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Abstract—Large-scale multi-class classification problems in-
volve an enormous amount of training data that make the ap-
plication of classical non-linear classification algorithms difficult.
In addition, such multi-class classification problems are usually
formed by a considerable number of classes. This makes the
application of the popular one-versus-rest binary classifiers fusion
scheme adopted by most state-of-the-art approaches difficult. In
this paper, in order to overcome the high computational cost
of multi-class non-linear classification approaches, we adopt an
ensemble of approximate non-linear one-class classifiers. To this
end, we propose a new scalable solution for the Least Squares
One-Class Support Vector Machine classifier by following an
approximate kernel approach. We evaluated the proposed method
in big data visual classification problems, where it is shown that
it is able to achieve satisfactory performance, while significantly
reducing the overall computational and memory costs.

I. INTRODUCTION

In large-scale classification problems, training for multiple
classes by employing state-of-the art non-linear classification
methods, like the kernel Support Vector Machines variants [1],
[2], [3], is computationally prohibitive due to the enormous
number of training samples. For that case, a simple solution
would be to employ one-class classification methods and
model each class separately, this way reducing the training
set cardinality of each smaller (one-class) classification prob-
lem significantly. Moreover, a recently concluded study has
indicated that employing an ensemble of one-class classifiers
can achieve very good performance in large-scale multi-class
biomedical data classification problems [4]. Novelty detection
methods are commonly used when only the class of interest
needs to be modelled and discriminated from the rest of the
world (every other possibility). Common use case scenarios
for novelty detection methods include the case where only one
class is well sampled and at the same time more important than
every other possibility, such as in medical diagnostic problems,
fault detection, video surveillance, mobile fraud detection [5],
as well as on video summarization [6].

State-of-the-art one-class classification methods, including
the One-class Support Vector Machines [7] (OC-SVM), the
Support Vector Data Description [8] (SVDD), kernel PCA-
based methods [9], [10] and the recently proposed Least
Squares One-Class Support Vector Machine [11], that can
derive non-linear solutions by exploiting the well-known kernel
trick [12], [13] achieve significantly better performance over
their linear alternatives. Such non-linear methods exploit the
so-called kernel matrix K ∈ RN×N , where N is the number

of training data, in order to define linear solutions in the
so-called kernel space F (of arbitrary dimensionality), which
correspond to non-linear solutions in the original (input) space.
The derived solutions usually involve the eigen-decomposition
or the inversion of K. In classification problems involving Big
Data, where N very large, the application of such approaches
is prohibitive, since their computational complexity scales as
O(N3) and their memory complexity scales as O(N2).

In order to overcome these restrictions of kernel methods,
approaches exploiting low-rank matrix approximation methods
have been proposed [14], [15], [16]. A popular approach in
this category of methods exploits a low-rank approximata-
tion K̃ ∈ RN×N of the kernel matrix K which can be
obtained by random (column) sampling of K and is given
by K ≈ CW†CT , where C ∈ RN×m contains the m
sampled columns and W ∈ Rm×m is the kernel matrix of
the training data corresponding to the m sampled columns.
By following such an approach, a reduced number of data
similarities need to be calculated and stored, leading to lower
computational complexity and lower memory requirements.
However, employing low-rank matrix approximations for any
kernel method, including the Kernel Ridge Regression [1]
(KRR), as well as equivalent methods like Regularization
Network [2] (RR), Least-Squares Support Vector Machines
[3] and Extreme Learning Machines [17], [18], may not be
the most optimal approximation solution in every case.

In order to find an approximate solution for the Least
Squares One-Class Support Vector Machine (LSOCSVM) clas-
sifier, we should follow an approach similar to other approxi-
mate methods [19], [20]. For instance, an approximate solution
of the kernel K-means optimization problem is obtained by
approximating the cluster centers using similarities between
randomly sampled points and all points of the data [19]. In
Support Vector Machines, since the decision hyperplane is
defined by the support vectors, which are expected to be lesser
than the training data, a method that approximates the extreme
points (that are more likely to be the support vectors) has been
proposed in [20]. This work has shown that method-specific
approximate solutions are also an option, besides kernel matrix
approximation ones.

In this paper, in order to perform large-scale visual data
classification, we propose a multi-class classification scheme
that employs an ensemble of One-class classifiers. We em-
ploy the one-class classifiers in order to model each class
independently. In order to avoid heavy computations in these



one-class classification problems (since in Big Data problems
the number of samples forming the various classes can be
again high), we propose a new approximate solution for the
LSOCSVM classifier, called Approximate Least Squares One-
Class Support Vector Machine (ALSOCSVM) classifier. We
evaluate the proposed approach in multi-class face recognition
and activity recognition classification problems.

The remainder of the paper is structured as follows. In
Section II we provide an overview of the Least Squares One
Class Support Vector Machine (LSOCSVM) classifier. In Sec-
tion III, we describe in detail the proposed Approximate Least
Squares One Class Support Vector Machine (ALSOCSVM)
classifier. Experiments conducted in order to test our approach
are described in Section IV. Finally, conclusions are drawn in
Section V.

II. LEAST SQUARES ONE CLASS SUPPORT VECTOR
MACHINE

Let us denote by X = {xi, . . . ,xN} a set of training
data xi ∈ RD, i = 1, . . . , N that form a distinct class in a
multi-class classification problem. In order to derive non-linear
decision functions, we can exploit any non-linear function φ(·)
such that xi ∈ RD → φ(xi) ∈ F in order to map the data
from the input space RD to the feature space F (which can
be of arbitrary dimensions in the RBF case). Let us denote by
Φ = [φ(x1), . . . , φ(xN )] a matrix (of arbitrary dimensions)
that contains the training data representations in F . Let us
also define by K = ΦTΦ the kernel matrix having elements
[K]ij = φ(xi)

Tφ(xj).

The Least Squares One-Class Support Vector Machine
classifier [11] solves the following optimization problem1 for
the calculation of the optimal separating hyperplane w ∈ F :

Minimize 1
2‖w‖

2
2 +

c
2

∑N
i=1 ξ

2
i , (1)

Subject to wTφ(xi) = 1− ξi, i = 1, ..., N, (2)

leading to the solution:

w = Φ

(
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1

c
I

)−1
1 = Φ

(
K +

1

c
I

)−1
1, (3)

where 1 ∈ RN is a vector of ones and c a parameter that
denotes the importance of training error. Since the feature
space F is usually unknown, w in (3) cannot be directly
calculated. By exploiting the Representer Theorem [21], [22],
[23], w is usually restricted to belong to the span of Φ, i.e.
w = Φa, where a ∈ RN . From (3), we obtain:

a =

(
K +

1

c
I

)−1
1. (4)

After the calculation of a, the decision for a new (unknown)
sample xt can be given by:

ot = wTφ(xt) = aTΦTφ(xt) = aTkt, (5)

where kt ∈ RN is a vector having its elements equal to [kt]i =
φ(xi)

Tφ(xt), i = 1, . . . , N .

1This is a slightly modified version of the optimization problem solved by
LSOCSVM classifier that leads to a non-normalized solution. The original
LSOCSVM solution is similar to that in (4) by exploiting an additional
normalization term

III. APPROXIMATE LEAST SQUARES ONE-CLASS
SUPPORT VECTOR MACHINE

The Approximate Least Squares One-Class SVM classi-
fier, similar to the LSOCSVM one, maps the training data
xi, i = 1, . . . , N to the kernel space F by using the non-
linear function φ(·) and solves the optimization problem in (1)
under the constraints in (2). However, we restrict the solution
to be in the range of a subset of the training data, forming the
matrix Φ̃ ∈ R|F|×n, where n < N . That is, the ALSOCSVM
classifier seeks for a solution of the form:

w̃ = Φ̃a. (6)

More formally, the ALSOCSVM classifier solves the fol-
lowing optimization problem:

Minimize
1

2
w̃T w̃ +

c

2

N∑
i=1

ξ2i , (7)

Subject to w̃Tφ(xi) = 1− ξi, i = 1, ..., N. (8)

For notational convenience, let us denote the auxiliary
matrices S ∈ R = Φ̃T Φ̃n×n and K̃ = Φ̃TΦ ∈ Rn×N . The
equivalent to (7) as a dual optimization problem is given by:

L(a, ξi, λi) =
1

2
aTSa +

c

2

N∑
i=1

ξ2i −
N∑
i=1

λi(a
Tki − 1 + ξ),

where λi, i = 1, . . . , N are the Lagrangian multipliers corre-
sponding to the constraints in (8).

By determining the saddle points of the Lagrangian (9), we
obtain:

ϑL(a, ξi, λi)
ϑa

= 0⇒ Sa = K̃λ (9)

ϑL(a, ξi, λi)
ϑξi

= 0⇒ ξ =
1

c
λ (10)

ϑL(a, ξi, λi)
ϑλi

= 0⇒ K̃Ta = 1− ξ. (11)

where λ ∈ RN is a vector containing the slack variables λi.

By substituting (10) in (11), we obtain:

λ = c(1− K̃Ta) (12)

Then, by substituting (12) in (9) we obtain:

a =

(
1

c
S + K̃K̃T

)−1
K̃1. (13)

By observing (13), we can see that the solution of the AL-
SOCSVM classifier requires the calculation and inversion of a
n×n matrix, thus, highly reducing both the computational and
memory costs (when compared to the LSOCSVM case). Here
we can also observe that for a value of n = N , S = K̃ = K,
and the solution of the (13) is exactly equal to (4):(

1

c
K + KK

)
a = K1,

a =

(
1

c
I + K

)−1
1. (14)



That is, the solution of the LSOCSVM can be approximated
by using higher values of n.

After the calculation of a, the decision for a new (unknown)
sample xt is given by:

ot = wTφ(xt) = aT Φ̃Tφ(xt) = aT k̃t, (15)

where k̃t ∈ Rn is the kernel vector obtained by using the
training data forming Φ̃.

Finally, xt is classified to the class under consideration if
(ot−1)2 ≤ ε, or is characterized as an outlier, if (ol−1)2 > ε,
where ε ≥ 0 is a threshold determined by using the decision
values obtained for the training data.

In terms of computational complexity, we can compare the
solutions of LSOCSVM (4) with the solution of the proposed
ALSOCSVM (15). We observe that the solution of LSOCSVM
requires:

• the kernel matrix calculation, which has a computa-
tional complexity of O(DN2),

• the inversion of an N × N matrix, which has a
computational complexity of the order of O(N3) and

• the calculation of a, which has a computational com-
plexity of O(N2).

The overall computational complexity of the LSOCSVM clas-
sifier in the training phase is equal to O(N3 + (D + 1)N2),
while its computational complexity at the test phase is equal
to O(DN).

The solution of the ALSOCSVM requires:

• the calculation of K̃ and S, which has a computational
complexity of O(nND + n2),

• the inversion of an n×n matrix, which has a compu-
tational complexity of the order of O(n3) and

• the calculation of a, which has a computational com-
plexity of O(n2N).

The overall computational complexity of the ALSOCSVM
classifier in the training phase is equal to O(n2(N + 1) +
nND), while its computational complexity at the test phase
is equal to O(nD).

From the above, we can observe that the computational
complexity of the ALSOCSVM classifier is very low, when
compared to that of the LSOCSVM classifier.

IV. EXPERIMENTAL RESULTS

In this section, we describe experiments carried out in order
to evaluate the performance of the proposed approach. We have
evaluated the proposed ensemble of ALSOCSVM classifiers
in three publicly available datasets, two for action recognition
and one for face recognition. For comparison reasons, we have
also trained an ensemble of one-class Support Vector Machines
[7] (OC-SVM), Nystrom-based Approximate OC-SVMs [7],
[14] (AOC-SVM) and Nystrom-based Approximate One-class
Kernel Ridge Regressor [24], [14] (NY-OCKRR) classifiers.
For evaluating the performance of each approach, in all exper-
iments we have employed the g-mean metric [25] that can be

used in classification problems as the ones taken into account
in this paper. For all methods, we report the mean performance
obtained over all classes. For the approximate methods, for a
specific p value we randomly sample n = pN training vectors
to form the subset of data used for the calculation of the
corresponding matrices, e.g. S and K̃ for ALSOCSVM, and
train the classifier, which is tested on the test data. Since all
approximate methods employ random subsets of the training
data, we repeat this process 10 times and calculate the mean
performance and the corresponding standard deviation. All
experiments were conducted on an Intel i7-3.6Ghz CPU with
32GB of RAM, using a MATLAB implementation. Specifi-
cally for the OC-SVM and AOC-SVM classifiers, we have
employed the LIBSVM library [26], which is written in C++.
Experiments for each visual data classification problem are
given separately in subsections IV-1 and IV-2.

1) Experiments in face recognition: For performing exper-
iments in face recognition, we have employed the YouTube
faces dataset [27]. Example images can be seen in Figure
1. Vectorial image representations xi ∈ <D, were obtained

Fig. 1. Example faces from the YouTube faces dataset

by employing the Local Binary Pattern (LBP) descriptors,
as in [27], leading to data dimensionallity D = 1770. In
this experiment, we have kept only the classes that contained
more than 1000 examples, resulting in a total 222183 images.
We have performed a 10-fold cross-validation procedure, by
splitting the dataset into 199973 train images and 22210 test
images for each fold. In order to create balanced classification
sets, we performed testing for each class separately using all
test examples from the modelled class and a random selection
from the 22210 test samples of twice as more elements.

In Table I, we provide the g-mean rates obtained by apply-
ing the competing algorithms in Youtube Faces dataset. For all
approximate methods we provide the average g-mean rate and
the corresponding standard deviation over ten experiments. As
can be seen, satisfactory performance performance is achieved
for all values of p. Moreover, state-of-the-art performance
comparable to OC-SVM and LS-OC-SVM, can be obtained
from a value of p > 0.02, for any approximation method. The
performance of all approximate methods is similar for most of
the values of p tested.

The time required to train each one-class classifier on the
one-class problem corresponding to the class formed by the
higher number of samples (N = 2500) is shown in Table II.
Since OC-SVM and AOC-SVM classifiers were implemented
using LIBSVM [26], which is a C++ implementation, they
are expected to operate faster that LSOCSVM. Although



TABLE I. PERFORMANCE AND STDS ON YOUTUBE FACES DATASET

p/method LSOCSVM OC-SVM AOC-SVM NY-OCKRR ALSOCSVM
0.01 - - 93.60 ± 11.31 92.27 ± 7.07 92.79 ± 6.93
0.02 - - 94.86 ± 8.60 95.22 ± 3.89 95.29 ± 3.80
0.05 - - 96.19 ± 3.86 96.01 ± 1.92 96.25 ± 1.90
0.1 - - 96.71 ± 1.49 96.15 ± 1.39 96.34 ± 1.21
0.2 - - 96.85 ± 1.03 96.01 ± 1.14 96.26 ± 0.88
0.4 - - 96.73 ± 0.72 95.90 ± 0.73 96.13 ± 0.53
1.0 96.11 96.32 96.32 96.11 96.11

the proposed ALSOCSVM classifier was implemented using
strictly MATLAB code, it operates faster than the competition
for values of p < 0.4. Moreover, the proposed ALSOCSVM
classifier scales very well against the NY-OCKRR, which is
main competition, and manages to have similar training times
with LSOCSVM, for values of p close to 1.

TABLE II. TRAINING TIMES (SECONDS) REQUIRED FOR A SINGLE
CLASS

p/method LSOCSVM OC-SVM∗ AOC-SVM∗ NY-OCKRR ALSOCSVM
0.01 - - 0.17 0.06 0.02
0.02 - - 0.18 0.07 0.02
0.05 - - 0.19 0.09 0.04
0.1 - - 0.23 0.17 0.07
0.2 - - 0.36 0.39 0.17
0.4 - - 0.61 1.3 0.68
0.6 - - 0.91 3.75 1.8
0.8 - - 1.16 8.19 4.3
1.0 7.1 0.4 1.5 15.7 7.5

2) Experiments in Action Recognition: For action recog-
nition, we have employed the outdoor recording section of
the IMPART Multi-modal/Multi-view Dataset of [28] and the
i3DPost Multi-view Human Action Dataset [29]. IMPART
outdoor recording section consists of synchronized recordings
of 14 cameras, depicting 3 actors performing 9 activities. We
obtained segmented videos depicting each activity by applying
the activity video segmentation method [30]. Example frames
from the IMPART dataset can be seen in Figure 2. The

Fig. 2. Sample frames from the IMPART dataset

i3DPost dataset contains 832 high-resolution (1080 × 1920
pixel) videos depicting 8 persons performing 13 activities.
Example frames from the I3DPost dataset can be seen in Figure
3. For both datasets, we have employed the Dense Trajectory-

Fig. 3. Sample frames from the I3DPost dataset

based video description [31], which has shown to provide

state-of-the-art performance in human action recognition. We
obtained vectorial video representations be employing the Bag-
of-Features representation [32], [33], leading to vectors of
100 dimensions for each video. We performed a 3-fold cross-
validation procedure, where we used 2/3 of the videos for
training and the remaining 1/3 of them for testing.

Experimental results in terms of classification performance
are shown in Tables III and IV. As can be seen, the LSOCSVM
classifier provides the best classification performance in both
datasets. Comparable performance to LSOCSVM, can be
obtained by employing the NY-OCKRR and ALSOCSVM
classifiers for a value of p > 0.3. In almost every case,
the NY-OCKRR and ALSOCSVM classifier provide similar
classification performance.

TABLE III. PERFORMANCE IN I3DPOST DATASET

p/method LSOCSVM OC-SVM AOC-SVM NY-OCKRR ALSOCSVM
0.01 - - 67.88 65.36 65.81
0.02 - - 67.37 65.95 65.60
0.05 - - 70.58 68.97 69.25
0.1 - - 76.07 75.06 75.19
0.2 - - 78.33 78.61 79.03
0.3 - - 79.52 80.73 80.42
0.5 - - 77.88 82.75 82.91
0.7 - - 76.09 84.14 84.04
0.8 - - 75.19 84.62 84.43
1 85.25 73.78 73.78 85.25 85.25

TABLE IV. PERFORMANCE IN IMPART DATASET

p/method LSOCLSVM OC-SVM AOC-SVM NY-OCKRR ALSOCSVM
0.01 - - 58.19 56.73 56.56
0.02 - - 58.76 56.63 56.03
0.05 - - 62.02 60.13 60.15
0.1 - - 65.07 62.11 62.35
0.2 - - 65.04 64.87 64.70
0.3 - - 64.30 65.91 66.01
0.5 - - 62.90 67.58 67.38
0.7 - - 61.39 68.30 68.18
0.8 - - 61.11 68.55 68.49
1 68.98 60.47 60.47 68.98 68.98

n Tables V and VI we present the training times for the
one-class classification ensemble. The proposed ALSOCSVM
classifier provides the best performance in terms of training
times, for values of p < 0.3. We also can see that it scales
better than the competing NY-OCKRR classifier, for all values
of p.

TABLE V. TRAINING TIMES (MS) IN I3DPOST DATASET

p/method LSOCSVM OC-SVM∗ AOC-SVM∗ NY-OCKRR ALSOCSVM
0.01 - - 1.92 2.46 2.06
0.02 - - 2.54 2.74 2.27
0.05 - - 3.12 3.11 2.86
0.1 - - 3.35 3.50 3.01
0.2 - - 3.99 4.56 3.72
0.3 - - 4.29 5.35 4.23
0.5 - - 5.39 10.26 6.72
0.7 - - 6.38 13.84 8.90
0.8 - - 6.24 14.78 9.61
1 11.88 4.43 6.82 18.46 11.88

V. CONCLUSION

In this paper, we have described a new approximate method
for large scale visual data classification, that employs an
ensemble of one-class classifiers. The approximation scheme
restricts the solution to be a linear combination of a subset of
the training data in the feature space. The proposed approach
has shown decent generalization performance in visual data



TABLE VI. TRAINING TIMES (MS) IN IMPART DATASET

p/method LSOCLSVM OC-SVM∗ AOC-SVM∗ NY-OCKRR ALSOCSVM
0.01 - - 7.70 7.72 7.30
0.02 - - 8.36 8.14 7.67
0.05 - - 9.40 9.29 8.70
0.1 - - 10.52 10.69 9.74
0.2 - - 12.11 13.81 12.00
0.3 - - 14.93 18.66 15.72
0.5 - - 18.93 27.4 22.24
0.7 - - 24.11 40.45 30.39
0.8 - - 26.64 47.33 35.39
1 45.03 19.75 31.74 62.69 45.03

classification problems, with reduced memory and computa-
tional costs, when compared to other approximation choices.
We expect that this method could also provide satisfactory
performance in other classification problems. This will be
investigated in our future research.
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