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Abstract

Data clustering is an unsupervised learning task that has found many applications in

various scientific fields. The goal is to find subgroups of closely related data samples

(clusters) in a set of unlabeled data. Kernel k-Means is a state of the art clustering

algorithm. However, in contrast to clustering algorithms that can work using only a

limited percentage of the data at a time, Kernel k-Means is a global clustering algo-

rithm. It requires the computation of the kernel matrix, which takes O(n2d) time and

O(n2) space in memory. As datasets grow larger, the application of Kernel k-Means

becomes infeasible on a single computer, a fact that strongly suggests a distributed ap-

proach. In this paper, we present such an approach to the Kernel k-Means clustering

algorithm, in order to make its application to a large number of samples feasible and,

thus, achieve high performance clustering results on very big datasets. Our distributed

approach follows the MapReduce programming model and consists of 3 stages, the

kernel matrix computation, a novel matrix trimming method and the Kernel k-Means

clustering algorithm.

1. Introduction

The objective of data clustering is to divide a given group of unlabeled data samples

in subgroups (clusters), so that data samples belonging to the same cluster are similar

to each other and dissimilar to data samples belonging to any other clusters. Clustering

has found many applications in different scientific fields. Despite the fact that there

has been an extremely rich bibliography on this subject for years now [1], it is still an

active research field.
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One of the earliest clustering methods is the k-Means algorithm [2]. It is a basic

textbook approach. Yet it is still popular, despite its age. It involves an iterative process,

in which each data sample is assigned to the closest of the k cluster centers and then

each cluster center is updated to the mean of all data samples assigned to this cluster.

The initial cluster assignment can be random. The process continues, until there are

no changes, or until a maximum number of iterations has been reached. The main

drawback of this approach is the fact that the surfaces separating the clusters can only

be hyperplanes. Thus, if the clusters are not linearly separable, the standard k-Means

algorithm will not be able to give very good results.

In order to overcome this limitation, the classical algorithm has been extended into

the Kernel k-Means [3]. The basic idea behind kernel approaches is to project the

data into a higher, or even infinite dimensional space. It is possible for a linear sep-

arator in that space to have a non-linear projection back in the original space, thus

solving the non-linear separability issue. The kernel trick [4] allows us to circum-

vent the actual projection to the higher dimensional space. The trick involves using a

kernel function to implicitly calculate the dot products of vectors in the kernel space

using the feature space vectors. Let ai, i = 1, . . . , n be the data sample set to be

clustered and xi ∈ Rd, i = 1, . . . , n their d-dimensional feature vectors. If φ(xi),

φ(xi) are the projections of the feature vectors xi and xj on the kernel space, then

κ(xi,xj) = φ(xi)
Tφ(xj) is a kernel function. Different kernel functions correspond

to different projections. Finally, Euclidean distances in the kernel space can be mea-

sured using dot products. Kernel k-Means provides a popular starting point for many

state of the art clustering schemes [5, 6, 7, 8]. A recent survey on kernel clustering

methods can be found in [9], while [10] presents a comparative study which supports

the superiority of kernel clustering methods, over more conventional clustering ap-

proaches.

A convenient way to have quick, repeated access to the dot products without calcu-

lating the kernel function every time, is to calculate the function once for every possible

combination of two data samples. The results can be stored in a n×n matrix K called

the kernel matrix, where Kij = κ(xi,xj). This means that the i-th row of the kernel

matrix contains the kernel function entry for every possible sample combination that
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includes xi. Interestingly, it has been proven that Kernel k-Means, Spectral Cluster-

ing and Normalized Graph Cuts are closely related tasks [11]. The kernel matrix can,

therefore, be viewed as the weighted adjacency matrix of a full graph, whose nodes are

the data samples ai and whose edge weights are the kernel function values. Obviously,

when there are n data samples, the size of the kernel matrix is n × n and, therefore,

grows quadratically with respect to n.

Additionally, there have been approaches attempting to take advantage of the local

area information around each sample, in order to improve performance, make the ker-

nel matrix sparse, or determine the number of clusters. It is possible to use only a small

number of entries in each row of the kernel matrix, instead of the entire matrix [12].

This can be accomplished by either working on the k-Nearest Neighbor graph, where

each sample is only connected to its k closest samples [13, 14], or only using informa-

tion from samples that are sufficiently close to each other [15, 16], which is referred

to as ε-ball, ε-neighborhood or r-graph clustering. Furthermore, it is also possible to

introduce additional weights to the connections between samples, based on estimating

the local scaling parameter, i.e., by taking into account how densely or sparsely popu-

lated the area around each sample is [17, 18]. The Hartigan Dip Test for unimodality

[19] is used in [20], in order to determine whether a cluster should be further divided

into subclusters. The Dip Test is applied for each sample, referred to as a viewer in

[20], on the relative distances between itself and other samples of the cluster. If there

are viewers for which the unimodality test fails, then the cluster is further split.

An arising research trend is the so-called Big Data research. With the recent ad-

vances in technology, digital data is being generated, stored and broadcast at unprece-

dented rates. Digital cameras, including those in cell phones, are widely available and

people all over the world are taking pictures or shooting video clips. The bandwidth

of Internet Service Providers has also improved to the point where broadband connec-

tions are very common. The Web itself has been growing at ever increasing rates. The

connection graphs of various social networks easily number nodes in the millions. As

of late 2013, the Web itself has over 2 billion indexed pages. Bid data clustering is a

challenging problem.

It has been observed that fuzzy c-means and other fuzzy clustering algorithms face
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problems, when dealing with high dimensionality data, or large data sets [21]. Meth-

ods that involve eigenanalysis, such as the normalized graph cut approach [22] and

even recent state of the art approaches [5] are also problematic. Kernel or similarity

based clustering methods also have scalability issues, with respect to the required ma-

trix calculation. Additionally, it is also possible that, even for manageable kernel or

similarity matrix sizes, the data dimensionality can be in the order of several millions.

The solution to this problem usually involves sub-sampling the features of each data

sample, using e.g., Random Projections [23] or Conditional Random Sampling [24]

approaches. In this paper, however, we will assume that the dimensionality of the data

samples is small, compared to the number of data samples. This is the case, e.g., of

moderately sized image clustering and image clustering after feature extraction [25].

Since the kernel matrix size is of O(n2), while time complexity is still an issue, it

is the memory requirements that make it impossible to use Kernel k-Means to cluster

datasets of this magnitude on average PCs, or even single high-end single machine

systems. One way to work around this problem is provided by the Approximate Kernel

k-Means algorithm [25]. Instead of using the full kernel matrix, only a user defined set

of rows are calculated and used to measure distances and perform the clustering task.

Distributed computing can provide the means to handle problems on very large

datasets that would otherwise be almost impossible to solve [26]. It provides virtually

limitless memory and processing power. Provided that a task can be split into many

independent subtasks, then it can theoretically be performed in a reasonable amount of

time, regardless of the data size, given enough processing units. A distributed approach

that can work with any serial clustering algorithm entails using the serial algorithm on

data subsets, then merging the clusters [27]. Distributed versions of other clustering

algorithms related to Kernel k-Means, like classic k-Means [28] and k-Medians [29]

have already been discussed. However, to the best of our knowledge, a distributed

approach to Kernel k-Means has not been proposed yet.

In this paper, we propose a distributed implementation of the Kernel k-Means clus-

tering algorithm. We follow the MapReduce programming model [30], which is a high

level framework for distributed processing on a computing cluster. The implementa-

tion uses Apache Spark [31], a cluster computing framework, which is similar to and
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compatible with Hadoop [32]. The computing cluster can include a wide variety of

hardware from high-end, multiprocessor computers with large amounts of RAM, to

average modern PCs. The focus of the proposed implementation is to avoid requiring

the storage of n2 kernel matrix entries into the distributed memory at the same time,

if possible. In order to achieve this goal, we employ a novel kernel matrix trimming

algorithm, which enables us to significantly reduce the number of non-zero entries in

the kernel matrix. This allows us to use memory-saving adjacency lists, instead of the

full matrix, while also increasing clustering performance. The proposed distributed

clustering scheme is divided into three major parts: kernel matrix computation, kernel

matrix trimming algorithm and, finally, Kernel k-Means itself. The application used to

perform the experimental evaluation of the proposed approach is image clustering.

The paper is organized as follows. Section 2 provides a brief introduction to the

Kernel k-Means algorithm. Section 3 details the novel kernel matrix trimming algo-

rithm. Section 4 describes the distributed computing approach to all the relevant algo-

rithms. Section 5 presents the experiments carried out to evaluate the performance of

the proposed method and study the scalability of its distributed implementation. Sec-

tion 6 concludes the paper.

2. Trimmed Kernel k-Means

The Kernel k-Means algorithm [33] is an extension of the classic k-Means clus-

tering algorithm. Taking advantage of the kernel trick, it implicitly projects the data

onto a higher dimensional space and measures Euclidean distances between data sam-

ples in that space. This circumvents the limitation of linear separability imposed by

k-Means. Let there be k clusters Cδ, δ = 1, . . . , k and data samples ai, i = 1, . . . , n.

Each cluster Cδ has a center mδ in the higher dimensional space Rd′(d << d′), where

Φ : Rd → Rd′ is the mapping function. Assuming that there is an assignment of every

data sample to a cluster, then the center of cluster Cδ is computed as follows:

mδ =

∑
aj∈Cδ φ(xj)

|Cδ|
, (1)
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where |Cδ| is the cardinality of clusterCδ . The squared distanceD(xi,mδ) = ||φ(xi)−

mδ||2 between the vectors xi and mδ can be written as:

D(xi,mδ) = φ(xi)
Tφ(xi)− 2φ(xi)

Tmδ + mT
δ mδ. (2)

By substituting mδ from (1) into (2), we get:

D(xi,mδ) = φ(xi)
Tφ(xi)− 2

∑
aj∈Cδ φ(xi)

Tφ(xj)

|Cδ|
+

+

∑
aj∈Cδ

∑
al∈Cδ φ(xj)

Tφ(xl)

|Cδ|2
=

= κ(xi,xi)− 2

∑
aj∈Cδ κ(xi,xj)

|Cδ|
+

+

∑
aj∈Cδ

∑
al∈Cδ κ(xj ,xl)

|Cδ|2
=

= Kii − 2

∑
aj∈Cδ Kij

|Cδ|
+

∑
aj∈Cδ

∑
al∈Cδ Kjl

|Cδ|2
=

= Kii − 2
S
(i)
δ

nδ
+
Cδ
n2δ
, (3)

where nδ = |Cδ|, S(i)
δ =

∑
aj∈Cδ Kij , Tδ =

∑
aj∈Cδ

∑
al∈Cδ Kjl.

After measuring the distance of data sample xi to each of the k clusters centers, the

data sample is reassigned to the clusterCδ with the minimum distanceD(xi,mδ). This

is an iterative process, in which the distances are measured and the cluster assignments

are updated, until there are no more changes in the cluster entry assignments, or a

maximum number of iterations has been reached. The initial cluster entry assignments

can either be manual, or completely random.

In this paper, we propose a novel kernel matrix trimming algorithm that reduces

the size of the clustering problem, while also improving clustering performance. We

consider the kernel matrix entries to express data sample similarity. These entries have

large/small values for within the same cluster/between different clusters, respectively.

We aim to eliminate small Kij entries, while retaining as many large Kij entries as

possible. In our proposed algorithm, it is possible to retain a different number of entries

Kij for different data samples. This is achieved by estimating the cardinality of the

cluster that each sample belongs to. The cluster cardinality estimation is not performed

6



on a per sample basis, as all the data samples contribute, when making a decision that

one or more clusters of a certain cardinality exist. Through a voting scheme, where

each data sample votes for various different cardinalities, all the candidate cardinalities

receive a score value and the cardinality with the highest score wins the voting round.

The votes for the winning cardinality are removed and the voting process is repeated

for the remaining cardinalities, until there are no more votes.

In order to provide a formalization of the reason that it is a good idea to trim small

kernel matrix entries, we first attempt to answer the question ”When is a data sample

ai assigned to the correct/wrong cluster?”. Let us assume that there is a kernel matrix

K : Kij = Kji ∈ [0, 1] containing the similarities, as obtained through the kernel

function, between data samples from two clusters: cluster C1 and cluster C2. Let us

also assume that Kij = 0, if ai ∈ C1, aj ∈ C2 and Kij > 0, if ai, aj ∈ C1 or

ai, aj ∈ C2. A data sample xi ∈ C1 is clustered into the correct cluster as long as:

D(xi,m1) < D(xi,m2) ⇐⇒ (3)

⇐⇒ Kii − 2
S
(i)
1

n1
+
T1
n21

< Kii − 2
S
(i)
2

n2
+
T2
n22
⇐⇒

⇐⇒ −2
S
(i)
1

n1
+
T1
n21

<
T2
n22
,

since S(i)
2 = 0. In order to exclude the effect of T2 in our investigation, we temporarily

assume that T2 ' 0. This is possible, if every data sample of C2 is sufficiently distant

from every other sample in C2. Thus, ai is clustered into C1 as long as the inequality:

−2
S
(i)
1

n1
+
C1

n21
< 0 (4)

holds. We shall now focus on the effect that the relationships of xi with the other cluster

samples have on the correct cluster assignment of xi. Note that T1

n1
= 1

n1

∑
aj∈C1

S
(l)
1

is the average of all S(l)
1 . Therefore:

∃β > 0 : S
(i)
1 = β

T1
n1
⇐⇒ T1 =

n1S
(i)
1

β
.
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By substituting T1 in (4), we obtain:

−2
S
(i)
1

n1
+
n1S

(i)
1

βn21
< 0 ⇐⇒ (1− 2β)S

(i)
1

βn1
< 0 ⇐⇒

⇐⇒ 1− 2β < 0 ⇐⇒ β >
1

2
.

It is obvious that, if β < 1
2 , then cluster C1 will lose sample ai to cluster C2, even

though the effect of all entries related with C2 on this decision is practically non-

existent. On the other hand, if β > 1
2 then

−2
S
(i)
1

n1
+
C1

n21
< 0 ≤ C2

n22
⇐⇒

⇐⇒ Kii − 2
S
(i)
1

n1
+
C1

n21
< Kii ≤ Kii +

C2

n22
⇐⇒

⇐⇒ D(xi,m1) < D(xi,m2).

This means that, as long as β =
n1S

(i)
1

C1
> 1

2 and Kjl = 0, if aj ∈ C1, al ∈ C2, then it

is impossible to assign ai to the wrong cluster. There are two conclusions to be drawn

at this point. Firstly, the compactness of the various clusters plays a significant role in

the data sample assignment to clusters, as a very dense cluster is vulnerable to losing

outlying samples to a neighboring sparse cluster, even if such samples have weaker

ties to the sparse cluster, than to the dense cluster. Secondly, if all the between cluster

entries were removed from the kernel matrix, then we would achieve perfect clustering,

provided cluster compactness is not a factor.

In light of these observations, whether our approach provides a performance im-

provement depends on the distributions from which the data are generated and the

desired ground truth. If the samples of a class are generated from multiple distributions

with similar means, yet different deviations, and the ground truth groups the data from

these distributions into the same cluster, then we would expect our approach to improve

clustering performance, as we give more emphasis on proximity. If, on the other hand,

the samples of each cluster are generated by a single distribution, but the distributions

of different clusters have different deviations, then our approach is likely to incorrectly

assign data samples from a sparser distribution to a cluster with a denser distribution.

In such cases, approaches that provide more emphasis on local data sample density,

8



like the one in [18] are probably a better choice.

3. Kernel matrix trimming

In general, the proposed kernel matrix trimming algorithm attempts to determine

the cardinality of the cluster that a data sample belongs to, through a voting system.

Each data sample casts votes on the various candidate cluster cardinalities for itself.

The votes for each cluster cardinality are summed up for every data sample. Each

cardinality is then assigned a score by using a suitability function. The suitability

function for cluster cardinality j essentially measures how close the number of votes

for j is to the nearest integer non-zero product of j. For example, if the number of

votes for cardinality 50 is 23, then cardinality 50 will not receive a very good score.

If, on the other hand, the number of votes for cardinality 50 is 148, then this is a good

indication that there might be 3 clusters of cardinality 50 and the suitability function

score is accordingly high. The winning cardinality is the one with the highest score.

Every data sample that voted for the winning cardinality value is determined to belong

to a cluster of that cardinality and its votes are removed. The process is repeated on the

remaining votes, with each cardinality receiving a new, updated score, until there are

no votes left. We will proceed to describe this process in further detail.

This voting process is performed as follows. We begin by sorting each row ki, i =

1, . . . , n of the kernel matrix in ascending order, in a similar fashion to the Hartigan

Dip Test for unimodality [19], resulting in a sorted vector ri : rij , i = 1, . . . , n. We

then numerically calculate the first derivative of rij as:

r′ij =
1

3

3∑
h=1

ri(j+h) − ri(j−h)
2h

. (5)

A high value of the first derivative implies that there is a significant data sample sim-

ilarity gap between the data samples xi, 1 ≤ i < j and xi, j ≤ i ≤ n and, thus,

indicates a possible cluster cardinality j. In this view, r′i is binarized to create a bi-

nary vote vector vi, vi = [vi1, vi2, . . . , vin]T containing the cluster cardinality votes

as follows: vij = 1, if r′ij is among the 10% of highest values of r′ij , j = 1, . . . , n,

and vij = 0, otherwise. This threshold was selected because we considered it large
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Figure 1: The suitability function vote determination process for a single data sample: a) the corresponding
row values sorted in ascending order, b) the numerically calculated first derivative of the sorted sequence and
c) the binary votes.

enough, so that potentially important votes will not be cut, while being small enough

to avoid cluttering the votes. We present an experimental justification for this choice in

Section 5. An example of such a binary vote vector is illustrated in Figure 1.

Subsequently, we add all the voting vectors for every data sample into vector v∗ =∑n
i=1 vi, where v∗j is the number of votes for cluster cardinality j. We calculate the

score vector s from v∗ as follows:

sj = (1− 1

j
) max(e−|

v∗j−b
v∗j
j
cj

j |, e−|
v∗j−d

v∗j
j
ej

j |), (6)

where |v
∗
j−b

v∗j
j cj

j | is the normalized distance of v∗j to the closest integer product of

j from below and |v
∗
j−d

v∗j
j ej

j |, respectively, from above. Both of these distances are

passed through an exponential function and the best result is retained. Finally, the

score is weighed by a factor of 1− 1
j , which represents the probability that the score is

not the result of random chance. It is easy to see that any non-zero score for cardinality

2, for example, has a 1/2 chance of being a perfect score. Since there are only j
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Figure 2: The voting and scoring process: a) the vote matrix, where each row represents the votes of the
corresponding data sample in black, b) the column-wise sum of the voting matrix and c) the results of the
scoring function, the winning cardinality is 43.

possible values for the unweighted score of cluster cardinality j, we assume that there

is a 1
j probability that this happened by chance. The use of the factor 1 − 1

j generally

favours larger clusters and prevents the process from degenerating into finding a very

big number of very small cluster cardinalities. The winning cluster cardinality w =

arg maxj(sj) is selected. Every data sample ai that voted for cluster cardinality w

in its binary vote vector vi, i.e., viw = 1, is determined to belong to a cluster of

cardinality w and its v(i) is subtracted from v∗ for the next iteration. The voting and
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scoring process is illustrated in Figure 2.

When there are no more votes in v∗, it means that every data sample has received

an estimate of the cardinality of the cluster it belongs to. The trimming of the kernel

matrix K entries is performed in a row-wise manner. Suppose that the estimated cluster

cardinality for data sample ai is wi. We proceed to zero every entry Kij in the i-th row

of K whose value is less than thewi-th largest value of the row. The pseudocode for the

method described in this section can be found in Algorithm 1. Let K̂ be the resulting

matrix, after every row of K has been trimmed. Since K̂ may no longer be symmetric,

the final trimmed matrix is obtained as K∗ = max(K̂, K̂T ).

In order to provide an upper bound for the number of voting rounds as a function

of n, we will assume that every data sample places its votes into its vote vector with a

uniformly random distribution, until a percentage P of n individual cardinalities have

been voted for. In our specific case, we set P = 0.1, or 10%. When a winning

cardinality is determined, Pn of the active data samples voted for it on average. These

data samples then have their votes removed, thus becoming inactive. The number of

active data samples at voting round R is (1 − P )Rn on average, which means that

this number is reduced exponentially, as the iterations proceed. The number of voting

rounds required for the number of active data samples to drop to 1 is therefore log 1
P
n

on average. According to the logarithmic property that loga x = logb x
logb a

, we come to the

conclusion that the upper bound is log 1
P
n = O(log n) on average. In practice, votes

are not random and we expect that several samples that belong to clusters of similar

cardinality will become inactive, when a cardinality that lies within their voting range

wins.

Note that the voting process can be implemented, using O(n) memory and has a

computational complexity of O(n2 log n), since it requires the sorting of n sequences

of size n. Subsequent executions of the Kernel k-Means algorithm can run in O(nz)

time and memory, where nz is the number of non-zero entries of K∗ [34]. Also note

that, as a by-product of this process, we also acquire an estimate for the total num-

ber of clusters and their cardinalities. Figure 3 shows the results of applying this

process on a sample kernel matrix. The estimated cluster number is 6 clusters with

cardinalities 43, 17, 10, 7, 7, 7, while the ground truth is 6 clusters with cardinalities

12



(a) (b)

Figure 3: The trimming algorithm applied to a sample kernel matrix (black is 1, white is 0). a) Original
kernel matrix. b) The trimmed kernel matrix.

43, 17, 10, 9, 6, 6.

4. The distributed Kernel k-Means framework

In this section, we provide the algorithms that implement every part of the proposed

clustering scheme in a distributed fashion, following the MapReduce programming

model. We shall begin with a small introduction to the MapReduce model itself and

then proceed to detail each major algorithmic step in this framework, namely the kernel

matrix computation, the kernel matrix trimming algorithm and the Kernel k-Means

algorithm, in separate subsections.

4.1. MapReduce computing framework

The MapReduce programming model for distributed computing was inspired by

the map and reduce procedures of functional programming languages, like Lisp [30].

MapReduce implementations include Hadoop and Spark. It simplifies the coding of

distributed programs that follow this model. It was specifically developed to allow

easy processing of very big datasets on computing clusters consisting of many workers.

A master node in the MapReduce framework automatically splits the dataset up into

smaller data sample collections and distributes them to the workers, where each worker

can process the assigned data collection, independently of other workers.
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Algorithm 1 Kernel matrix trimming algorithm pseudocode.
let ri be the i-th kernel matrix row
v∗ = 0
c = 0
for i=1 to n do

numerically sort ri
calculate the derivative r′i of the sorted ri
obtain votes vi
v∗ = v∗ + vi

end for
while any v∗ 6= 0 do

calculate all scores according to (6)
determine winning cardinality w
for i=1 to n do

if ri voted for w then
ci = w
v∗ = v∗ − vi

end if
end for

end while
for i=1 to n do

trim ri according to ci
end for
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For example, if our goal is to compute the squared sum of a very large vector

of numbers, we can map the square function on each vector entry and then reduce

the results with the addition operation. The system will distribute the vector entries

to every worker, then each worker will square the assigned vector entries, sum them

up then return the partial sum to the master, which will add up all the partial sums

it received from all the workers to compute the final result. For a more theoretical

analysis of the MapReduce model, the interested reader may refer to [35].

As the name implies, there are two major components to this programming model.

The Map command, in which every worker applies a user defined function to each data

sample. Each worker can then return the results to the master node, thus computing

that function output for the entire dataset. Additionally using the Reduce command, a

worker applies a commutative and associative operation to collect the data elements,

or the results of a previously mapped function, into a single result. As the operation

is commutative and associative, the results for each worker are independent from other

workers and they can also be combined in the same way on the master node. A variation

of the Reduce command is ReduceByKey, in which, given a distributed set of (key,

value) pairs and a target operation, the operation is performed on the value parts for

each key separately. If there were k total keys, then the output would be a k (key, total)

pairs, where each total is the result of performing the operation only on the value parts

that are associated with the specific key.

For our implementation, we chose the Apache Spark [31] cluster computing frame-

work. Its main advantage over Hadoop is its ability to cache distributed data into the

worker memories, while automatically ”spilling” excess data that cannot fit to the hard

disk and reading them back, whenever they are needed. This reduces or, at best, elimi-

nates the time spent reading from and writing to the disk. Our main goal, therefore, is

to reduce the size of the data that must be stored in the distributed memory as much as

possible, so that data spilling to the hard disk is minimized.

4.2. Distributed kernel matrix computation

Computing the kernel matrix under the MapReduce model is pretty straight for-

ward. Assuming there are n data samples, each of which has d features, we read the
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data samples into n d-dimensional data vectors, which are distributed to the cluster

worker nodes. Then we iterate through every data vector and map the kernel function

of the current vector with every other vector. This provides us with a single row of the

kernel matrix, which we can then write to the disk. After n iterations, the computation

is complete. This step requires O(nd) distributed memory and O(n2d) operations.

The distributed operations are illustrated in Figure 4. In that particular example,

worker 1 has received the d-dimensional data samples x1, x2 and x3, worker j has

received data samples xi and xi+1 and the last worker w has the last data sample

xn. At the i-th iteration, the kernel function κ( ,xi) is mapped to very data sample,

where (underscore) is replaced with the corresponding data sample and xi is the i-th

data sample. In practice, in order to cut down on overhead costs and maximize CPU

utilization, it is a good idea to use map to compute batches of, e.g., 100 lines of the

kernel matrix at a time. It is also possible to fork a new thread to write the output, so

that it will not delay the distributed computations.

In terms of communication costs, the feature vectors will have to be distributed to

the workers, Regardless of how many workers there are in the cluster, the total data to

be transferred is O(nd). During the computations, the master will have to send every

feature vector to every worker, so that each worker can map the kernel function to

it. If q is the number of workers, then the communication cost for the kernel matrix

computation is O(qnd). If the workers are also nodes in a distributed file system, then

it is possible for the output to be written to a file in that distributed file system. If the

output has to be sent back to the master, there is an additional communication cost of

O(n2) involved.

4.3. Distributed kernel matrix trimming

After the kernel matrix has been computed and written to the disk, we read the

n-dimensional kernel matrix rows and distribute them to the cluster nodes. Note that

we shall never need every one of these rows in memory at the same time. Therefore,

the framework can swap them to and from the disk, whenever any row is needed. This

is an iterative process, in which the nodes vote for cluster cardinalities, the winning

cardinality is determined, the votes of the nodes that voted for the winner are removed
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Figure 4: Illustrated example of the distributed kernel matrix computation algorithm.

and the corresponding rows are trimmed.

We begin an iteration by mapping a sorting function on every matrix row. We then

map the numerical derivative computation function, as detailed in 5. Finally, we map

a function that returns the vote vectors vi of each node, as described in Section 3. We

use the Reduce operation to add up all the voting vectors into the vector v∗ containing

the total votes for every cluster cardinality. The scoring function 6 is applied to this

vector per data sample and the winning cluster cardinality w is determined.

In order to remove the winning votes, we map a function that takes the winning

cluster cardinality w and outputs the vote vector vi of a node, if that node voted for

cardinality w, or an all-zero vector 0 otherwise. Again, we use the Reduce operation to

obtain the vector summing the winning votes, which is then subtracted from the total

votes vector v∗, to obtain the remaining votes. As a final step of the iteration, we map

the trimming function, which sets the row entry of every row that voted for w, which

is not in the top w highest weights, to zero.

This completes an iteration step. The process is repeated, until the cluster cardi-

nality of every node is determined and all the rows are trimmed accordingly. This

process takes O(n2 log n) operations, due to the fact that every row of the kernel ma-

trix is sorted. The distributed operations are illustrated in Figure 5. The workers are not

shown, to avoid cluttering the figure. The (underscore) in functions is replaced with

the corresponding vector of the previous step. In that particular example, data sample

ai voted for the winning cardinality w, while data samples a1 and an did not. As such,
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only the kernel matrix row ki of data sample ai is trimmed at this iteration.

In practice, it is reasonable to expect that the voting vectors will contain long

stretches of 0 entries, while the votes occur in intervals. This can be observed in Figure

1, where the derivative has 3 spikes that exceed the voting threshold and the resulting

vote vector can be seen containing votes in 3 intervals. This makes the voting vector

highly compressible, as one can simply use a triplet of the form (start, finish, value)

to represent an interval and, thus, use a list of such triplets to avoid storing the entire

vector. This compression scheme is similar to Run-Length Encoding (RLE) [36]. In-

stead of adding the vectors to obtain the total votes, it is possible to merge any two

lists of triplets to obtain the compressed form of the sum of every vote vector thus far.

We used a scan line approach, in which we started from the beginning of both lists and

processed the start and finish components of every triplet of each list in ascending

order, carefully updating the current total value, and building the output list or triplets.

As an example, suppose that we have to merge the following triplets into one list:

(11, 20, 1), (15, 25, 1) and (17, 30, 1). We begin by merging (11, 20, 1) and (15, 25, 1)

into [(11, 14, 1), (15, 20, 2), (21, 25, 1)]. We then merge (22, 30, 1) into that result to

obtain the final list [(11, 14, 1), (15, 16, 2), (17, 20, 3), (20, 25, 2), (26, 30, 1)]. Note

that merging lists cannot result in a list that requires more than 3n variables to store,

with the worst case being n triplets in which start and finish coincide and no pair of

neighboring values matches.

Using the vote compression scheme described above, each worker can load one row

of the kernel matrix, sort it and then store the compressed vote vector list in memory,

discarding the row. This means that, during the iterative voting process, the spilling

to the disk can be minimized, or even eliminated. In a similar fashion, a trimmed row

of the kernel matrix can be expressed as an adjacency list of neighbors, along with

the associated kernel matrix entry for each neighbor. Let r1 <= 1 denote the average

compression ratio of the vote vectors, and r2 <= 1 denote the average compression

ratio of the trimmed rows. The distributed memory required for this step is O(r1n
2 +

r2n
2).

Regarding the communication costs, if the workers are also nodes in a distributed

file system, where the full kernel matrix was written, then each worker can read the
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Figure 5: Illustrated example of the distributed kernel matrix trimming algorithm.

rows that have been assigned to it from that file system. Otherwise, the kernel matrix

will have to be distributed to the workers for a total cost of O(n2). As already men-

tioned, the merged lists of the compressed vector votes are O(n) in size. Let q denote

the number of workers. For every Reduce operation, q/2 workers will have to send

their merged lists to the other q/2 workers, in order for the lists to be further merged.

After this, q/4 of the previous q/2 workers will have to send their result and so on. The

total cost of Reduce operation is O(n
∑log q
d=1

q
2d

) = O(qn), since
∑∞
d=1

1
2d

converges

to 1. If the voting process takes iv iterations, then the total cost is O(ivqn). If the

workers also need to send the trimmed rows to the master, because they are not part of

a distributed file system, then there is an additional cost of O(r2n
2).

4.4. Distributed Kernel k-Means

In order to save memory, instead of reading the full kernel n × n matrix K as a

set of n n-dimensional data vectors, we instead read the trimmed kernel matrix that

resulted from the previous step as a set of n adjacency lists. The adjacency list for row

k∗i contains all the non-zero K∗ij of the trimmed kernel matrix K∗.

We initialize the data sample assignment to clusters randomly. The assignment is

a n-dimensional vector o, where the i-th entry indicates which cluster (1 to k) data
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Figure 6: Illustrated example of the distributed Kernel k-Means algorithm.

sample ai belongs to. This assignment is updated at every iteration and will eventually

contain the final cluster assignment of every data sample.

We will now provide an algorithm to compute (3) in a distributed fashion. Note

that the sum
∑
aj∈Cδ

∑
al∈Cδ Kjl remains the same for every individual cluster Cδ .

Therefore, it only must be computed once for each corresponding cluster. The first step

is to compute the k such sums. This can be accomplished by mapping a function that

takes the cluster assignment vector o, the node ID j and the node adjacency list L as

arguments and returns a (key, value) pair. In such a pair, key is the cluster that data

sample aj is assigned to (oj) and value is the partial sum
∑
al∈Cδ Kjl, where Cδ is the

cluster identified by key and the entriesKjl are retrieved from the adjacency list L. The

function goes through the node adjacency list and sums every entry that belongs to the

same cluster as node j. The total sums for every cluster are obtained from these (key,

value) pairs by applying the ReduceByKey operation to add the appropriate partial

sums for each cluster and store them in vector q.

In the next distributed processing step, the distance computations are completed and

the new node assignments are determined in the same function. This is accomplished

by mapping a function that takes the cluster assignment vector o, the node ID i and the

cluster sums vector q as arguments and returns the new cluster assignment for node i.

The function initializes a vector di, which is meant to store the distance of data sample

ai to every cluster, so each entry is initialized to diδ = Kii + 1
|Cδ|2qκ . It then goes

through i node adjacency list Li and subtracts the corresponding values 2
Kij
|Cδ| from the
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appropriate entry in vector d. When it goes through the entire list, then each entry of

vector d will contain the value of−2

∑
aj∈Cδ

Kij

|Cδ| +

∑
aj∈Cδ

∑
al∈Cδ

Kjl

|Cδ|2 for every cluster.

The new cluster assignment of node i is determined by the minimum entry in vector d.

This final step requiresO(nz) operations and memory space, where nz is the number of

non-zero entries of the trimmed kernel matrix. Note that this distributed algorithm can

also work on the full kernel matrix, by usingO(n2) operations and memory space. The

distributed operations are illustrated in Figure 6. The workers are not shown, to avoid

cluttering the figure. The (underscore) in functions is replaced with the corresponding

list or vector of the previous step. In that particular example, data samples a1, ai

and an, with their corresponding adjacency lists L1, Li and Ln, are initially assigned

to cluster 2, as shown in assignment vector o. Mapping getPartialClusterSums( ,o)

provides the (key, value) pairs (2,
∑
al∈C2

K1l), (2,
∑
al∈C2

Kil) and (2,
∑
al∈C2

Knl)

for data samples 1, i and n, respectively. After the reduceByKey operation, the values

are added, along with the results of all other data sample assigned to cluster 2, and are

stored in the second entry of vector q. Note that q has k entries, as there are k clusters.

Vector q is passed as an argument, when mapping updateAssignments( ,o,q) to obtain

the new assignments. In this case, data samples a1 and ai were reassigned to cluster 1,

while data sample an was reassigned to cluster 3.

Concerning the communication cost analysis for the distributed Kernel k-Means,

we will begin by breaking down the cost of each relevant substep for one iteration.

First, the master has to send the current labels to all workers. Assuming q workers,

this has a communication cost of O(qn). After this, the workers must perform the

ReduceByKey operation to calculate the cluster sums, which, in a similar manner as

the Reduce operation in the Kernel matrix trimming step, can be considered to have a

cost of O(qk). The master, then, has to send the current labels and the cluster sums

to each work, which implies O(qn + qk)) communication cost. Finally, the workers

must send the new labels to the master for an additional cost ofO(n). Let ik denote the

iterations of Kernel k-Means. The final communication cost for this step is O(ikqn +

ikqk + ikqn+ ikn) = O(ikqn+ ikqk)

21



4.5. Relation to the MapReduce class of algorithms

A theoretical model for the efficiency of MapReduce computations is presented

in [35]. It introduces the MapReduce Class (MRC) of algorithms, which enforces

limitations on the memory, number of processors and execution time of an algorithm

that belongs to it. We summarize the definition ofMRCi from [35] here, for ease of

reference:

Definition 1. Fix an ε > 0. An alforithm belongs toMRCi if:

• The Map and Reduce operations are implemented by a RAM with O(log n)

words, O(n1−ε) available space and execute in time polynomial to n.

• The total memory space required is O(n2−2ε).

• The number of MapReduce rounds R is O(logi n).

Note that the above restrictions imply the existence of Θ(n1−ε) available machines,

something that is also clearly stated in [35].

It is easy to see that, as is, our clustering scheme does not belong to anyMRCi,

as it has to load a matrix row of O(n) elements, even momentarily before trimming

and compressing it, in O(n1−ε) available space. However, if the input is subsampled

to a size of O(n1−ε), then we can prove that all algorithms presented in this paper

belong toMRC1. Our algorithms are designed to work on the standard 32/64-bit word

architectures, so we will not further consider the O(log n) word size requirement. We

will proceed to prove that each part of our clustering scheme belongs toMRC1. We

fix ε = 0.5.

4.5.1. Kernel matrix computation

Under our assumption in the introduction that the dimensionality of the data sam-

ples is small, compared to the number of data samples, we can reasonably assume

that d = O(n1−ε). The total memory required to store the data is nd = O(n2−2ε).

There are Θ(n1−ε) machines to which data of size O(n1−ε) must be distributed. The

computation time required for each MapReduce round is O(n2−2ε). In order for the

computation to run in O(log n) rounds, we compute the kernel matrix in batches of
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n1−ε/ log n rows. The size of the rows is O(n1−ε/ log n) = O(n1−ε), which does

not exceed the available memory. Therefore, our kernel matrix computation belongs to

MRC1.

4.5.2. Kernel matrix trimming

The kernel matrix computation algorithm outputs a n1−ε×n1−ε matrix, which fits

in O(n2−2ε) memory, with each of the Θ(n1−ε) machines receiving O(n1−ε) data.

The votes are determined in a single MapReduce round in O(n1−ε log n1−ε) time.

Each voting round executes in O(n1−ε) time. Recall from Section 3 that the number

of voting rounds is logarithmically upper bound in average, therefore the number of

MapReduce rounds isO(log n1−ε) = O(log n). Our kernel matrix trimming algorithm

belongs toMRC1.

4.5.3. Kernel k-Means

The trimmed kernel matrix does not exceed O(n2−2ε) in size. Again, each of the

Θ(n1−ε) machines receives O(n1−ε) data. The Map and Reduce operations execute

in O(n1−ε) time. The maximum number of MapReduce rounds (Kernel k-Means iter-

ations) is user defined could be argued to be a constant, thus placing the algorithm in

MRC0. Since the rest of the algorithms are already inMRC1, we can also assume

that the maximum iterations can be set to be O(log n), which places the algorithm and

the entire clustering scheme inMRC1.

4.5.4. Subsampling

Regarding the subsampling required to reduce the input size to O(n1−ε), a simple

approach is to select n1−ε samples uniformly at random, then use our algorithms to

cluster them. The remaining n − n1−ε samples can each be assigned to the cluster

of its nearest neighbor in a single MapReduce round. Alternatively, we can use the

subsampling process described in [29], in which points are selected to represent other

points close to them, until the size of the input is appropriately reduced.

5. Experiments

In this section, we will present the results of the conducted experiments, in order

to evaluate the clustering performance and speed of the proposed distributed clustering
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framework. Initially, we used the MATLAB implementation of the methods involved.

However, for the really big datasets, we used the distributed implementation described

above. The first set of experiments concerns the direct comparative evaluation of our

kernel trimming algorithm against baseline and Approximate Kernel k-Means [25], in

terms of both clustering performance and kernel matrix size reduction. The second set

of experiments concerns a comparison with a state of the art facial image clustering

approach. The third set of experiments was conducted, in order to study the run time

speed up of our method, vs the number of available computing cores.

5.1. Computing cluster structure

We used VirtualBox to create a Virtual Machine (VM) on the computers of our

lab. We installed Ubuntu and Spark on every VM. The VMs are connected over a

Local Area Network (LAN). The computers that form the cluster include a high-end

workstation, with 2 XEON processors with 10 cores each and 240GB of RAM, a few

high-end PCs, with Core i7 processors and 16 GB of RAM or similar, and some average

PCs with Core i5 and 8GB of RAM or less. An illustration of the cluster structure can

be seen in Figure 7.

5.2. Datasets

We will now briefly describe the datasets used in our experiments. All of them con-

sist of either image descriptors or the images themselves. Most of them were captured

from video clips. The smallest dataset includes over 17000 data samples, while the

largest contains 621126 data samples.

MNIST handwritten digits: This is a dataset of grayscale small images, each de-

picting a handwritten digit, 0-9. It contains 70000 total images, almost equally, but not

exactly, clustered to the respective 0-9 digits. This is used to evaluate the performance

improvement over the baseline Kernel k-Means and Approximate Kernel k-Means [25]

and determine the trade-off between clustering performance and kernel matrix size re-

duction. It was selected, because it was also used in [25], where Approximate Kernel

k-Means was proposed. The dataset is also used to study the behavior of the distributed

implementation on clusters of various core numbers.

24



Figure 7: Computing cluster structure.

BF0502: This dataset contains descriptors of the faces of the protagonists of the

2-nd episode of the 5-th season of the TV series ”Buffy, the Vampire Slayer” [37].

The 17000 images are the result of facial image tracking. This dataset is used to com-

pare our approach with a recent, state of the art approach [38], that utilizes constraints

derived from the facial image tracking trajectories to subsample and improve results.

Youtube Faces: Finally, in order to provide performance results on really Big

Data and to evaluate the scaling of the proposed distributed approach runtime in re-

lation to available computing cores, we used the Youtube Faces dataset. It consists

of LBP descriptors for 621126 faces of various celebrities, e.g., actors, athletes and

politicians, extracted from Youtube videos [39]. There are 3 different, yet closely re-

lated types of descriptors provided by the dataset: Local Binary Patterns (LBP) [40],

Center-Symmetric LBP (CSLBP) [41] and Four-Patch LBP (FPLBP) [42]. For our ex-

periments, we selected the original LBP features, which yield the best performance in

[39]. The dimensionality of the feature vectors is 1770.
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5.3. Clustering performance

In accordance with [43] and [25], in the case of the MNIST handwritten digit

dataset, each sample image was concatenated into a vector, then each feature of the

vector was divided by 255, thus normalizing every image feature in [0, 1]. The fol-

lowing kernel functions were used: the Neural kernel κ(xi,xj) = tanh(αxTi xj + β),

the Polynomial kernel κ(xi,xj) = (xTi xj + 1)d and the Radial Basis Function (RBF)

kernel κ(xi,xj) = e−γ||xi−xj ||
2

. Again, in accordance with [43] and [25], we set

α = 0.0045, β = 0.11 and d = 5. For the RBF kernel, we chose γ = 1. For

each function, the full kernel matrix K was calculated. We then used our algorithm,

as described in Section 3, to obtain the trimmed kernel matrix K∗ for every function.

We run the Kernel k-Means algorithm 10 times each for all 6 possible approaches

(baseline/proposed, Neural/Polynomial/RBF). We then used the Normalized Mutual

Information (NMI) metric [44] to measure the similarity between the clustering results

and the ground truth. We also measure the reduction in the size of the kernel matrix

as nz
n2 . The results of this experiment are presented in Table 1, in which NMI values

are presented as a mean (standard deviation) pair. We note that the clustering perfor-

mance of the baseline RBF approach (0.4936) is slightly worse than those of both the

baseline Neural (0.4982) and baseline Polynomial (0.4945) approaches. Looking at

these results, one might think that the RBF kernel function is not the best choice for

this problem. Furthermore, it appears that the proposed Trimmed Kernel k-Means al-

gorithm hinders the Neural approach (0.4959), but provides enough improvement on

the Polynomial approach (0.5108). However, the proposed RBF approach provides

the absolute best performance (0.5687), with a good 0, 0705 lead over the second best

approach. Looking at the kernel matrix size reduction, the proposed RBF approach re-

tained only about 4% of the full kernel matrix, in order to achieve the best performance,

while the other two proposed approaches used almost double that (8%). It appears that

the RBF kernel suffers most from the presence of between cluster similarity entries

in the kernel matrix, but has better properties regarding cluster compactness than the

Neural and Polynomial kernels. Thus, it is able to outperform both, when most of the

between cluster kernel matrix entries are removed.

In order to study the performance/kernel matrix size reduction trade-off, we used
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Table 1: Experimental results on the MNIST dataset. The baseline column refers to using Kernel k-Means
on the full kernel matrix, while the proposed column refers to using Kernel k-Means on the trimmed kernel
matrix. The reduction column lists the ratio of retained over initial kernel matrix entries nz

n2 (percentage.

Kernel
NMI

Memory reduction ratio
Baseline Trimmed Kernel k-Means

Neural 0.4982(0.0226) 0.4959(0.0066) 7.43%

Polynomial 0.4945(0.0136) 0.5108(0.0095) 8.66%

RBF 0.4936(0.0136) 0.5687(0.0312) 4.39%

the Approximate Kernel k-Means algorithm on the same MNIST dataset. We randomly

sampled 2000, 4000 and 5000 from the Neural matrix rows and run the experiments 10

times. The NMI performance and corresponding matrix size reduction (in percentages)

achieved by Approximate Kernel k-Means can be seen in Table 2. That table also

includes the best performance/reduction of our approach for quick reference. As can be

seen, Approximate Kernel k-Means needs about 7% of the full kernel matrix, in order

to match the full kernel matrix performance (0.4941), while our approach achieves

better performance (0.5687) with about 4% of the kernel matrix size. However, since

our approach requires adjacency lists, in practice it will require double that amount

of memory (8%). Concluding this comparison, our approach will require about the

same memory to run and yet provides a significant performance improvement over

Approximate Kernel k-Means.

Table 2: Performance/reduction trade-off for the Approximate Kernel k-Means [25] and the Trimmed Kernel
k-Means approach.

Method NMI Memory reduction ratio
Approximate 0.4898(0.0067) 2.85%

Kernel 0.4917(0.0079) 5.71%
k-Means 0.4941(0.0124) 7.14%

Trimmed Kernel k-Means 0.5687(0.0162) 4.39%

Additionally, in order to ensure that the improvement provided by the proposed ker-

nel matrix trimming is better than kernel matrix trimming with a static cluster cardinal-

ity, we run the following experiments. Instead of dynamically determining the cluster

cardinality for each data sample using our algorithm, we assumed that every data sam-

ple belongs to a cluster of the same cardinality and trimmed the RBF kernel matrix
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accordingly. The cardinalities we used are the maximum cluster cardinality (7877), the

average cluster cardinality (7000) and the minimum cluster cardinality (6313), accord-

ing to the ground truth. The trimmed kernel matrix K∗ was again made symmetric after

the trimming process, in both trimming approaches as described in Section 3. The re-

sults are presented in Table 3, where we can see that our approach is indeed better than

static cardinality determination. It must also be noted, that knowledge of the ground

truth is needed to determine the cluster cardinalities in a static manner, while our pro-

posed adaptive approach is completely oblivious of ground truth. Yet, he proposed

method still provides better performance.

Table 3: Comparison between static cluster cardinality cuts and the proposed adaptively chosen ones.
Method NMI Memory reduction ratio

max cardinality 0.4933(0.0123) 16.15%
average cardinality 0.5091(0.0063) 14.35%

min cardinality 0.5102(0.0160) 12.94%
proposed 0.5687(0.0162) 4.39%

Furthermore, we compare the performance of our approach with a state of the art

face image clustering scheme [38]. The dataset used for this comparison is BF0502,

which includes 17000 facial images of the 6 main cast of the TV series ”Buffy, the

Vampire Slayer”. In [38], each trajectory is represented by 3 randomly selected frames.

Thus, the facial image dataset is subsampled. Additionally, [38] uses constraints de-

rived from the tracking trajectories. These constraints fall into 2 categories: images

appearing in the same trajectory must be included in the same cluster and images ap-

pearing in different, overlapping trajectories must not be included in the same cluster.

Using our approach, we simply applied our algorithm on all the 17000 images, setting

k = 6. The RBF kernel was used in this instance. We calculated the clustering ac-

curacy of our algorithm in the same fashion as in [38], by constructing the confusion

matrix and measuring the trace of that matrix, divided by the total images. Addition-

ally, we also used 3-, 5-, 9-, 25- and 100-Nearest Neighbor Kernel k-Means, as well as

ε-ball Kernel k-Means with values 0.98 and 0.985 on this dataset. Again, in accordance

with [38], we run our methods 30 times and measured the performance percentages as
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mean±standard deviation. Table 4 presents the results of our approaches and the best

results several methods reported in [38] in increasing clustering accuracy order. The

accuracy of our approach (49.96%) again improves upon the performance of baseline

Kernel k-Means (47.93%) and closely rivals the performance of the state of the art ap-

proach (50.30%). Note that we did not take advantage of any constraints and viewed

this problem as a general purpose clustering task.

We also use this dataset, in order to study the effect that the voting threshold has on

all aspects of our trimming algorithm. Starting from the previously mentioned thresh-

old of 10%, we proceeded to increase it by a 10% step up to and including 50%. We

repeated the above experiment using the respective trimming to the kernel matrix. The

results can be seen in Figure 8, which illustrates how the runtime, resulting kernel

matrix size and classification performance is affected by the voting threshold value.

Increasing the voting threshold slows down the trimming process. It also clutters the

votes, resulting in larger estimated cluster cardinalities and, thus, larger trimmed ker-

nel matrices. Finally, increasing the threshold also negativele affects the classification

performance. We therefore would not recommend a threshold of over 10%.

Table 4: Clustering accuracies of the methods in [38], baseline Kernel k-Means (in bold) and our method (in
bold).

Method Accuracy
3-NN Kernel k-Means 36.2± 0.000295
5-NN Kernel k-Means 36.2± 0.0003373
9-NN Kernel k-Means 36.72± 0.0071
25-NN Kernel k-Means 39.56± 0.0186

Unsupervised Logistic Discriminative Metric Learning-kmeans [38] 44.08± 2.8
0.98-ball Kernel k-Means 44.51± 0.0235
0.985-ball Kernel k-Means 44.96± 0.0108

Penalized Probabilistic Clustering [38] 46.07± 5.52
100-NN Kernel k-Means 46.76± 0.0362

Baseline Kernel k-Means 47.93± 2.78
Unsupervised Logistic Discriminative Metric Learning-clustering [38] 49.29± 0

Trimmed Kernel k-Means 49.96± 2.85
Hidden Markov Random Fields-com [38] 50.30± 2.73

Finally, in order to evaluate the performance improvement and acceleration of our
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Figure 8: The effect of the voting threshold on a) the time required by the trimming process, b) the kernel
matrix size reduction and c) the classification performance on the BF0502 dataset.

distributed clustering scheme, we used the Youtube Faces dataset. This dataset con-

tains n = 621126 samples, which is about 10 times larger than the MNIST dataset and

requires the computation of a kernel matrix that is almost 100 times larger. The number

of ground truth clusters is 1595. We restricted the voting process, so that no cluster car-

dinality over 0.01n can be selected, in order to ensure that the trimmed kernel matrix is

significantly reduced in size. Since the feature vectors (LBP) provided by the database

are histograms, we used the Histogram Intersection kernel, κ(x,y) =
∑

min(xi, yi),

for this experiment. We used our distributed kernel matrix computation algorithm to

calculate 10000 rows of the kernel matrix at a time, in batches of 50 rows per Map.

The resulting files were then concatenated into a single 1.9 Terabyte file. We then

used our distributed kernel matrix trimming algorithm, in order to obtain the trimmed

matrix, which retained 0.003 (0.3%) of the original kernel matrix entries and was 15

Gigabytes in size. Finally, we used our distributed kernel k-means algorithm on the

trimmed kernel matrix, to obtain a NMI performance of 0.857.

We also used the Approximate Kernel k-Means algorithm on 2000 randomly se-

lected rows of the kernel matrix, which results in about the same kernel matrix reduc-

tion of 0.003. Unfortunately, we were unable to measure the exact NMI performance

of Approximate Kernel k-Means, as it missed about 100 clusters. To circumvent this,

for every missing label, we randomly changed an existing label to that missing one.

The resulting NMI was 0.8402. To ensure that this is not unreasonably unfair to Ap-

proximate Kernel k-Means, we tried the same random label change to the output of our

approach, and the resulting NMI dropped from 0.857 to 0.8567.
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5.4. Evaluation of computational speedup

For the purposes of testing the speedup of our approach in an actual computing

cluster, we used the MNIST dataset, as it is the bigger of the two datasets. We formed

a computing cluster having 200GB of distributed memory. The number of cores varied

from 1 to 20. We did not include the time in which the intermediate output was written,

as it is bottlenecked by disk speed, but we did include the time in which input was read,

as it can affect the overhead of distributing the data to the worker nodes. We also fixed

the number of iterations for Kernel k-Means to 10, so that possible early stops would

not contaminate the speedup results.

Ideally, if the total computational time required by a single processing core is Ct

and there are p equal processing cores available, then the best running time we can

possibly achieve is Ct
p . Thus, the expected curve of the plot of time with respect to

number of nodes is expected to have the form of the rectangular hyperbola f(x) =

1
x . The relevant plots can be seen in Figure 9. As can be observed from the matrix

computation curve in Figure 9a, we noticed some saturation issues arising, when using

20 cores, so the rest of the steps (kernel matrix trimming and Kernel k-Means) were

performed using only up to 8 cores. All the curves reasonably follow the predicted

rectangular hyperbola. In total, performing the clustering on a single core would take

about 348 minutes, while only taking about 39 minutes using a maximum of 20 cores.

Finally, we present the computational time related results of our distributed cluster-

ing scheme on the Youtube Faces dataset. It was not practical to run the kernel matrix

computation in its entirety for various numbers of cores, as it would take about 150

days for a single core to finish the task, according to our estimates. In order to study

the acceleration scaling with respect to the number of cores, we measured the time

required by the computing cluster to calculate 50 rows of the kernel matrix. We setup

the computing cluster several times with a different number of VMs as workers. Each

VM had 2 available cores and 4 Gigabytes of memory. For each computing cluster

configuration, we allowed to it to calculate several batches of 50 kernel matrix rows.

The figures were then collected and averaged. The resulting acceleration curve can be

seen in Figure 10. Again, the curve reasonably follows the predicted rectangular hy-

perbola. In total, the kernel matrix computation required about 300 hours. The kernel
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Figure 9: Minutes to finish task with respect to number of cores for a) kernel matrix computation, b) kernel
matrix trimming and c) Kernel k-Means on the trimmed kernel matrix.

matrix trimming required 35 hours and Kernel k-means itself run in 6 hours. We would

like to note that computing the 2000 × 621126 kernel matrix for Approximate Kernel

k-Means in MATLAB required almost a day of computations, while our distributed

approach can compute 2000 rows in about 35 minutes. With a simple modification, it

is possible to use our distributed approach to compute a random collection of kernel

matrix rows, which can then be used by Approximate Kernel k-Means. This combina-

tion provides a very powerful tool which can provide fast clustering results with little
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Figure 10: Seconds to compute 50 rows of the kernel matrix with respect to number of cores.

compromise in clustering performance.

6. Conclusions

In this paper, we have proposed a novel kernel matrix trimming algorithm that both

improves the performance of Kernel k-Means, while significantly reducing the kernel

matrix size. Through a voting scheme, we are able to estimate the cardinality of the

cluster that each individual data sample belongs to. This provides a threshold, using

which we can separate within cluster kernel matrix entries, i.e., entries connecting the

data sample to other samples of its cluster, from between cluster entries, i.e., entries

connecting the data sample to samples of other clusters. During the justification of our

motivation, we also provided some insight into how cluster density in the kernel space

can affect the assignment of data samples to particular cluster types, depending on their

density.

Experimental results strongly indicate that our approach consistently provides an

improvement over baseline Kernel k-Means, which is not possible by the static kernel

matrix trimming, despite the fact that is does not use ground truth knowledge. Our

approach is even almost equivalent in clustering accuracy to a state of the art face

clustering approach, which though takes advantage of video tracking trajectory-derived

constraints.

Additionally, we have provided a distributed implementation of all three steps of

the proposed Trimmed Kernel k-Means framework. The distributed implementation

is designed to minimize memory usage, thus ensuring that either the entire problem
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can fit inside the distributed memory, or that the spilling of data to the disk is also

minimized. The running times that were recoded while deploying our implementation

to clusters of different numbers of cores reasonably follow the rectangular hyperbola

curve with respect to the number of cores.
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