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Abstract

We study distance-based classification of human actions and introduce a new met-
ric learning approach based on logistic discrimination for the determination of a
low-dimensional feature space of increased discrimination power. We argue that
for effective distance-based classification, both the optimal projection space and
the optimal class representation should be determined. We qualitatively and quan-
titatively illustrate the superiority of the proposed approach to metric learning ap-
proaches employing the class mean for class representation. We also introduce
extensions of the proposed metric learning approach to allow for richer class rep-
resentations and to operate in arbitrary-dimensional Hilbert spaces for non-linear
feature extraction and classification. Experimental results denote that the perfor-
mance of the proposed distance-based classification schemes is comparable (or
even better) to that of Support Vector Machine classifier (in both the linear and
kernel cases) which is currently the standard choice for human action recognition.

Keywords: Distance-based classification, Optimized class representations

1. Introduction

In this paper we focus on the problem of distance-based, multi-class classi-
fication of human actions and specifically on the Nearest Class Centroid (NCC)
classification scheme that has been employed in many Computer Vision tasks, in-
cluding image and action classification [22, 21, 35, 26, 5]. The success of NCC
critically depends on the adopted distance function, which is usually learned by
applying a learning process exploiting training samples. We follow this line of
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work and cast our classifier learning problem as one of learning a low-rank Maha-
lanobis distance which is shared across all classes. Such a Mahalanobis distance
can be used in order to map the samples to a low-dimensional feature space of
increased discrimination power, where classification is performed by employing
the minimal Euclidean distance from the class representation.

Typically, NCC classification schemes employ the class mean vector for class
representation, assuming that the classes forming the classification problem follow
unimodal probability distributions having the same covariance structure. How-
ever, this is a strong assumption, which is difficult to be met in real classification
problems. Consider the example illustrated in Figure 1. Figure 1a illustrates two
classes formed by 2D data following different probability distributions and having
different covariance structures. Figure 1b illustrates the projection space obtained
by applying Linear Discriminant Analysis (LDA) [3] on the 2D data forming the
two classes. As can be seen, LDA fails to determine a useful for classification
subspace, since the two classes are mapped to the same region resulting to a clas-
sification rate equal to 46, 45%. On the other hand, logistic discrimination is able
to merely overcome these issues and increases class discrimination in the pro-
jection space, as illustrated in Figure 1c, leading to a classification rate equal to
94.17%. Finally, logistic discrimination employing the class vectors denoted by
triangles in Figures 1a,d for class representation is able to perfectly discriminate
the two classes in the projection space, leading to a classification rate equal to
100%. As can be seen in this, rather simple, example, critical role on the perfor-
mance of NCC classifier plays, not only the adopted distance function, but also
the adopted class representation.

In this paper, we propose a new metric learning algorithm based on multi-
class logistic discrimination, where a sample is enforced to be closer to its class
representation than to any other class representation in the projection space. The
proposed algorithm determines both the optimal projection matrix and the optimal
class representation that can be, subsequently, used for classification. In order to
distinguish our approach from the NCC classifier, it is referred to as the Nearest
Class Vector (NCV) classifier hereafter. In order to overcome the unimodality
assumption that is inherently set by all the NCC, including the proposed NCV,
classifiers, we introduce an extension, namely Nearest Subclass Vector (NSV)
classifier, which exploits multiple representations per class. Finally, since kernel
methods have been found to be very effective in many Computer Vision tasks,
including human action recognition [31, 30, 29, 18], we extend both the NCV and
the NSV classifiers in order to determine an optimal data projection matrix and
optimal class representations in arbitrary-dimensional Hilbert spaces [24].
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Figure 1: a) two 2D classes having different probability class distributions and different covari-
ance structures, b) projection space of LDA, c) projection space of logistic discrimination em-
ploying the class mean vectors (asterisks) for class representation and d) projection space of the
proposed logistic discrimination scheme employing the optimal class vectors (triangles).

We apply the proposed classification schemes on the Hollywood2 [19], Olympic
sports [23] and the, recently introduced, ASLAN [6] datasets. As baseline ap-
proaches, we use the state-of-the-art methods proposed in [30, 6]: on the ASLAN
dataset we employ a set of 12 similarity values calculated for histogram similarity
measure between pairs of videos, represented by using the Bag of Words (BoW)
model for HOG, HOF and HNF descriptors evaluated on STIP video locations
[17]. This video pair similarity representation is employed for classification us-
ing a linear Support Vector Machine (SVM) classifier. We employ this baseline
to evaluate the performance of the linear version of the proposed NCV and NSV
classification schemes. For the remaining datasets we employ the BoW-based
video representation by using HOG, HOF, MBH and Trajectory descriptors eval-
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uated on the trajectories of densely sampled interest points [30]. Classification is
performed by employing a kernel SVM classifier and the χ2 kernel. We employ
this baseline to evaluate the performance of the kernel version of the proposed
NCV and NSV classification schemes.

The rest of the paper is structured as follows. We first discuss a selection of
works related to this paper in Section 2. We describe the proposed metric learning
algorithm for NCV classification in Sections 3. Extensions towards two direc-
tions, in order to exploit multiple representations per class and in order to operate
in arbitrary-dimensional Hilbert spaces are presented in Subsections 3.1 and 3.2,
respectively. Experimental results on human action recognition are presented in
Section 4. Finally, conclusions are drawn in Section 5.

2. Related Work

Closely related to the proposed NCV classifier is the LDA algorithm and its
variances [32, 14]. LDA determines an optimal discriminant subspace by adopt-
ing the between-class to within-class scatter ratio. LDA assumes unimodal class
probability distributions having the same covariance structure and employs the
mean class vectors for class representation. As has been discussed above, these
are two strong assumptions that are difficult to be met in several real-world clas-
sification problems. A variant of LDA that tries to determine the optimal class
representation for LDA-based data projection (in the linear case) is proposed in
[8]. This idea has also been extended for nonlinear data projection in [11]. Our
approach differs significantly in that: (i) we employ multi-class logistic discrim-
ination for the determination of the data projection matrix and the optimal class
representation. As it will be shown in Subsection 4.4, the adoption of logistic
discrimination leads to increased performance compared to the criterion used in
[8]. (ii) We extend the proposed NCV classification in order to exploit multiple
representations per class.

Other works related to this paper include LESS [27], Taxonomy Embedding
[34], the Sift-bag kernel [38], NCC classifier [22] and sample-to-class metric
learning [33]. The LESS model [27], is used to learn a diagonal scaling matrix
for the modification of the Euclidean distance by scaling the data dimensions and
includes an l1 penalty term in order to perform feature selection. Taxonomy Em-
bedding [34] exploits a hierarchical cost function in order to map the samples to a
lower dimensional feature space where each class is represented by the class mean
vector. The Sift-bag kernel [38] determines a lower dimensional feature space that
is orthogonal to the subspace with the maximal within-class variance, which is
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evaluated by employing the class mean vectors. The NCC classifier of [22] deter-
mines a Mahalanobis metric using the class mean vectors for class representation.
Finally, the sample-to-class metric learning [33], learns a Mahalanobis metric by
employing a Naive-Bayes Nearest Neighbor approach and, thus, requires the stor-
age of all training samples, contrary to all the aforementioned methods (including
the proposed one), where only some class vectors (the representative ones in the
proposed method) are required for classification. Our approach differs signifi-
cantly from these methods in that: (i) the proposed approach aims at determining
both the optimal data projection matrix and the optimal class representation(s) for
classification and (ii) the proposed approach is extended in order to operate in
arbitrary-dimensional Hilbert spaces. As has been previously discussed, kernel
methods have been proven effective in many Computer Vision tasks, including
human action recognition.

3. The proposed NCV classifier

The proposed nearest class centroid (NCV) classifier assigns a sample xi ∈
RD to the class c∗ ∈ {1, . . . , C} of the closest class vector:

c∗ = argmin
c

d(xi,µc), (1)

where µc ∈ RD is the representation of class c and may be any vector that en-
hances class discrimination, i.e., µc is not necessarily the class mean vector. The
adopted distance function, i.e.:

d(xi,µc) = (xi − µc)
TM(xi − µc), (2)

is the (squared) Mahalanobis distance between sample xi and the class vector µc.
We enforce M to be a symmetric metric, i.e. M = WTW, where W ∈ Rd×D. In
the case where the dimensionality of the resulted feature space is lower than the
sample dimension, d < D. By using W, d(x,µc) can be written in the form:

dW(xi,µc) = (xi − µc)
TWTW(xi − µc)

= ∥Wxi −Wµc∥22. (3)

That is, W can be considered as a projection matrix used to map the data in a d-
dimensional feature space, where classification is performed based on the minimal
Euclidean distance from the class vectors.
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We formulate the proposed NCV classifier by using a probabilistic model
based on multi-class logistic regression. We define the conditional probability
of class c given a sample vector xi by:

p(c|xi) =
e−

1
2
dW(xi,µc)∑C

l=1 e
− 1

2
dW(xi,µl)

. (4)

Clearly, we would like to learn an appropriate set of (W∗,µ∗
c), c = 1, . . . , C that

maximizes the probability of p(yi|xi), i.e., the probability to correctly classify all
the training samples. yi is used to denote the class label of training sample xi. In
practice, it is convenient to maximize the mean log-likelihood of all the N training
samples:

J (W,µc) =
1

N

N∑
i=1

ln p(yi|xi). (5)

In the case where the distribution of training samples is not representative of the
real class distributions, their contribution to J calculation can be appropriately
weighted.

In order to learn both the optimal data projection matrix W∗ and the optimal
class vectors µ∗

c we follow an Expectation Maximization-like iterative optimiza-
tion approach. In the following, we introduce an additional index t denoting the
t-th iteration of the adopted optimization scheme. For a given set of class vectors
µc,t, we update the data projection matrix by following the gradient of J with
respect to W, i.e. Wt+1 = Wt + ηW∇WJ . By using Wt+1 we, subsequently,
update the class vectors by following the gradient of J with respect to µc, i.e.,
µc,t+1 = µc,t + ηµ∇µc

J . ∇WJ , ∇µc
J are given by:

∇WJ =
1

N

N∑
i=1

C∑
c=1

(
p(c|xi)− αc

i

)
Wqc

iq
c T
i , (6)

∇µc
J =

1

N

N∑
i=1

αc
i

(
1− p(c|xi)

)
WTWqc

i . (7)

In (6,7), qc
i = µc − xi and αc

i is an index denoting if xi belongs to class c, i.e.,
αc
i = 1 if yi = c and αc

i = 0 otherwise. ηW and ηµ are the update rate parameters
used to adapt W and µc,t, respectively. ηW, ηµ can either be a priori determined,
e.g., ηW = 0.01, ηµ = 0.01, or be dynamically determined.

In our experiments we have used an adaptive optimization process where ηW,
ηµ are dynamically determined by following a linear search strategy. That is,
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in each iteration of the optimization process the criterion J is evaluated by us-
ing ηW,0 = 0.1 (or ηµ,0 = 0.1). In the case where Jt+1 > Jt, the criterion
J is evaluated by using an update rate parameter equal to ηW,n+1 = 2ηW,n (or
ηµ,n+1 = 2ηµ,n). This process is followed until Jt+1 < Jt and the value pro-
viding the maximal increase in J is employed. In the case where, by using an
update rate parameter equal to ηW,0 = 0.1 (or ηµ,0 = 0.1), Jt+1 < Jt, the crite-
rion J is evaluated by using an update rate parameter equal to ηW,n+1 = ηW,n/2
(or ηµ,n+1 = ηµ,n/2). This process is followed until Jt+1 > Jt and the value
increasing the criterion J is employed. We evaluate J after introducing all the
training samples for the adaptation of W, µc,t. However, (6,7) can be also em-
ployed by stochastic gradient ascent algorithms for the adoption of the proposed
NCV in large-scale classification problems.

The above described iterative optimization scheme is performed until (Jt+1 −
Jt)/Jt < ϵ, where ϵ is a small positive value (equal to 10−8 in our experi-
ments). We initialize the class representations to the class mean vectors, i.e.,
µc,1 = mc, c = 1, . . . , C, where mc = 1

Nc

∑
i:yi=c xi. For the initialization

of the data projection matrix W one can employ either random projections [36],
or PCA. In our preliminary experiments we have observed that the adoption of
random projections generally outperforms the latter choice and, thus, we employ
random projections in all our experiments.

3.1. Extension to multiple subclasses per class
For the case of multimodal classes, i.e., in the case where the classes forming

the classification problem consist of multiple subclasses, we employ multiple class
vectors for each class. In this case, the conditional probability of class c given a
sample vector xi is given by:

p(c|xi) =
Cc∑
j=1

p(cj|xi) (8)

p(cj|xi) =
e−

1
2
dW(xi,µcj)∑C

l=1

∑Cl

k=1 e
− 1

2
dW(xi,µlk)

. (9)

Here it is assumed that class c consists of Cc subclasses, each represented by the
corresponding subclass vector µcj, j = 1, . . . , Cc. Again, µcj are not necessarily
the subclass mean vectors, but are adapted to enhance class discrimination. Clas-
sification is performed by assigning the sample xi to the class c∗ providing the
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maximal conditional probability:

c∗ = argmax
c

p(c|xi), (10)

In order to learn both the optimal data projection matrix W∗ and the optimal
subclass vectors µ∗

cj , we also apply the iterative optimization process described in
Section 3. In this case the gradients of J with respect to W and µcj are given by:

∇WJ =
1

N

N∑
i=1

C∑
c=1

Cc∑
j=1

(
p(cj|xi)− αc

iβ
cj
i

)
Wqc

iq
cj T
i , (11)

∇µcj
J =

1

N

N∑
i=1

αc
iβ

cj
i

(
1− p(cj|xi)

)
WTWqcj

i , (12)

where qcj
i = µcj − xi and βcj

i =
p(cj |xi)∑Cc
l=1 p(cl|xi)

. That is, each training sample xi

contributes to the adaptation of µcj according to its membership value βcj
i . Since

the subclasses are not a priori known, in order to initialize the subclass vectors
µcj we cluster the training samples xi belonging to class c. We have adopted
K-Means algorithm to this end.

The above described NCV and NSV classifiers operate on the data feature
space RD in order to determine an optimal linear projection and optimal class
representations for classification. An extension of NCV and NSV algorithms in
the kernel case is described in the following Subsection.

3.2. Extension to the kernel case
In order to extend the proposed NCV classifier to the kernel case, the original

input space is mapped to an arbitrary-dimensional space F . The space F usually
has the structure of a Hilbert space [24]. To do so, let ϕ : xi ∈ RD → ϕ(xi) ∈
F be a non-linear mapping from the input space RD to the space F . In this
space, we want to find an optimal linear projection to a low-dimensional feature
space and the corresponding optimal class representations that will be used for
classification. In this case, the adopted distance function used for the calculation
of the conditional class probabilities is given by:

dWϕ

(
ϕ(xi), ϕ(µc)

)
= ∥Wϕϕ(xi)−Wϕϕ(µc)∥22, (13)

where Wϕ is a data projection matrix that will be used to map the samples from
F to a low-dimensional feature space with enhanced discrimination power Rd.

8



However, since Wϕ is a matrix of arbitrary (even infinite) dimensions, the distance
in (13) cannot be directly calculated.

By expressing Wϕ and ϕ(µc) as linear combinations of the training vec-
tors (represented in F) [24], i.e., Wϕ = ΦA and ϕ(µc) = Φbc, where Φ =
[ϕ(x1), . . . , ϕ(xN)] and A ∈ RN×d, bc ∈ RN are a matrix and a vector containing
the reconstruction weights for Wϕ and ϕ(µc) respectively, Equation (13) can be
written in the form:

dA

(
ϕ(xi), ϕ(µc)

)
= ∥ATΦTϕ(xi)−ATΦTϕ(µc)∥22
= ∥ATki −ATKbc∥22. (14)

Here K is the kernel matrix, having elements equal to kij = ϕ(xi)
Tϕ(xj), i, j =

1, . . . , N , and ki is the i-th column of K, having elements equal to kji = ϕ(xj)
Tϕ(xi),

j = 1, . . . , N .
By observing Equations (3,4,5,14), it can be seen that the problem to be solved

has been transformed to the determination of the reconstruction weights A∗ and
b∗
c for optimal non-linear data projection and optimal class representation, respec-

tively. In this case, the gradient of J with respect to A is given by:

∇AJ =
1

N

N∑
i=1

C∑
c=1

(
p(c|ϕ(xi))− αc

i

)
K(zciz

c T
i )KA, (15)

while the gradient of J with respect to bc is given by:

∇bcJ =
1

N

N∑
i=1

αc
i

(
1− p(c|ϕ(xi))

)
KAATKzci . (16)

In (15,16), zci = bc − 1i, where 1i is a vector having all its elements equal to
zero, except of the i-th element, which is equal to one. The class representations
are initialized to the class mean vectors in F . That is, bc is initialized by setting
all its elements equal to zero, expect of the elements corresponding to the training
samples belonging to class c which are set equal to 1/Nc, where Nc is the number
of training samples belonging to class c. For the initialization of A we, also,
employ random projections. An alternative could be the use of kernel PCA.

By using the same analysis for the NSV classifier, A and bcj are updated by
using the following gradients:

∇AJ =
1

N

N∑
i=1

C∑
c=1

Cc∑
j=1

(
p(cj|ϕ(xi))− αc

iβ
cj
i

)
K(zcji z

cj T
i )KA, (17)
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∇bcj
J =

1

N

N∑
i=1

αc
iβ

cj
i

(
1− p(cj|ϕ(xi))

)
KAATKzcji . (18)

zcji = bcj − 1i and βcj
i =

p(cj |ϕ(xi))∑Cj
l=1 p(cl|ϕ(xi))

. That is, each training sample xi con-

tributes to the adaptation of bcj according to its membership value βcj
i , evaluated

on F .
Similarly to the linear case, since the subclasses are not a priori known, bcj

are initialized by applying clustering on the training data belonging to class c.
However, in this case clustering should be performed on the training data repre-
sentations in F . We employ kernel K-Means [25] to this end, by using the kernel
matrix of the training samples belonging to each class separately.

Here we should note that the choice of the kernel function ϕ(·) is important for
the performance of kernel-based classification schemes. The usual approach em-
ploys a kernel function, like the Radial Basis Function (RBF), and determines the
values of the corresponding parameters, e.g., the value of the standard deviation
σ in the RBF case, by employing performance criteria on a validation set, or by
performing cross-validation on the training set. Another approach tries to learn an
optimized kernel function ϕ∗(·), leading to an optimized kernel matrix K∗, like in
[13, 16]. This is usually approached by expressing K∗ as a linear combination of
a set of pre-defined kernels, i.e., by setting K∗ =

∑
k θkKk, and trying to deter-

mine an optimized vector θ∗ which is used to optimally weight the contribution of
Kk in K∗. In our experiments, we have adopted the multi-channel RBF-χ2 kernel
function, as will be discussed in subsection 4.4, which has been shown to be the
state-of-the-art choice for BoW-based action recognition [29, 18, 37].

4. Experiments

In this section we present experiments conducted in order to evaluate the per-
formance of the proposed classification schemes. We have employed three pub-
licly available datasets, namely the ASLAN, the Olympic Sports and the Hollywood2
datasets. In the following, we describe the datasets and evaluation protocols used
in our experiments. Experimental results are provided in subsection 4.4.

4.1. The ASLAN dataset
The Action Similarity Labeling (ASLAN) dataset [6] consists of thousands of

videos collected from the web, in over 400 complex action classes. A “same/not-
same” benchmark is provided, which addresses the action recognition problem as
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Figure 2: Video frames of the ASLAN dataset.

a video pair similarity problem. Specifically, the goal is to answer the following
binary question: “Does a pair of videos depict the same action?”. Example video
frames of the dataset are illustrated in Figure 2. We use the standard partitioning
provided by the database. The dataset consists of ten splits of video pairs, each
containing 300 pairs of same actions and 300 pairs of not-same actions. The splits
contain mutually exclusive action classes. That is, action classes appearing in one
split do not appear in any other split. Performance is evaluated by applying the
ten-fold cross-validation procedure. In each fold, nine of the splits are used to train
the algorithms and performance is measured on the remaining one. An experiment
consists of ten folds, one for each test split, and performance is calculated by using
the mean accuracy and the standard error of the mean (SE) over all folds.

4.2. The Olympic Sports dataset
The Olympic Sports dataset [23] consists of 783 videos depicting athletes

practicing 16 sports, which have been collected from YouTube and annotated us-
ing Amazon Mechanical Turk. The actions appearing in the dataset are: ‘high
jump’, ‘long jump’, ‘triple jump’, ‘pole vault’, ‘basketball lay-up’, ‘bowling’,
‘tennis serve’, ‘platform’, ‘discus’, ‘hammer’, ‘javelin’, ‘shot put’, ‘springboard’,

11



‘snatch’, ‘clean-jerk’ and ‘vault’. Example video frames of the dataset are illus-
trated in Figure 3. The dataset has rich scene context information, which is helpful
for recognizing sport actions. We use the standard training-test split provided by
the database (649 videos are used for training and performance is measured in
the remaining 134 videos). The performance is evaluated by computing the mean
Average Precision (mAP) over all classes, as suggested in [23]. In addition, since
each videos depicts only one action, the mean classification rate can also be used
for evaluation.

Figure 3: Video frames of the Olympic Sports dataset.

4.3. The Hollywood2 dataset
The Hollywood2 dataset [19] consists of 1707 videos depicting 12 actions. It

has been collected from 69 different Hollywood movies. The actions appearing in
the dataset are: ‘answering the phone’, ‘driving car’, ‘eating’, ‘ghting’, ‘getting
out of car’, ‘hand shaking’, ‘hugging’, ‘kissing’, ‘running’, ‘sitting down’, ‘sitting
up’, and ‘standing up’. Example video frames of the dataset are illustrated in
Figure 4. We use the standard training-test split provided by the database (823
videos are used for training and performance is measured in the remaining 884

12



videos). Training and test videos come from different movies. The performance
is evaluated by computing the average precision (AP) for each action class and
reporting the mean AP over all classes (mAP), as suggested in [19]. This is due to
the fact that some videos of the dataset depict multiple actions.

Figure 4: Video frames of the Hollywood2 dataset depicting instances of all the twelve actions.

4.4. Experimental Results
Table 1 illustrates the mean accuracy and the standard error values obtained by

applying the proposed NCV classifier on the ASLAN dataset. In our experiments
we have employed the similarity vectors provided by the database. In Table 1,
we also provide the mean accuracy and standard error values obtained by apply-
ing classification using linear SVM (we report the best performance obtained for
C = 10−6,...,6), K-Nearest Neighbors (we report the best performance obtained
for K = 1, . . . , 15), Logistic Regression using the mean class vectors for class
representation [22] (referred to as NCC), LDA and the method proposed in [8] for
the determination of the optimal class representation in the LDA case (referred
to as RCVLDA). It can be seen that NCC outperforms LDA and K-NN in all
the cases, while SVM outperforms both K-NN, LDA and NCC in all cases. The
determination of the optimal class representation for the LDA case leads to an
increase of the performance of LDA. Specifically, it can be seen that, RCVLDA
outperforms LDA and NCC in all the cases, while it outperforms SVM in three
out of four cases. Finally, it can be seen that the proposed NCV algorithm clearly
outperforms SVM, LDA and NCC in all cases, while it outperforms RCVLDA in
three out of four cases. Overall, the proposed NCV algorithm provides the best
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Table 1: Performance (Accuracy ± SE) on the ASLAN dataset.

HOG HOF HNF ALL
SVM 57.78 ± 0.82 % 56.68 ± 0.56 % 59.47 ± 0.66 % 60.88 ± 0.77 %
K-NN 52.58 ± 0.67 % 52.32 ± 0.98 % 52.63 ± 0.81 % 53.35 ± 1.05 %
LDA 50.33 ± 0.38 % 50.28 ± 0.27 % 49.82 ± 0.31 % 51.20 ± 0.43 %
NCC 56.83 ± 0.98 % 55.83 ± 0.73 % 57.83 ± 0.93 % 60.08 ± 0.92 %
RCVLDA 59.70 ± 0.91 % 56.93 ± 0.63 % 59.17 ± 0.72 % 60.95 ± 0.81 %

NCV 59.95 ± 0.6 % 56.58 ± 0.81 % 60.08 ± 0.68 % 61.4 ± 0.82 %

performance, equal to 61.4% (for d = 5), by concatenating the similarity values
of all descriptor types provided by dataset. We have also applied the proposed
NSV algorithm for different values of Cc = {2, 5, 10, 15, 20}. By using 10 sub-
classes per class, the proposed NSV algorithm further increases the performance
to 61.66%. The performance obtained for values of Cc = {15, 20} was slightly
lower.

We evaluate the performance of the kernel version of the proposed NCV al-
gorithm on the Olympic Sports and Hollywood2 datasets. In our experiments we
have employed the improved version of dense trajectory-based video represen-
tation proposed in [30]. Since the BoW model is usually combined with kernel
classification schemes, we have employed the BoW-based video representation
for the evaluation of the kernel version of NCV classifier. We employ the pipeline
used in [30] and constructed one codebook for each descriptor type (K = 4000).
We adopted the RBF-χ2 kernel, where different video representations are com-
bined in a multi-channel approach [37]:

K(xi,xj) = exp
(
−
∑
k

1

4Ak
D

(
xk
i ,x

k
j

) )
, (19)

D
(
xk
i ,x

k
j

)
is the χ2 distance between the BoW-based video representation of xi

and xj with respect to the k-th channel. Ak is the mean value of the χ2 distances
between the training samples for the k-th channel.

Table 2 illustrates the classification rates obtained by using different values
of d. As can be seen, the use of a higher d value increases performance. It can
also be seen in Table 2 that even the use of smaller values leads to satisfactory
performance. The highest performance, equal to 67.16%, has been obtained by
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Table 2: Mean classification rates on the Olympic Sports dataset for different target dimensions d.
50 100 200 300 400

63.41 % 64.18 % 65.67 % 67.16 % 67.16 %

Table 3: Mean classification rates on the Olympic Sports dataset.
SVM KDA KRDA NCV NSV

65.67 % 61.94 % 64.92 % 67.16 % 67.91 %

using the values d = 300 and d = 400. Thus, both these values are good choices
for the Olympic Sports dataset. Expecting that for more complex datasets (like
Hollwyood2) a high number of target space dimensions will probably provide sat-
isfactory performance, we use the value d = 400 in all the remaining experiments.

In Table 3 we provide the mean classification rates obtained by using ker-
nel SVM (we report the best performance obtained for C = 10−6,...,6), Kernel
Discriminant Analysis (KDA) [1] and Kernel Reference Discriminant Analysis
(KRDA) [11] on the Olympic Sports dataset. We have also tested the performance
of the kernel K-NN classifier [39], but its performance was far inferior to the re-
maining ones and, thus, we omit reporting it. As can be seen, the proposed NCV
classifier outperforms the other three classification schemes. We have also ap-
plied the proposed NSV algorithm for different values of Cc = {2, 5, 10, 15, 20}.
By using ten subclasses per action class, the proposed NSV classifier was able to
outperform NCV, providing a classification rate equal to 67.91%.

Table 4 illustrates the mean average precision values obtained by applying
the kernel version of the proposed NCV algorithm on the Olympic Sports and
the Hollywood2 datasets. In this Table, we also provide the mean average preci-
sion values obtained by using kernel SVM (we report the best performance ob-
tained for C = 10−6,...,6), Minimum Class Variance Extreme Learning Machine
(MCVELM) [7] (we report the best performance obtained for C = 10−6,...,6),
KDA and KRDA on the two datasets. We also provide the performance reported
in [30], when employing the same video representation and the kernel SVM clas-
sifier. Finally, we have implemented a version of the proposed NCV classifier
which learns only the data projection matrix A∗ based on the class means in F
(noted as NCC). As can be seen, NCC is quite effective, since it achieves perfor-
mance similar to that of SVM, ELM and KDA. The proposed approach by learning
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Table 4: Performance (mAP) on the Olympic Sports and Hollywood2 datasets.
Olympic Sports Hollywood2

SVM [30] 83.3 % 62.2 %
SVM (reproduced) 82.7 % 61.51 %
MCVELM 86.07 % 58.66 %
KDA 81.27 % 59.06 %
KRDA 83.35 % 61.2 %
NCC 80,6 % 55.93 %

NCV 84.14 % 59.5 %
NSV 85.49 % 62.5 %

both the data projection matrix A∗ and the class representations bc enhances the
performance of NCC. The proposed NCV algorithm outperforms both SVM and
KDA in Olympic Sports dataset providing a mAP value equal to 84.14%. On the
Hollywood2 dataset, the proposed NCV algorithm achieves a performance similar
to that of the KDA classification scheme, while its performance is inferior to that
of the SVM classifier. When compared to the MCVELM classifier, the perfor-
mance of the proposed approach is inferior on the Olympic Sports dataset, while
it ourperforms MCVELM on the Hollywood2 dataset. By using ten subclasses per
action class, the proposed NSV classifier was able to outperform NCV, providing
mean average precision values equal to 85.49% and 62.5% for the Olympic Sports
and the Hollywood2 datasets, respectively.

In Table 5, we compare the performance of the adopted action recognition
method with that of some other state-of-the-art methods evaluating their perfor-
mance on Olympic Sports and Hollywood2 datasets. As can be seen, the proposed
NCV and NSV algorithms, when combined with the improved trajectory-based
video representation achieves satisfactory performance in both datasets.

Overall, it can be seen that distance-based classification exploiting optimized
class representation(s), when approached by a probabilistic point of view, is a
powerful approach which is able to provide comparable (or even better) perfor-
mance with that of other state-of-the-art choices, like the SVM, MCVELM and
LDA (KDA) classification schemes. When compared to the SVM and MCVELM
choices, the adoption of the proposed method has the advantage that it leads to a
lower-dimensional data representation preserving discriminant class information
and, thus, compact data representations can be obtained. In addition, relevant
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Table 5: Comparison of our results with some state-of-the-art methods on the Olympic Sports and
Hollywood3 datasets.

Olympic Sports Hollywood2
Iosifidis et al. [9] - 45.8 %
Brendel et al. [2] 77.33 % -
Vig et al. [28] - 61.9 %
Gaidon et al. [4] 82.7 % -
Mathe et al. [20] - 61 %
Jiang et al. [15] 80.6 % 59.5 %
Jain et al. [12] 83.2 % 62.5 %
Iosifidis et al. [10] 82.12 % 58.2 %
Iosifidis et al. [11] 83.35 % 61.2 %

NCV+Improved Trajectories 84.14 % 59.5 %
NSV+Improved Trajectories 85.49 % 62.5 %

work in image classification [22] denotes that the adoption of the NCC classi-
fication approach is able to outperform SVM-based classification in large-scale
classification problems. The proposed approach by optimizing NCC with respect
to both the data projection matrix and the class representation is expected to en-
hance its performance. When compared to the LDA (and KDA) approaches, the
proposed method by adopting logistic discrimination overcomes the assumptions
set by such methods. In addition, experimental results show that the proposed
approach is able to achieve better performance.

5. Conclusion

In this paper we proposed a new metric learning for distance-based action clas-
sification. The proposed approach maximizes the log-likelihood of correct class
prediction, which is calculated in a low-dimensional feature space of increased
discrimination power by using optimized class representations. We have illus-
trated the superiority of the proposed approach to metric learning approaches em-
ploying the class mean for class representation. The proposed NCV classifier has
been extended in order to exploit multiple representations per action class, as well
as to operate in arbitrary-dimensional Hilbert spaces for non-linear data projec-
tion and classification. Experimental results on three action recognition datasets
denote that the proposed classification scheme is able to enhance action recog-
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nition performance, when compared to the standard NCC approach, and provide
comparable (or better) performance with that of the SVM (in both the linear and
kernel cases) which is the current state-of-the-art choice for human action recog-
nition.
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