-based video description in order to calculate
descriptors d},7 =1,...,Ng,v =1,...,V on the trajectories
of densely-sampled video frame interest points. Ny is the
number of interest points detected in the test video. We con-
catenate the five descriptor vectors d; in order to fuse the local
shape and motion information appearing in each trajectory,
ie,d;=[d!7,...,d?T]". Subsequently, we apply K-Means
clustering [12] on d; in order to calculate a set of descriptor
prototypes (codebook). By using this codebook, which is
exclusively derived from the video under consideration, and
the video frame indices corresponding to each trajectory,
we create BoW-based representations of (overlapping) video
segments, consisting of N, video frames each. In all our
experiments we have used the value N, = 20. Let us denote
the number of the resulting video segments by N. Let us also
denote by v;,j =1,..., N the BoW-based representations of
the resulting video segments. By employing the video segment
temporal relationship, we create two sets of video segment
representations S;, ¢ = 1,2, each consisting of N;, i = 1,2
vectors (N1 + No = N). By employing v;,j = 1,, N and
the corresponding set labels c;, the within-set variance can be
measured by:
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where m; is the mean vector of set i, i.e.:
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Since v; represent the video segments in the test video,
the minimization of s,, leads to the maximization of the
compactness of the two video segment sets 51, So. In order to
determine an optimal temporal segmentation of the test video,
in terms of s,, minimization, we employ a line search strategy
for the determination of the best parameter value N;. The
above-described process is illustrated in Figure 1.

An example of the above described temporal video segmen-
tation process on a video sequence of the i3DPost database that
depicts actions “walk” and “jump” is illustrated in Figure 2.
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Fig. 1. Example of a temporal criterion.
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Fig. 2. Example of a video correspondence.

In the case where action instances are depicted in multiple
(N¢) synchronized videos, each captured by a different view-
point, we can exploit the available multi-view information in
order enhance temporal segmentation performance. Since all
the N¢ synchronized videos depict the same action instance,
we expect that they should be temporally segmented at the
same video frame index. We apply the above-described process
on each of the N videos independently and determine the
video frame cuts for each of them. Let us denote by ¢;, ¢ =
1,..., N¢ the video frame indices determined for each of the
N¢ videos. We determine as the action instance cut frame the
mean video frame value, ie., t = Nic vazcl t;. In order to
avoid taking into account outliers video frame cut values in
the determination of the action instance cut, we can discard
the o smaller and « larger ¢; values before ¢ calculation.

III. EXPERIMENTS

In this Section we describe experiments conducted in order
to evaluate the performance of the proposed methods. We have
employed the i3DPost multi-view action database [?] and a
new multi-view action database in order to evaluate both the
temporal video segmentation and the video characterization

methods.
The i3DPost database ....

IV. CONCLUSION

In this paper, we proposed an efficient method for video
characterization based on activity information. The method
employs a state-of-the-art video representation in order to
determine human activity concepts. A view-independent multi-
view action representation is achieved by exploiting the cir-
cular shift invariance property of the coefficients of the DFT
transform, while temporal video segmentation is performed
as a pre-processing step in order to determine shorter videos
containing simpler actions. Experimental results on two multi-
view action databases denote the effectiveness of the proposed
approach.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 316564 (IM-
PART).

REFERENCES

[11 L. Gorelick, M. Blank, E. Shechtman, M. Irani and R. Basri, Actions as
space-time shapes, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, no. 12, pp. 22472253, 2007.

[2] I. Laptev, M. Marszalek, C. Schmind and B. Rozenfeld, Learning realis-
tic human actions from movies, Computer Vision and Pattern Recognition,
2008.

[3] X. Jiand H. Liu, Advances in view-invariant human motion analysis: a
review, IEEE Transactions on Systems, Man & Cybernetics, Part-C, vol.
40, no. 1, pp. 1324, 2010.

[4] A. losifidis, A. Tefas and 1. Pitas, Minimum Class Variance Extreme
Learning Machine for Human Action Recognition, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 23, no. 11, pp. 1968-
1979, 2013.

[S] H. Wang, A. Klaser, C. Schmid, and C. L. Liu, Dense trajectories and
motion boundary descriptors for action recognition, International Journal
of Computer Vision, vol. 103, no. 60, pp. 120, 2013.

[6] Y. Yang, I. aleemi and M. Shah, Discovering motion primitives for
unsupervised grouping and one-shot learning of human actions, gestures,
and expressions, IEEE Transactions on Pattern Anaysis and Machine
Intelligence, vol. 35, no. 7, pp. 1635-1648, 2013.

[71 Y. Huang, Z. Wu, L. Wang and T. Tan, Feature coding in image
classification: A comprehensive study. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, pp. 493506, 2014.

[8] A. Iosifidis, A. Tefas and 1. Pitas, View-invariant action recognition
based on Artificial Neural Networks, IEEE Transactions on Neural
Networks and Learning Systems, vol. 23, no. 3, pp. 412-424, 2012.

[9] A. losifidis, A. Tefas, N. Nikolaidis and I. Pitas, Multi-view
Human Movement Recognition based on Fuzzy Distances and Linear
Discriminant Analysis, Computer Vision & Image Understanding, vol.
116, pp. 347-360, 2012.

[10] M. Jain, H. Jegou and P. Bouthemy, Better exploiting motion for better
action recognition, Computer Vision and Pattern Recognition, 2013.
[11] J. Tayor, and N. Cristianini, Kernel Methods for Pattern Analysis,

Cambridge University Press, 2004.

[12] R. Duda, P. Hart and D. Stork, Pattern Classification, 2nd ed., John
Wiley &Sons, 2001.

[13] J. Zhang, M. Marszalek, M. Lazebnik and C. Schmid, Local
features and kernels for classification of texture and object categories:
A comprehensive study, International Journal of Computer Vision, vol.
73, no. 2, pp. 213-238, 2007.



