
                          Iosifidis, A., Tefas, A., & Pitas, I. (2014). Kernel Reference Discriminant
Analysis. Pattern Recognition Letters, 49, 85-91. DOI:
10.1016/j.patrec.2014.06.013

Peer reviewed version

Link to published version (if available):
10.1016/j.patrec.2014.06.013

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at http://www.sciencedirect.com/science/article/pii/S0167865514002037. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Explore Bristol Research

https://core.ac.uk/display/73982899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.patrec.2014.06.013
http://research-information.bristol.ac.uk/en/publications/kernel-reference-discriminant-analysis(28acfdbf-513c-4a5e-863b-21b9295c9db9).html
http://research-information.bristol.ac.uk/en/publications/kernel-reference-discriminant-analysis(28acfdbf-513c-4a5e-863b-21b9295c9db9).html


Kernel Reference Discriminant Analysis

Alexandros Iosifidis, Anastasios Tefas and Ioannis Pitas

Department of Informatics, Aristotle University of Thessaloniki
Box 451, 54124 Thessaloniki, Greece

{aiosif,tefas,pitas}@aiia.csd.auth.gr

Abstract

Linear Discriminant Analysis (LDA) and its nonlinear version Kernel Discrimi-
nant Analysis (KDA) are well-known and widely used techniques for supervised
feature extraction and dimensionality reduction. They determine an optimal dis-
criminant space for (non)linear data projection based on certain assumptions, e.g.
on using normal distributions (either on the input or in the kernel space) for each
class and employing class representation by the corresponding class mean vectors.
However, there might be other vectors that can be used for classes representation,
in order to increase class discrimination in the resulted feature space. In this paper,
we propose an optimization scheme aiming at the optimal class representation, in
terms of Fisher ratio maximization, for nonlinear data projection. Compared to the
standard approach, the proposed optimization scheme increases class discrimina-
tion in the reduced-dimensionality feature space and achieves higher classification
rates in publicly available data sets.

Keywords: Kernel Discriminant Analysis, Kernel Spectral Regression, Class
Representation

1. Introduction

Linear Discriminant Analysis (LDA) is a well-known algorithm for supervised
feature extraction and dimensionality reduction. It aims at the determination of an
optimal subspace for linear data projection, in which the classes are better dis-
criminated. Non-linear extensions ([? ? ? ? ? ? ? ]) exploit data representa-
tions in arbitrary-dimensional feature spaces (determined by applying a non-linear
data mapping process). After the determination of the data representation in the
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arbitrary-dimensional feature space, a linear projection is calculated, which cor-
responds to a non-linear projection of the original data. In both cases, the adopted
criterion is the ratio of the between-class scatter to the within-class scatter in the
reduced-dimensionality feature space, which is usually referred to as Fisher ratio.

LDA optimality is based on the assumptions of: a) normal class distributions
with the same covariance structure and b) class representation by the correspond-
ing class mean vector. Under these assumptions, the maximization of the Fisher
ratio leads to maximal class discrimination in the reduced-dimensionality feature
space. Although relying on rather strong assumptions, both LDA and its kernel
extensions have proven very powerful and they have been widely used in many
applications, including face recognition/verification ([? ? ? ? ? ]), human action
recognition ([? ? ]), person identification ([? ? ? ]) and speech recognition ([? ]).

By observing that the between-class and within-class scatter matrices em-
ployed for the determination of the optimal data projection matrix in LDA can be
considered to be functions of the class representation, it has been recently shown
that, when the two aforementioned assumptions are not met, the adoption of class
representations different from the class mean vectors leads to increased class dis-
crimination in the reduced-dimensionality feature space ([? ]). In addition, it has
been shown that, given a data projection matrix determined by maximizing the
criterion adopted in LDA, the optimal class representations can be analytically
calculated. In order to determine both the optimal data projection matrix and the
optimal class representations, an iterative optimization scheme has been proposed
([? ]).

In this paper, we extend the method in ([? ]) in order to operate in arbitrary-
dimensional feature spaces for non-linear supervised feature extraction and data
projection. We formulate an optimization problem that exploits a non-linear data
mapping process to an arbitrary-dimensional feature space, in which optimized
class representations are determined. By employing such optimized class repre-
sentations, a linear data projection from the arbitrary-dimensional feature space
to a reduced-dimensionality discriminant feature space is subsequently calcu-
lated. We show that, the determination of the optimal class representation in
the arbitrary-dimensional feature space has a closed form solution, similar to the
linear case. For the determination of the optimal data projection exploiting the
optimal class representations, we introduce the proposed criterion to the Spectral
Regression framework ([? ]) and we describe an efficient algorithm to this end.
Finally, we combine the two aforementioned optimization processes and propose
an iterative optimization scheme for the determination of both the optimal class
representation and the optimal (non-linear) data projection. The proposed crite-
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rion is evaluated on standard classification problems, as well as on human action
and face recognition problems. It is shown that, by exploiting optimized class rep-
resentations, increased class discrimination can be achieved in the decision space
leading to enhanced classification performance.

The rest of the paper is structured as follows. We briefly describe the non-
linear version of LDA, i.e., the Kernel Discriminant Analysis (KDA), in Section
2. The proposed Kernel Reference Discriminant Analysis (KRDA) algorithm is
described in detail in Section 3. Experimental results comparing its performance
with the standard approach are provided in Section 4. Finally, conclusions are
drawn in Section 5.

2. Kernel Discriminant Analysis

Let us denote by xij ∈ RD, i = 1, . . . , C, j = 1, . . . , Ni a set of D-
dimensional data, each belonging to one of C classes. The number of samples
belonging to class i is equal to Ni. In order to determine a nonlinear data projec-
tion, the input space RD is mapped to an arbitrary-dimensional feature space F
(usually having the properties of Hilbert spaces) ([? ? ? ]) by employing a func-
tion ϕ(·) : xij ∈ RD → ϕ(xij) ∈ F determining a nonlinear mapping from the
input space RD to the arbitrary-dimensional feature space F . ϕ(·) can either be
chosen based on the properties of the problem at hand, e.g. for histogram-based
data representations the RBF-χ2 kernel has been proven to be the state-of-the-art
choice ([? ]), or can be determined by applying kernel selection methods. In the
second case, a linear combination of a priori chosen kernel functions is usually
learned based on optimization, e.g., as in ([? ]). In F , we would like to determine
a data projection matrix P that can be used to map a given sample ϕ(xij) to a
low-dimensional feature space Rd of increased class discrimination power:

yij = PTϕ(xij), yij ∈ Rd. (1)

This can be achieved by maximizing the following criterion:

JKDA(P) =
trace(PTSbP)

trace(PTSwP)
, (2)

where the matrices Sb, Sw are given by:

Sb =
C∑
i=1

Ni

(
ϕ(mi)− ϕ(m)

)(
ϕ(mi)− ϕ(m)

)T
, (3)
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Sw =
C∑
i=1

Ni∑
j=1

(
ϕ(xij)− ϕ(mi)

)(
ϕ(xij)− ϕ(mi)

)T
. (4)

In (3), (4), ϕ(mi) is the mean vector of class i in F , i.e., ϕ(mi) =
1
Ni

∑Ni

j=1 ϕ(xij).
ϕ(m) is the mean vector of the entire set in F , i.e., ϕ(m) = 1

N

∑C
i=1

∑Ni

j=1 ϕ(xij),
where N =

∑C
i=1 Nij . The direct maximization of (2) is intractable, since Sb, Sw

are matrices with arbitrary (possibly infinite) dimensions. In practice we over-
come this problem by exploiting the so-called kernel trick ([? ? ? ]). That is, the
maximization of (2), as well as the multiplication in (1), are inherently computed
by using dot-products in F .

The maximization of (2) with respect to P leads to the determination of a data
projection that can be used to map the original data to a reduced-dimensionality
feature space where the data dispersion from the corresponding class mean vectors
is minimized and the dispersion of class mean vectors from the total mean is
maximized. In the cases where the classes (when represented in F) follow normal
distributions with the same covariance structure, by maximizing (2) maximal class
discrimination can be achieved. However, this is a strong assumption which may
not be met in many real problems. As has been shown in ([? ]), the determination
of optimized class representations enhances class discrimination in the projection
space in the cases where the assumptions of LDA are not met. In the following,
we describe an iterative optimization scheme that can be exploited in order to
determine both the optimal class representations in F and the optimal projection
for nonlinear data mapping exploiting such optimized representations.

3. Kernel Reference Discriminant Analysis

In this Section we describe in detail the proposed Kernel Reference Discrim-
inant Analysis algorithm. Let us denote by Φi a matrix containing the samples
belonging to class i (represented in F), i.e., Φi = [ϕ(xi1), . . . , ϕ(xiNi

)]. By us-
ing Φi, i = 1, . . . , C we can construct the matrix Φ = [Φ1, . . . ,ΦC ] contain-
ing the representations of the entire data set in F . The so-called kernel matrix
K ∈ RN×N is given by K = ΦTΦ. Let us denote by Ki ∈ RN×Ni a matrix
containing the columns of K corresponding to the samples belonging to class i.
That is, K = [K1, . . . ,KC ], where Ki = ΦTΦi.

In KRDA, each class i is represented by a vector ϕ(µi). ϕ(µi) is not restricted
to be the class mean in F , but can be any vector enhancing class discrimination
in the projection space Rd. In order to determine both the optimal data projection
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matrix P and the optimal class representations ϕ(µi), we propose to maximize
the following criterion with respect to both P and µi:

JKRDA(P,µi) =
trace(PT S̃b(µi)P)

trace(PT S̃w(µi)P)
, (5)

where the matrices S̃b(µi), S̃b(µi) are given by:

S̃b(µi) =
C∑
i=1

Ni

(
ϕ(µi)− ϕ(m)

)(
ϕ(µi)− ϕ(m)

)T
, (6)

S̃w(µi) =
C∑
i=1

Ni∑
j=1

(
ϕ(xij)− ϕ(µi)

)(
ϕ(xij)− ϕ(µi)

)T
. (7)

S̃w describes the class dispersion with respect to ϕ(µi) in F . That is, the max-
imization of (5) leads to the determination of a data projection that can be used
to map the original data to a reduced-dimensionality feature space Rd, where the
data dispersion from the corresponding class reference vector µ̃i = PTϕ(µi) is
minimized, while the dispersion of the class reference vectors from the total mean
is maximized. In the following, we assume that the data set is centered in F1.

3.1. Calculation of P
In order to determine the optimal data projection matrix P we work as follows.

Let us denote by p an eigenvector of the problem S̃b(µi)p = λS̃w(µi)p with
eigenvalue λ. p can be expressed as a linear combination of the data (representated
in F) ([? ? ? ]), i.e., p =

∑C
i=1

∑Ni

j=1 aijϕ(xij) = Φa, where a ∈ RN . In
addition, we can express ϕ(µi) as a linear combination of the samples belonging
to class i, i.e., ϕ(µi) =

∑Ni

j=1 bijϕ(xij) = Φibi, where bi ∈ RNi . As it will be
described in Appendix A, by setting Ka = u, the aforementioned eigenproblem
can be transformed to the following equivalent eigenproblem:

B(bi)u = λW(bi)u. (8)

In (8), B(bi) = blockdiag(N1b1b
T
1 , . . . , NCbCb

T
C) and W(bi) = blockdiag(W1, . . . ,WC),

where Wi = INi
− 1Ni

bT
i − bi1

T
Ni

+Nibib
T
i

Thus the maximization of (5) can be approximated by applying a two step
process:

1This can always be done by using ϕ̃(xij) = ϕ(xij)− ϕ(m), leading to a centered version of
the kernel matrix given by K̃ = 1

NK1− 1
N 1K+ 1

N21K1, where 1 ∈ RN×N is a matrix of ones.
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• Solution of the eigenproblem B(bi)u = λW(bi)u, which is tractable since
B(bi),W(bi) ∈ RN×N . The solution of this problem leads to the deter-
mination of a matrix U = [u1, . . . ,ud], where uj is the eigenvector corre-
sponding to the j-th non-zero eigenvalue.

• Determination of a matrix A = [a1, . . . , ad], where Kaj = uj . In the
case where K is non-singular, the vectors aj, j = 1, . . . , d are given by
aj = K−1uj . When K is singular, the vectors aj, j = 1, . . . , d can be
approximated by aj = (K+ cI)−1 uj , where c is a small positive value and
I ∈ RN×N is the identity matrix.

That is, P can be inherently determinated through the calculation of the recon-
struction weights A. After the calculation of A, a vector xt ∈ RD can be projected
to the discriminant space Rd by applying:

yt = ATkt, (9)

where kt ∈ RN is a vector given by kt = ΦTϕ(xt).

3.2. Optimized class representation in F
In order to maximize (5) with respect to the class representations µi, i =

1, . . . , C, we also exploit the fact that p = Φa and ϕ(µi) = Φibi. As will be
described in Appendix B, the optimization problem in (5) can be transformed to
the following equivalent optimization problem:

J̃KRDA(A,bi) =
trace(AB(bi)A

T )

trace(AW(bi)AT )
. (10)

By solving for ∇bi

(
J̃KRDA

)
= 0 we obtain:

bi =
γ

Ni

1Ni
, (11)

where 1Ni
∈ RNi is a vector of ones. As will be described in Appendix C, γ is

given by:

γ =
trace

(∑C
i=1AKiK

T
i A

T
)

trace
(∑C

i=1
1
Ni
AKi1Ni

1T
Ni
KT

i A
T
) . (12)

After the calculation of bi, i = 1, . . . , C, class i is represented in F by using
ϕ(µi) =

∑Ni

j=1 bijϕ(xij).
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3.3. Optimization with respect to both A and bi

Since JKRDA is a function of both A and bi, we would like to determine a
combination {A,bi} maximizing JKRDA. Taking into account that A is a func-
tion of bi and that bi is a function of A (as has been explained in Subsections 3.1
and 3.2, respectively), a direct maximization of JKRDA with respect to both A
and bi is difficult. In order to maximize JKRDA with respect to both A and bi, we
employ an iterative optimization scheme. In the following, we introduce a index t
denoting the iteration of the adopted iterative optimization scheme.

Let us denote by bi,t, i = 1, . . . , C the class vectors that have been calculated
at the t-th iteration of the optimization scheme. By using bi,t, the data projection
matrix At can be calculated by following the process described in subsection 3.1.
After the calculation of At, bi,t+1 can be calculated by using (11). The above
described process is initialized by using the class mean vectors, i.e., bi =

1
Ni
, i =

1, . . . , C and is terminated when (JKRDA(t + 1) − JKRDA(t))/JKRDA(t) < ϵ,
where ϵ is a small positive value, which is set equal to ϵ = 10−6 in our experi-
ments.

4. Experiments

In this Section we describe experiments conducted in order to compare the
performance of the proposed KRDA algorithm with that of SRKDA ([? ]) em-
ploying the class mean vectors for class representation. We also compare the pro-
posed approach with that of Kernel Local Fisher Discriminant Analysis (KLFDA)
algorithm ([? ]). We have applied the three algorithms on standard classification
problems coming from the UCI repository ([? ]). These experiments will be de-
scribed in Subsection 4.1. We have also applied the algorithms on human action
and face recognition problems. These experiments will be described in Subsec-
tions 4.2 and 4.3, respectively. In all the experiments we have employed SRKDA,
KRDA and KLFDA in order to map the data to the corresponding discriminant
subspace Rd. Subsequently, classification is performed by using the class mean
vectors for the SRKDA and KLFDA-based classification schemes. For the pro-
posed KRDA-based classification scheme, classification is performed by using the
class reference vectors.

4.1. Experiments on Standard Classification Problems
We have conducted experiments on twenty publicly available classification

datasets coming from the machine learning repository of University of California
Irvine (UCI) ([? ]). On each dataset, the 5-fold cross-validation procedure has
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been performed for the SRKDA, KLFDA and the proposed KRDA algorithms
by using the same data partitioning. The mean classification rate over all folds
has been used to measure the performance of each algorithm in one experiment.
Ten experiments have been performed for each data set. The mean classification
rate and the observed standard deviation over all experiments have been used to
measure the performance of each algorithm. In all these experiments we have
employed the RBF kernel function, i.e.:[

K
]
l,m

= exp
(
−g∥xl − xm∥22

)
. (13)

The value of parameter g has been automatically chosen in each fold from a set
g = 10r, r = −6, . . . , 6, by applying 5-fold cross-validation on the corresponding
training set. It should be noted here that since the value of g is empirically cho-
sen based on performance criteria, its optimal value may be different for KRDA,
KLFDA and SRKDA.

The mean classification rates and the observed standard deviations over all
experiments for each data set are illustrated in Table 1. By observing this Table, it
can be seen that the proposed KRDA algorithm provides the highest performance
in twelve, out of twenty, classification problems. In addition, it can be seen that
KRDA outperforms SRKDA in fourteen datasets.

4.2. Experiments on Human Action Recognition
We have conducted experiments on two publicly available action recognition

datasets, namely the Hollywood2 and the Olympic Sports datasets. A brief de-
scription of the datasets and the experimental protocols used in our experiments is
given in the following Subsections. We have employed the Bag-of- Words (BoW)-
based video representation by using HOG, HOF, MBHx, MBHy and Trajectory
descriptors evaluated on the trajectories of densely sampled interest points ([? ]).
Following ([? ]), we set the number of codebook vectors for each descriptor type
equal to Dk = 4000 and employ the χ2 kernel function:[

K
]k
l,m

= exp

(
1

σk

Dk∑
n=1

(
xk
ln − xk

mn

)2
xk
ln + xk

mn

)
. (14)

The value of parameter σk has been determined by applying 5-fold cross validation
on the training vectors of descriptor k using the values σ = 2r, r = 0, . . . , 3.
Different descriptors are finally combined by exploiting a multi-channel approach

([? ]), i.e.,
[
K
]
l,m

=
∏K

k=1

[
K
]k
l,m

.
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Table 1: UCI datasets details and mean classification rate and standard deviation (%) for 5-fold
cross-validation.

Dataset KLFDA SRKDA KRDA
Abalone 54.29 (±0.12) 52.85 (±0.69) 54.19 (±0.4)
Australian 67.83 (±1.9) 77.65 (±1.78) 77.87 (±1.56)
Columns2C 80.77 (±1.39) 82.61 (±1.7) 82.71 (±2.33)
Columns3C 76.74 (±2.15) 83.42 (±1.16) 83.58 (±1.42)
German 70.46 (±0.6) 70.65 (±1.18) 72.16 (±1.25)
Glass 67.66 (±1.57) 67.66 (±3.6) 68.36 (±3.39)
Heart 76.04 (±1.19) 76.04 (±2.84) 76.15 (±2.07)
Indians 68.41 (±1.8) 72.24 (±1.04) 74.61 (±1.66)
Ionosphere 89.63 (±1.86) 90.23 (±1.03) 90.03 (±0.93)
Iris 86.2 (±2.13) 80.53 (±2.79) 85.07 (±2.71)
Libras 82.53 (±1.77) 85.03 (±1.48) 84.69 (±1.54)
Madelon 67.18 (±0.8) 67.18 (±0.83) 67.18 (±0.83)
OptDigits 99.06 (±0.01) 98.64 (±0.24) 98.66 (±0.23)
Relax 73.39 (±1.41) 72.71 (±0.1) 71.43 (±0.43)
Segmentation 91.46 (±0.63) 95.66 (±0.48) 95.73 (±0.69)
Spect 80.19 (±1.86) 79.59 (±1.9) 81.09 (±1.17)
SpectF 77.98 (±1.63) 77.87 (±1.73) 79.14 (±1.46)
SynthCon 98.3 (±0.66) 99.45 (±0.11) 99.57 (±0.25)
TeachAss 56.89 (±4.69) 56.03 (±6.35) 58.28 (±2.84)
Tic-tac-toe 99.13 (±0.45) 99.13 (±1.41) 99.13 (±0.41)

9



Figure 1: Video frames from the Olympic Sports dataset depicting instances of all the sixteen
actions.

4.2.1. The Olympic Sports dataset
This dataset consists of 783 videos depicting athletes practicing 16 sports ([?

]). The actions appearing in the dataset are: high-jump, long-jump, triple-jump,
pole-vault, basketball lay-up, bowling, tennis-serve, platform, discus, hammer,
javelin, shot-put, springboard, snatch, clean-jerk and vault. Example video frames
from the dataset are illustrated in Figure 1. We used the standard training-test split
provided by the dataset (649 videos are used for training and performance is mea-
sured in the remaining 134 videos). The performance is evaluated by computing
the average precision (AP) for each action class and reporting the mean AP over
all classes (mAP), as suggested in ([? ]).

4.2.2. The Hollywood2 dataset
This dataset consists of 1707 videos depicting 12 actions ([? ]). The videos

have been collected from 69 different Hollywood movies. The actions appearing
in the dataset are: answering the phone, driving car, eating, fighting, getting out of
car, hand shaking, hugging, kissing, running, sitting down, sitting up, and standing
up. Example video frames from this dataset are illustrated in Figure 2. We used
the standard training-test split provided by the dataset (823 videos are used for
training and performance is measured in the remaining 884 videos). Training
and test videos come from different movies. The performance is evaluated by
computing the mean Average Precision (mAP) over all classes, as suggested in
([? ]).

4.2.3. Experimental Results
The AP values for different actions on the Olympic Sports and Hollywood2

datasets are illustrated in Tables 2 and 3, respectively. As it can be seen in these
Tables, KRDA provides the highest AP value in nine and seven class-specific clas-
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Figure 2: Video frames from the Hollywood2 dataset depicting instances of all the twelve actions.

sification problems on the Olympic Sports and the Hollywood2 datasets, respec-
tively. Overall, KRDA outperforms both SRKDA and KLFDA in both datasets
providing mAP values equal to 83.35% and 61.22% on the Olympic Sports and
Hollywood2 datasets, respectively.

4.3. Experiments on Face Recognition
We have conducted experiments on three publicly available face recognition

datasets, namely the ORL, AR and Extended YALE-B datasets. A brief descrip-
tion of the datasets is given in the following Subsections. We have used the fa-
cial images provided by the databases and resized them to fixed size images of
40 × 30 pixels. The resized facial images have been vectorized to produce 1200-
dimensional facial vectors. The dimensionality of the facial vectors has been fur-
ther reduced by applying PCA so that 90% of the dataset energy is preserved. The
5-fold cross-validation procedure has been performed for the SRKDA, KRDA and
KLFDA algorithms. The mean classification rate over all folds has been used to
measure the performance of each algorithm in one experiment. Ten experiments
have been performed in total for each dataset. In all the experiments we have
employed the RBF kernel function (13). The value of parameter g has been auto-
matically chosen for each fold from a set g = 10r, r = −6, . . . , 6, by applying
5-fold cross-validation on the corresponding training set.

4.3.1. The ORL dataset
This dataset contains 10 images of 40 persons, leading to a total number of

400 images ([? ]). The images were captured at different times and with differ-
ent conditions, in terms of lighting, facial expressions (smiling/not smiling) and
facial details (open/closed eyes, with/without glasses). Facial images were taken
in frontal position with a tolerance for face rotation and tilting up to 20 degrees.

4.3.2. The AR dataset
This dataset contains over 4000 images depicting 70 male and 56 female faces

([? ]). In our experiments we have used the preprocessed (cropped) facial images
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Table 2: Average precisions on the Olympic Sports dataset.
KLFDA SRKDA KRDA

Basketball lay-up 91.31% 93.94% 96.25%
Bowling 79.85% 81.48% 82.86%
Clean and Jerk 78.72% 78.41% 78.41%
Discus Throw 84.18% 82.53% 83.79%
Diving 3m 100% 100% 100 %
Diving 10m 95.46% 96.69% 97.27%
Hammer Throw 88.79% 88.78% 90.19%
High Jump 63.44% 64.92% 65.81%
Javelin Throw 100% 100% 100 %
Long Jump 88.31% 88.31% 88.31%
Pole Vault 81.01% 81.01% 84.41%
Shot Put 74.35% 68.89% 69.76%
Snatch 65.35% 63.18% 68.11%
Triple Jump 33.33% 39.50% 48.14%
Tennis Serve 95.96% 92.09% 97.72%
Vault 83.97% 80.66% 82.55%
Mean 81.54% 81.27% 83.35%
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Table 3: Average precisions on the Hollywood2 dataset.
KLFDA SRKDA KRDA

Answer Phone 34.1% 27.46% 36.09%
Drive Car 87.8% 89.23% 90.56%
Eat 62.74% 67.41% 69.23%
Fight 82.04% 80.09% 79.55%
Get Out of Car 51.71% 60.52% 59.56%
Hand Shake 32.23% 36.71% 38.73%
Hug Person 51.52% 49.97% 53.93%
Kiss 66.7% 59.74% 62.05%
Run 83.1% 82.37% 81.77%
Sit Down 64.06% 68.45% 67.57%
Sit up 19.88% 22.2% 22.43%
Stand up 67.63% 64.56% 73.22%
Mean 58.63% 59.06% 61.22%

provided by the database, depicting 100 persons (50 males and 50 females) having
a frontal facial pose, performing several expressions (anger, smiling and scream-
ing), in different illumination conditions (left and/or right light) and with some
occlusions (sun glasses and scarf). Each person was recorded in two sessions,
separated by two weeks.

4.3.3. The Extended YALE-B dataset
This dataset contains images of 38 persons in 9 poses, under 64 illumination

conditions ([? ]). In our experiments we have used the frontal cropped images
provided by the database.

4.3.4. Experimental Results
The mean classification rates and the observed standard deviations over all

experiments for each data set are illustrated in Table 4. By observing this Table,
it can be seen that the proposed KRDA algorithm outperforms both SRKDA and
KLFDA in the ORL dataset, while KLFDA outperforms SRKDA and KRDA in
the remaining two datasets. This can be explained by taking into account the
multimdality of facial classes in these two datasets. In addition, it can be seen that
the proposed KRDA outperforms SRKDA in all the three datasets.
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Table 4: Performance (%) on Face Recognition.
KLFDA SRKDA KRDA

ORL 95.05 (±0.81) 96.43 (±0.42) 96.5 (±0.37)
AR 83.65 (±0.81) 81.96 (±0.6) 82.22 (±0.4)
YALE 94.02 (±0.25) 91.95 (±0.5) 92.14 (±0.79)

5. Conclusions

In this paper, we described an optimization scheme aiming at determining
the optimal class representation in arbitrary-dimensional Hilbert spaces for KDA-
based data projection. By optimizing the KDA criterion with respect to both the
data projection matrix and the class representation in the projection space, the
optimal discriminant projection space, in terms of Fisher ratio maximization, is
obtained. Experimental results on standard classification problems, as well as on
human action and face recognition problems denote that the adopted approach
increases class discrimination, when compared to the standard KDA approach.
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Appendix A. Derivation of B(bi)u = λW(bi)u

We expand S̃bp:

S̃bp =
( C∑

i=1

NiΦibib
T
i Φ

T
i

)(
Φa
)
=

C∑
i=1

NiΦibib
T
i Φ

T
i Φa. (A.1)

By using (A.1), we obtain:

ΦT S̃bp =
C∑
i=1

NiΦ
TΦibib

T
i Φ

T
i Φa =

C∑
i=1

NiKibib
T
i K

T
i a

=
C∑
i=1

KiBiK
T
i a = KBKa, (A.2)
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where Bi = Nibib
T
i and B = blockdiag(N1b1b

T
1 , . . . , NCbCb

T
C).

We expand S̃wp:

S̃wp =
C∑
i=1

(
ΦiΦ

T
i Φa−Φi1Ni

bT
i Φ

T
i Φa

− Φibi1
T
Ni
ΦT

i Φa+Φibi1
T
Ni
1Ni

bT
i Φ

T
i Φa

)
. (A.3)

By using (A.3), we obtain:

ΦT S̃wp =
C∑
i=1

(
ΦTΦiΦ

T
i Φa−ΦTΦi1Ni

bT
i Φ

T
i Φa

− ΦTΦibi1
T
Ni
ΦT

i Φa+ΦTΦibi1
T
Ni
1Ni

bT
i Φ

T
i Φa

)
=

C∑
i=1

(
KiK

T
i a−Ki1Ni

bT
i K

T
i a

− Kibi1
T
Ni
KT

i a+Kibi1
T
Ni
1Ni

bT
i K

T
i a
)

=
C∑
i=1

KiWiK
T
i a = KWKa (A.4)

where Wi = INi
−1Ni

bT
i −bi1

T
Ni
+Nibib

T
i and W = blockdiag(W1, . . . ,WC).

By using Ka = u, and (A.2), (A.4) the result follows.

Appendix B. Derivation of J̃KRDA

We expand PT S̃bP:

PT S̃bP =
C∑
i=1

NiAΦTΦibib
T
i Φ

T
i ΦAT

= A
( C∑

i=1

KiBiK
T
i

)
AT = ABAT . (B.1)
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We expand PT S̃wP:

PT S̃wP =
C∑
i=1

(
AΦTΦiΦ

T
i ΦAT

− AΦTΦi1Ni
bT
i Φ

T
i ΦAT

− AΦTΦibi1
T
Ni
ΦT

i ΦAT

+ AΦTΦibi1
T
Ni
1Ni

bT
i Φ

T
i ΦAT

)
=

C∑
i=1

(
AKiK

T
i A

T −AKi1Ni
bT
i K

T
i A

T

− AKibi1
T
Ni
KT

i A
T +AKibi1

T
Ni
1Ni

bT
i K

T
i A

T
)

= A
( C∑

i=1

KiWiK
T
i

)
AT = AWAT . (B.2)

By using (B.1), (B.2) the result follows.

Appendix C. Derivation of γ

By using (B.1), (B.2) we have:

∇bi

(
trace(ABAT )

)
= 2NiK

T
i A

TAKibi, (C.1)

∇bi

(
trace(AWAT )

)
= 2KT

i A
TAKi

(
Nibi − 1Ni

)
. (C.2)

By using (C.1), (C.2) and solving for ϑJKRDA

ϑbi
= 0 we obtain:

bi =
trace(ABAT )

Ni(trace(ABAT )− trace(AWAT ))
1Ni

=
γ

Ni

1Ni
. (C.3)

By substituting (C.3) to (B.1), (B.2) and solving for ϑJKRDA

ϑγ
= 0 we obtain the

following two solutions: γ1 = 0 and γ2 = f/c, where f = trace
(∑C

i=1AKiK
T
i A

T
)

and c = trace
(∑C

i=1
1
Ni
AKi1Ni

1T
Ni
KT

i A
T
)

. It is straightforward to se that
the solution γ1 = 0 leads to the minimization of JKRDA = 0 and the solution
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γ2 = f/c leads to the maximization of JKRDA. Thus, we employ the following
value for the maximization of JKRDA:

γ =
trace

(∑C
i=1AKiK

T
i A

T
)

trace
(∑C

i=1
1
Ni
AKi1Ni

1T
Ni
KT

i A
T
) . (C.4)
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