
 Pitas, I., Iosifidis, A., & Tefas, A. (2015). DropELM: Fast Neural Network
Regularization with Dropout and DropConnect. Neurocomputing, 162, 57-
66. DOI: 10.1016/j.neucom.2015.04.006

Early version, also known as pre-print

Link to published version (if available):
10.1016/j.neucom.2015.04.006

Link to publication record in Explore Bristol Research
PDF-document

This is the pre-print manuscript. The final published version (version of record) is available online via Elsevier at
10.1016/j.neucom.2015.04.006. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73982890?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.neucom.2015.04.006
http://research-information.bristol.ac.uk/en/publications/dropelm(fc9f93ea-6fc0-4a5f-b6de-7eaeb9cdc3f6).html
http://research-information.bristol.ac.uk/en/publications/dropelm(fc9f93ea-6fc0-4a5f-b6de-7eaeb9cdc3f6).html

DropELM: Fast Neural Network Regularization with
Dropout and DropConnect

Alexandros Iosifidis, Anastasios Tefas and Ioannis Pitas

Department of Informatics, Aristotle University of Thessaloniki
Thessaloniki 54124, Greece Tel,Fax: +30-2310996304

{aiosif,tefas,pitas}@aiia.csd.auth.gr

Abstract

In this paper, we propose an extension of the Extreme Learning Machine algo-
rithm for Single-hidden Layer Feedforward Neural network training that incor-
porates Dropout and DropConnect regularization in its optimization process. We
show that both types of regularization lead to the same solution for the network
output weights calculation, which is adopted by the proposed DropELM network.
The proposed algorithm is able to exploit Dropout and DropConnect regulariza-
tion, without computationally intensive iterative weight tuning. We show that the
adoption of such a regularization approach can lead to better solutions for the
network output weights. We incorporate the proposed regularization approach in
several recently proposed ELM algorithms and show that their performance can
be enhanced without requiring much additional computational cost.

Keywords: Single Hidden Layer Feedforward Networks; Extreme Learning
Machine; Regularization; Dropout; DropConnect

1. Introduction

Extreme Learning Machine (ELM) is a relatively new algorithm for Single-
hidden Layer Feedforward Neural (SLFN) networks training that leads to fast
network training requiring low human supervision [1]. Conventional SLFN net-
work training approaches, like the Backpropagation algorithm [2], adjust both
the input and output weights and the hidden layer bias values by applying gradi-
ent descend-based optimization. However, gradient descend-based learning tech-
niques are generally slow and may decrease the network’s generalization ability,

Preprint submitted to Neurocomputing February 19, 2015

since the solution may be trapped in local minima. In ELM the input weights
and the hidden layer bias values of the SLFN network are randomly chosen. By
adopting the squared loss of the prediction error, the network output weights are,
subsequently, analytically calculated. ELMs tend to reach not only the smallest
training error, but also the smallest output weight norm. For feedforward net-
works reaching a small training error, smaller output weight norm results in better
generalization performance [3]. Despite the fact that the determination of the net-
work hidden layer outputs is based on randomly assigned input weights, it has
been proven that SLFN networks trained by using the ELM algorithm have global
approximator properties [4, 5, 6, 7]. Due to its effectiveness and its fast learn-
ing process, the ELM network has been adopted in many classification problems
[8, 9, 10, 11, 12, 13, 14, 15]. In addition, many ELM variants have been pro-
posed in the last few years, extending the ELM network properties along different
directions [5, 16, 17, 18, 19, 20, 21, 22, 23].

In order to enhance the generalization ability of networks trained by apply-
ing the Backpropagation algorithm and increase training speed, several heuris-
tics are usually employed, including a decaying learning rate parameter (or dy-
namic learning rate parameter determination), the use of momentum parameter,
minibatch-based weight adaptation using stochastic gradient descend, multiple
network weights initializations, use of generative pre-training using a small learn-
ing rate, penalization of the weights l2 norm, etc. Recently, the so-called Dropout
approach has been proposed, in order to avoid network overfitting on the training
data [24]. According to this approach, each training example is forward propa-
gated, while randomly keeping the outputs of each layer with probability p, oth-
erwise setting each layer outputs to zero with probability (1 − p). The error is
then backpropagated only through the weights corresponding to the activated layer
outputs. The intuition in this process is that such a process prevents the network
weights from collaborating with one another to memorize the training examples.
DropConnect [25] has been proposed as a generalization of Dropout. In Drop-
Connect, each training sample is forward propagated, while randomly keeping
some of the network weight elements. Both these approaches can be regarded as a
form of regularization on the training process of fully connected neural networks.
Extensive experimental evaluation combining Dropout (or DropConnect) with the
previously-mentioned heuristics [24, 25] indicates that the adoption of such a reg-
ularization approach enhances network generalization performance, when com-
pared to networks trained by using Backpropagation without exploiting such op-
erations.

In this paper we propose an extension of the ELM algorithm that is able to

2

exploit Dropout and DropConnect regularization on its optimization process. We
start by formulating an ELM optimization problem that is able to exploit Dropout
regularization. This is performed by learning network output weights that provide
a compromise between the minimization of both the network training error and the
network response difference for the original hidden layer outputs and hidden layer
outputs obtained by applying Dropout operations with a probability value p. Sub-
sequently, we exploit DropConnect regularization on the network output weights
and formulate an ELM optimization problem that is able to learn network output
weights providing a compromise between the minimization of both the network
training error and the network response difference between the network outputs
determined by using the original output weights and output weights obtained by
using DropConnect operations with a probability value p. We show that, in the
limit case of infinite network training epoches, both proposed optimization prob-
lems lead to the same regularized ELM network, noted as DropELM hereafter,
which is able to incorporate the Dropout and DropConnect regularization, without
requiring time-consuming iterative network training. We evaluate the proposed
approach in standard, as well as in facial image classification problems, where it
is shown that the adoption of the proposed regularization term can enhance the
performance of several recently proposed ELM variants.

The contributions of this paper are:

• a novel formulation of the ELM algorithm that is able to exploit Dropout
regularization on the network hidden layer outputs,

• a novel formulation of the ELM algorithm that is able to exploit DropCon-
nect regularization on the network output weights,

• a proof that, in the limiting case of infinite network training epoches, both
proposed ELM formulations lead to the same regularized ELM network,
i.e., the proposed DropELM network.

• Finally, we show that the adoption of the proposed regularization approach
can lead to better solutions for the network output weights.

The rest of the paper is organized as follows. We provide an overview of the
ELM, RELM, Dropout and DropConnect algorithms in Section 2. The proposed
DropELM network is described in Subsection 3. Experimental results evaluat-
ing its performance are provided in Section 4. Finally, conclusions are drawn in
Section 5.

3

Figure 1: SLFN network topology.

2. ELM networks and Dropout/DropConnect approaches

In this section, we briefly describe the ELM, RELM, Dropout and DropCon-
nect algorithms proposed in [1], [21, 26, 27, 28, 29], [24] and [25], respectively.

Let us denote by {xi, ci}i=1,...,N a set of N vectors xi ∈ RD and the corre-
sponding class labels ci ∈ {1, . . . , C} that can be used to train a SLFN network
consisting of D input (equal to the dimensionality of xi), L hidden and C output
(equal to the number of classes involved in the classification problem) neurons, as
illustrated in Figure 1. The number L of hidden layer neurons is usually selected
to be much larger than the number of classes [21, 22], i.e., L ≫ C. The elements
of the network target vectors ti = [ti1, ..., tiC]

T , each corresponding to a training
vector xi, are set to tik = 1 for vectors belonging to class k, i.e., when ci = k,
and to tik = −1, otherwise. In ELM-based approaches, the network input weights
Win ∈ RD×L and the hidden layer bias values b ∈ RL are randomly chosen,
while the network output weights Wout ∈ RL×C are analytically calculated, as
subsequently described.

Let us denote by vj , wk, wkj the j-th column of Win, the k-th row of Wout

and the j-th element of wk, respectively. Given an activation function Φ(·) for
the network hidden layer and using a linear activation function for the network
output layer, the response oi = [oi1, . . . , oiC]

T of the network corresponding to xi

4

is calculated by:

oik =
L∑

j=1

wkj Φ(vj, bj,xi), k = 1, ..., C. (1)

It has been shown [21, 22] that several activation functions Φ(·) can be employed
for the calculation of the network hidden layer outputs, like the sigmoid, sine,
Gaussian, hard-limiting and Radial Basis Function (RBF). By storing the network
hidden layer outputs ϕi ∈ RL corresponding to all the training vectors xi, i =
1, . . . , N in a matrix Φ = [ϕ1, . . . ,ϕN], or:

Φ =

 Φ(v1, b1,x1) · · · Φ(v1, b1,xN)

· · · . . . · · ·
Φ(vL, bL,x1) · · · Φ(vL, bL,xN)

 , (2)

the network response for all the training data O ∈ RC×N can be expressed in a
matrix form as:

O = WT
outΦ. (3)

2.1. Extreme Learning Machine
ELM algorithm [1] assumes zero training error. That is, it is assumed that oi =

ti, i = 1, . . . , N , or by using a matrix notation O = T, where T = [t1, . . . , tN] is
a matrix containing the network target vectors. By using (3), the network output
weights Wout can be analytically calculated by:

Wout = Φ† TT , (4)

where Φ† =
(
ΦΦT

)−1
Φ is the generalized pseudo-inverse of ΦT . After the

calculation of the network output weights Wout, the network response for a given
vector xl ∈ RD is given by:

ol = WT
outϕl, (5)

where ϕl is the network hidden layer output for xl.

2.2. Regularized Extreme Learning Machine
The calculation of the network output weights Wout through (4) is sometimes

inaccurate, since the matrix ΦΦT may be singular. A regularized version of the
ELM algorithm that allows small training errors and tries to minimize the norm
of the network output weights Wout has been proposed in [21]. In this case,

5

the network output weights are calculated by solving the following optimization
problem:

Minimize: JRELM =
1

2
∥Wout∥2F +

c

2

N∑
i=1

∥ξi∥22 (6)

Subject to: WT
outϕi = ti − ξi, i = 1, ..., N, (7)

where ξi ∈ RC is the error vector corresponding to xi and c is a parameter de-
noting the importance of the training error in the optimization problem, satisfying
c > 0. By substituting the constraints (10) in (9) and determining the saddle point
of JRELM with respect to Wout, the network output weights are obtained by:

Wout =

(
ΦΦT +

1

c
I

)−1

ΦTT , (8)

where I ∈ RL×L is the identity matrix.
The RELM algorithm described above has also been extended in order to ex-

ploit statistical properties of the training data in the ELM space, which are de-
scribed through appropriate regularization terms [26, 27, 28, 29]. These methods
optimize the following optimization problem for the calculation of the network
output weights:

Minimize: JDELM =
1

2
tr
(
WT

outSWout

)
+

c

2

N∑
i=1

∥ξi∥22 (9)

Subject to: WT
outϕi = ti − ξi, i = 1, ..., N, (10)

where tr(·) denotes the trace operator and S ∈ RL×L is a matrix describing re-
lationships of the training data that are subject to minimization1. Specifically, in
[26] the matrix S describes the within-class scatter of the training data represen-
tations in the ELM space, while in [27, 28], S describes the local within-class
scatter of the training data, by exploiting intrinsic graph structures. In [29] both
intrinsic and penalty graphs are exploited. The network output weights are finally
obtained by:

Wout =

(
ΦΦT +

1

c
S

)−1

ΦTT . (11)

1It should be noted here that a regularized version, i.e. S̃ = r1S+ r2I, is usually used in these
methods in order to avoid singularity issues.

6

Clearly, these methods are extensions of the ELM and RELM algorithms, since
(4) and (8) is a special cases of (11) for S = 0 and S = I, respectively.

Similar to the ELM case, after the calculation of the network output weights
Wout, the network response for a given vector xl ∈ RD is given by:

ol = WT
outϕl. (12)

2.3. Iterative ELM network training based on Dropout
Dropout has been proposed in [24] as a form of regularization for fully con-

nected neural network layers. Let us consider the case of a SLFN network where
Dropout is applied to the network hidden layer outputs in an iterative process that
is used in order to learn the network output weights. The main idea of Dropout is
the generation of synthetic hidden layer outputs ϕi,t:

ϕi,t = mi,t ◦ ϕi, (13)

where ◦ denotes the Hadamard (element-wise) product of two vectors [30, 31]
and mi,t ∈ RL is a binary mask vector with each element being equal to 1 with
probability p and equal to 0 with probability (1 − p). The elements of mi,t are
drawn independently from a Bernoulli distribution using a probability value p. In
the above, we have introduced another index denoting the epoch of the iterative
learning process, i.e., t = 1, . . . , NT , where NT is the maximal number of training
epoches. After calculating the network output oi,t corresponding to ϕi,t, the net-
work output weights Wout corresponding to the elements of ϕi that have survived
are updated in order to follow the network error gradient. It should be noted here
that a different mask vector mi,t is independently selected for each iteration of the
iterative optimization process.

2.4. Iterative ELM network training based on DropConnect
DropConnect has been proposed in [25] as a generalization of Dropout, in

which each connection, rather than each output unit, can be dropped with proba-
bility 1 − p. Let us consider the case of a SLFN network where DropConnect is
applied in order to learn the network output weights Wout. DropConnect is sim-
ilar to Dropout as it introduces dynamic sparsity in the network training process,
but differs in that the sparsity is on the weights Wout, rather than the hidden layer
output vectors ϕi. The main idea of DropConnect is the generation of synthetic
network weights Wi,t

out given by:

Wi,t
out = Mi,t ◦Wout, i = 1, . . . , N, t = 1, . . . , NT . (14)

7

In the above, Mi,t ∈ RL×C is a binary mask matrix with each element being equal
to [Mi,t]j,k = 1 with probability p and [Mi,t]j,k = 0 with probability (1− p). The
elements of Mi,t are drawn independently from a Bernoulli distribution, using a
probability value p. After calculating the network output oi,t by using ϕi and
Wi,t

out, the elements of the network output weights Wout that have survived are
updated, in order to follow the network error gradient. Similar to the Dropout
case, the binary mask matrix is selected independently for each iteration of the
iterative optimization process.

3. The proposed DropELM algorithm

As has been previously mentioned, both Dropout and DropConnect-based
learning schemes are able to increase the network generalization ability. However,
both of them are time consuming and require high human supervision, as they are
based on the Backpropagation algorithm. In the following, we propose an opti-
mization process that is able to overcome these issues. We start by formulating an
ELM optimization problem that is able to exploit Dropout regularization.

3.1. Exploiting Dropout in ELM
In order to exploit Dropout on the ELM optimization process, we propose to

solve the following optimization problem for the calculation of the network output
weights Wout:

Minimize: J1 =
1

2
tr
(
WT

outSWout

)
+

c

2

N∑
i=1

∥ξi∥22 (15)

Subject to: WT
outϕi = ti − ξi, i = 1, ..., N, (16)

WT
outϕi = WT

outϕi,t, i = 1, ..., N, t = 1, . . . , NT , (17)

where ϕi,t expresses the hidden layer output for the training vector xi, after ap-
plying the Dropout for the training epoch t:

ϕi,t = mi,t ◦ ϕi. (18)

That is, we introduce an additional constraint (17) requiring the network outputs
for ϕi,t to be equal to the ones obtained by employing the original hidden layer
outputs ϕi. The importance of the constraint (17) in ELM optimization process
is discussed in the Appendix. By setting ϕ̃i,t = ϕi − ϕi,t, this constraint can be
expressed by:

WT
out

(
ϕi − ϕi,t

)
= WT

outϕ̃i,t = 0. (19)

8

We can directly calculate ϕ̃i,t by:

ϕ̃i,t = m̃i,t ◦ ϕi, (20)

where m̃i,t ∈ RL is a binary mask vector with each element being equal to 1 with
probability (1− p) and equal to 0 with probability p.

By substituting (16) in J1 and taking the equivalent dual problem with respect
to (19), we obtain:

J1,D =
1

2
tr
(
WT

outSWout

)
+

c

2
∥WT

outΦ−T∥2F +
λ

2NT

NT∑
t=1

∥WT
outΦ̃t∥2F , (21)

where Φ̃t = [ϕ̃1,t, . . . , ϕ̃N,t] and λ is a parameter denoting the importance of the
Dropout regularizer in the optimization problem, satisfying λ > 0. By determin-
ing the min point of J1,D with respect to Wout, the network output weights are
given by:

Wout =

(
ΦΦT +

1

c
S+

λ

c
R1

)−1

ΦTT , (22)

where:

R1 =
1

NT

NT∑
t=1

Φ̃tΦ̃
T
t . (23)

By comparing (22) and (8), it can be seen that the contribution of Dropout
on the ELM optimization process can be expressed by the regularization term R1.
Clearly, the RELM algorithm is a special case of the proposed approach for p = 1.

We can define the following two cases for the matrix R1:

1. NT is finite. R1 can be calculated by generating synthetic hidden layer out-
put vectors ϕ̃i,t, i = 1, . . . , N, t = 1, . . . , NT through (20) and by using
(23). While this choice can be used in order to incorporate Dropout on the
ELM optimization process, it requires the calculation of Φ̃t and R1, which
will increase the computational cost of the network training process. In ad-
dition, we have experimentally observed that, for values of NT greater than
100 (which can be considered as a small value for neural network training
epoches), it degenerates to the following case.

2. NT → ∞: Based on the weak law of large numbers [32], R1 converges to
its expected value, as NT becomes very large:

R1 = E

[
1

NT

NT∑
t=1

Φ̃tΦ̃
T
t

]
. (24)

9

Let us denote by p = [(1−p), . . . , (1−p)]T ∈ RL a vector having elements
expressing the probability that the j-th element of ϕi will not survive. Then,
R1 can be obtained by:

R1 =
(
ΦΦT

)
◦P, (25)

where P =
[
(ppT) ◦ (11T − I)

]
+

[
(p1T) ◦ I

]
and 1 ∈ RL is a vector of

ones. It is worth noting here that, since R1 ∈ RL×L, the overall computa-
tional complexity for Wout calculation is equal to that of RELM (8), i.e.,
O(L3), which is the computational cost of the matrix inversion operation2.
By combining (25) and (22), the network output weights are given by:

Wout =

([
ΦΦT

]
◦
[
11T +

λ

c
P

]
+

1

c
S

)−1

ΦTT . (26)

3.2. Exploiting DropConnect in ELM
In order to exploit DropConnect on the ELM optimization process, we propose

to solve the following optimization problem for the calculation of the network
output weights Wout:

Minimize: J2 =
1

2
tr
(
WT

outSWout

)
+

c

2

N∑
i=1

∥ξi∥22 (27)

Subject to: WT
outϕi = ti − ξi, i = 1, ..., N, (28)

WT
outϕi = (Mi,t ◦Wout)

T ϕi, i = 1, ..., N, t = 1, . . . , NT ,(29)

where Mi,t ∈ RL×C is a binary mask matrix with each element being equal to
[Mi,t]j,k = 1 with probability p and [Mi,t]j,k = 0 with probability (1−p). That is,
we introduce an additional constraint (29) requiring the network outputs obtained
by using the weights Wi,t

out = Mi,t ◦ Wout to be equal to the ones obtained by
employing the original network output weights Wout.

By substituting (28) in J2 and taking the equivalent dual problem with respect
to (29), we obtain:

J2,D =
1

2
tr
(
WT

outSWout

)
+
c

2
∥WT

outΦ−T∥2F+
λ

2NT

NT∑
t=1

N∑
i=1

∥ (Mi,t ◦Wout)
T ϕi∥22.

(30)

2This is the computational complexity of both RELM and DropELM when employing the
Gauss-Jordan elimination algorithm. Faster matrix inversion algorithms have also been proposed
having computational complexity equal to O(L2.37), i.e., the Coppersmith-Winograd and Williams
algorithms.

10

By exploiting that, when NT → ∞3:

1

NT

NT∑
t=1

(Mi,t ◦Wout) (Mi,t ◦Wout)
T =

(
WoutW

T
out

)
◦P, (31)

we obtain:

J2,D =
1

2
tr
(
WT

outSWout

)
+

c

2
∥WT

outΦ−T∥2F +
λ

2NT

NT∑
t=1

N∑
i=1

ϕT
i

[(
WoutW

T
out

)
◦P

]
ϕi

=
1

2
tr
(
WT

outSWout

)
+

c

2
∥WT

outΦ−T∥2F +
λ

2

N∑
i=1

tr
(
Dϕi

PDϕi
WoutW

T
out

)
, (32)

where Dϕi
= diag(ϕi).

By determining the saddle point of J2,D with respect to Wout, the network
output weights are given by:

Wout =

(
ΦΦT +

1

c
S+

λ

c
R2

)−1

ΦTT , (33)

where:

R2 =
N∑
i=1

tr
(
Dϕi

PDϕi
Wout

)
=

(
ΦΦT

)
◦P. (34)

By combining (34) and (33), the network output weights are given by:

Wout =

([
ΦΦT

]
◦
[
11T +

λ

c
P

]
+

1

c
S

)−1

ΦTT . (35)

By comparing (35) and (8), it can be seen that the contribution of DropConnect
on the ELM optimization process can be expressed by the regularization term R2.
Clearly, RELM can be considered as a special case of (33), in the case where
λ = 0. In addition, by comparing (35) and (26), it can be seen that, in the limit
case NT → ∞, the two proposed ELM networks are equivalent. In the following
subsection, we summarize the proposed DropELM algorithm for SLFN network
training.

3We have experimentally observed that this is satisfied for NT greater than 100.

11

3.3. Drop-Extreme Learning Machine
The proposed DropELM algorithm assigns random network input weights

Win ∈ RD×L and the hidden layer bias values b ∈ RL, similar to the ELM and
RELM algorithms described in Section 2. The network output weights Wout ∈
RL×C are subsequently analytically calculated by:

Wout =

([
ΦΦT

]
◦
[
11T +

λ

c
P

]
+

1

c
S

)−1

ΦTT . (36)

After the calculation of the network output weights Wout, the network re-
sponse for a given vector xl ∈ RD is given by:

ol = WT
outϕl, (37)

where ϕl is the network hidden layer output for xl.

4. Experiments

In this section, we present experiments conducted in order to illustrate the ef-
fect of exploiting the proposed regularization term in ELM-based algorithms. We
have employed sixteen publicly available datasets to this end: ten datasets cor-
responding to standard classification problems coming from the machine learn-
ing repository of University of California Irvine (UCI) [33] and six facial image
datasets, namely the ORL, AR and Extended YALE-B (face recognition) and the
COHN-KANADE, BU and JAFFE (facial expression recognition) datasets. Table
1 provides information concerning the UCI data sets used. A brief description of
the facial image datasets is provided in the following subsections. Experimental
results are provided in subsection 4.3. In all our experiments, we compare the
performance of the ELM variants proposed in [1, 21, 26, 27, 28, 29] with that of
their DropELM counterparts. In facial image classification, we have downsized
the facial images provided by the database to 40 × 30 pixels by subsampling to
increase computation speed and vectorized the resulting images to produce 1200-
dimensional facial vectors xi.

We follow the works in [34, 35] and select the hidden layer weights to be
formed by the training data in order to enhance the performance of all the ELM
variants. In the case where the cardinality of the training data is larger than N >
1000, we randomly select L = 1000 training samples to form the network hidden

12

Table 1: UCI data sets.
Data set Samples Dimensions Classes
Abalone 4177 8 3
Australian 690 14 2
German 1000 24 2
Heart 270 13 2
Ionosphere 351 34 2
Iris 150 4 3
Madelon 2600 50 2
Optdigits 5620 64 10
Segmentation 2310 19 7
TAE 151 5 3

layer weights [34]. For the activation of the hidden layer neurons, we used the
Radial Basis Function (RBF):

ΦRBF (xi,vj, b) = exp
(
− ∥xi − vj∥22

2b2

)
, (38)

where the value b is set equal to the mean Euclidean distance between the training
data xi and the network input weights vj , which is the natural scaling factor for
the Euclidean distances between xi and vj for each dataset. For fair comparison,
in all experiments, we made sure that the the same ELM space was used by all
the competing algorithms. That is, we first map the training data to the feature
space determined by the network hidden layer outputs, by using (38) and, subse-
quently, calculate the network output weights according to each optimization pro-
cess. Regarding the optimal values of the regularization parameters c and λ used
in different ELM-based classification schemes, they have been determined by fol-
lowing a grid search strategy. That is, for each classifier, multiple experiments
have been performed by employing parameter values c = 10r, r = −3, . . . , 3 and
λ = 10q, q = −3, . . . , 3 and the best performance is reported.

4.1. Face recognition datasets
The AR dataset [36] consists of over 4000 facial images depicting 70 male and

56 female faces. In our experiments, we have used the preprocessed (cropped)
facial images provided by the database, depicting 100 persons (50 males and 50

13

females) having a frontal facial pose, performing several expressions (anger, smil-
ing and screaming), in different illumination conditions (left and/or right light) and
with some occlusions (sun glasses and scarf). Each person was recorded in two
sessions, separated by an interval of two weeks. Example images of the dataset
are illustrated in Figure 2.

Figure 2: Facial images depicting a person of the AR dataset.

The ORL dataset [37] consists of 400 facial images depicting 40 persons (10
images each). The images were captured at different times and with different
conditions, in terms of lighting, facial expressions (smiling/not smiling) and fa-
cial details (open/closed eyes, with/without glasses). Facial images were taken in
frontal position with a tolerance for face rotation and tilting of up to 20 degrees.
Example images of the dataset are illustrated in Figure 3.

Figure 3: Facial images depicting a person of the ORL dataset.

The Extended YALE-B dataset [38] consists of facial images depicting 38
persons in 9 poses, under 64 illumination conditions. In our experiments, we have
used the frontal cropped images provided by the database. Example images of the
dataset are illustrated in Figure 4.

Figure 4: Facial images depicting a person of the Extended YALE-B dataset.

14

4.2. Facial expression recognition datasets
The BU dataset [39] consists of facial images depicting over 100 persons (60%

feamale and 40% male) with a variety of ethnic/racial background, including
White, Black, East-Asian, Middle-east Asian, Hispanic Latino and other types
of persons. All expressions, except the neutral one, are expressed at four inten-
sity levels. In our experiments, we have employed the images depicting the most
expressive intensity of each facial expression. Example images of the dataset are
illustrated in Figure 5.

Figure 5: Facial images depicting a person of the BU dataset. From left to right: neutral, anger,
disgust, fear, happy, sad and surprise.

The COHN-KANADE dataset [40] consists of facial images depicting 210
persons of age between 18 and 50 (69% female, 31% male, 81% Euro-American,
13% Afro-American and 6% other groups). We have randomly selected 35 images
for each facial expression, i.e., anger, disgust, fear, happyness, sadness, surprise
and neutral ones. Example images of the dataset are illustrated in Figure 6.

Figure 6: Facial images from the COHN-KANADE dataset. From left to right: neutral, anger,
disgust, fear, happy, sad and surprise.

The JAFFE dataset [41] consists of 210 facial images depicting 10 Japanese
female persons. Each expression is depicted in 3 images for each person. Example
images of the dataset are illustrated in Figure 7.

4.3. Experimental Results
In our first set of experiments, we have applied the algorithms on the UCI

datasets. Since there is not a widely adopted experimental protocol for these
datasets, we perform the five-fold cross-validation procedure [42], by taking into

15

Figure 7: Facial images depicting a person of the JAFFE dataset. From left to right: neutral,
anger, disgust, fear, happy, sad and surprise.

Table 2: Performance on UCI datasets for ELM and RELM algorithms.

Dataset ELM DropELM RELM DropRELM
Abalone 54.66± 0.27% 55.38± 0.22% (0.2) 54.27± 0.23% 55.04± 0.2% (0.1)
Australian 72.51± 5.47% 74.11± 4.04% (0.1) 67.73± 0.22% 67.97± 0.43% (0.5)
German 53.2± 2.91% 78.07± 0.95% (0.2) 77.07± 0.35% 77.77± 1.02% (0.1)
Heart 57.41± 6.1% 80± 1.96% (0.3) 78.02± 0.86% 78.4± 0.93% (0.1)
Ionosphere 72.22± 0.97% 91.55± 0.44% (0.4) 90.79± 0.29% 91.27± 0.44% (0.1)
Iris 79.33± 4.62% 98.44± 0.38% (0.4) 98.22± 0.77% 98.22± 0.77% (0.4)
Madelon 63.08± 1.14% 63.29± 0.75% (0.5) 63.01± 0.43% 63.32± 0.49% (0.5)
Optdigits 99.04± 0.01% 99.24± 0.01% (0.1) 99± 0.01% 99.24± 0.01% (0.1)
Segmentation 47.6± 8.94% 90.97± 0.15% (0.2) 88.95± 0.24% 90.59± 0.15% (0.1)
TAE 49.37± 3.71% 53.46± 2.18% (0.6) 46.74± 4.11% 47.4± 3.23% (0.6)

account the class labels of the samples on each database. That is, we randomly
split the samples belonging to each class in five sets and we use four sets of all
classes for training and the remaining ones for testing. This process is performed
five times, one for each evaluation set. The performance of each algorithm is
measured by calculating the mean classification rate over all folds. We perform
five experiments on each dataset and report the mean classification rate and the
observed standard deviation value for each algorithm. The results are shown in
Tables 2-4. In these Tables we also report the probability value p by the ELM
variants exploiting the proposed Dropout/Dropconnect regularization term. As
can be seen, the incorporation of the proposed regularization term in each ELM
variant enhances its performance. It is interesting to see that this improvement
is very high for the standard ELM algorithm in most datasets. For the remaining
ELM variants, already exploiting a regularization term, the improvement observed
is not so impressive. However, it can be seen that in most of the cases, the incor-
poration of the proposed regularizer improves performance.

16

Table 3: Performance on UCI datasets for MVELM and MCVELM algorithms.

Dataset MVELM DropMVELM MCVELM DropMCVELM
Abalone 55.94± 0.32% 56± 0.38% (0.1) 55.94± 0.34% 56± 0.38% (0.1)
Australian 73.04± 0.38% 74.54± 0.44% (0.1) 73.04± 0.38% 74.54± 0.44% (0.1)
German 78.2± 1.11% 78.77± 1.07% (0.1) 78.27± 0.65% 78.63± 0.98% (0.1)
Heart 78.89± 1.9% 80± 1.96% (0.3) 78.64± 1.54% 80± 1.96% (0.3)
Ionosphere 91.08± 0.6% 91.55± 0.44% (0.4) 90.32± 0.29% 91.55± 0.44% (0.4)
Iris 98.22± 0.77% 98.44± 0.38% (0.4) 98.22± 0.38% 98.44± 0.38% (0.2)
Madelon 63.08± 1.14% 63.29± 0.75% (0.5) 63.09± 1.12% 63.29± 0.75% (0.5)
Optdigits 99.09± 0.01% 99.24± 0.01% (0.2) 99.09± 0.01% 99.24± 0.01% (0.2)
Segmentation 92.84± 0.2% 93.74± 0.2% (0.1) 92.86± 0.17% 93.74± 0.2% (0.1)
TAE 51.41± 2.2% 53.24± 2.55% (0.3) 52.53± 3.84% 53.46± 2.18% (0.6)

Table 4: Performance on UCI datasets for DRELM and GEELM algorithms.

Dataset DRELM DropDRELM GEELM DropGEELM
Abalone 51.38± 0.26% 55.99± 0.39% (0.1) 55.63± 0.2% 56.04± 0.38% (0.1)
Australian 67.97± 0.38% 74.54± 0.44% (0.1) 73.09± 0.44% 74.54± 0.36% (0.1)
German 77.7± 1.04% 78.67± 1.01% (0.1) 77.77± 0.47% 78.5± 0.69% (0.1)
Heart 78.64± 0.74% 80± 1.96% (0.3) 78.77± 1.54% 79.75± 1.83% (0.3)
Ionosphere 91.17± 0.29% 91.55± 0.44% (0.4) 88.89± 0.76% 91.65± 0.33% (0.5)
Iris 98.22± 0.77% 98.67± 0.01% (0.3) 97.56± 0.38% 98.44± 0.38% (0.2)
Madelon 63.08± 0.52% 63.53± 0.93% (0.1) 63.86± 0.8% 64.04± 0.84% (0.2)
Optdigits 99.09± 0.01% 99.24± 0.01% (0.2) 99.24± 0.01% 99.24± 0.01% (0.1)
Segmentation 90.39± 0.17% 93.74± 0.2% (0.1) 92.68± 0.13% 93.74± 0.16% (0.1)
TAE 49.86± 3.11% 53.46± 2.18% (0.6) 50.8± 0.99% 53.24± 2.55% (0.3)

17

Table 5: Training times (in seconds) in Abalone and OptDigits datasets.
Dataset Abalone OptDigits
ELM 0.5011 0.3937

DropELM 0.507 0.4055

RELM 0.5 0.4017

DropRELM 0.5003 0.4097

MVELM 1.1779 1.0544

DropMVELM 1.1897 1.0688

MCVELM 2.1003 2.674

DropMCVELM 2.1197 2.6917

DRELM 3.5806 3.5257

DropDRELM 3.5989 3.5464

GEELM 3.6832 3.5808

DropGEELM 3.7085 3.5993

In Table 5, we also report the time required for training each algorithm on
the two largest UCI datasets used in our experiments. All the experiments were
conducted on a 4-core, i7 4790, 3.6GHz PC with 32GB RAM using a MATLAB
implementation. As can be seen in this Table, the exploitation of the proposed
regularization term inserts a computational overhead, but the differences in train-
ing time are very low. This was expected, since the proposed regularization term
exploits the already computed hidden layer outputs used in ELM-based neural
network training.

In our second set of experiments, we have applied the ELM algorithms on the
facial image datasets. Since there is no widely adopted experimental protocol for
these datasets, we also perform the five-fold cross-validation procedure [42], by
taking into account the class labels of the samples on each database, as in the UCI
datasets. The observed performance is shown in Tables 6-8. Similar to the results
obtained for the UCI datasets, the incorporation of the proposed regularization
term enhances the performance of all the ELM variants in most datasets.

In addition, we compare the performance obtained by applying the proposed
approach on the facial image datasets with some recently published state-of-the-
art methods in Tables 9 and 10. As can be seen in these Tables, the proposed
approach provides satisfactory performance in all cases.

18

Table 6: Performance on facial image datasets for ELM and RELM algorithms.

Dataset ELM DropELM RELM DropRELM
BU 57.57± 1.08% 62.38± 1.43% (0.3) 61.43± 1.38% 62.48± 1.44% (0.2)
Jaffe 55.24± 0.82% 56.03± 1.2% (0.2) 55.71± 0.95% 56.19± 0.95% (0.1)
Kanade 65.31± 2.04% 66.67± 0.62% (0.6) 65.71± 1.08% 65.99± 0.62% (0.1)
AR 97.65± 0.23% 99.19± 0.17% (0.1) 97.65± 0.17% 98.91± 0.23% (0.1)
ORL 98.33± 0.14% 98.42± 0.14% (0.2) 98.33± 0.14% 98.42± 0.14% (0.1)
Yale 98.14± 0.34% 98.15± 0.33% (0.1) 96.82± 0.17% 97.31± 0.01% (0.1)

Table 7: Performance on facial image datasets for MVELM and MCVELM algorithms.

Dataset MVELM DropMVELM MCVELM DropMCVELM
BU 61.62± 1.62% 62.38± 1.43% (0.3) 61± 0.57% 62.48± 1.44% (0.3)
Jaffe 55.71± 0.95% 56.19± 0.95% (0.1) 56.83± 0.55% 58.89± 0.73% (0.1)
Kanade 65.71± 1.08% 66.67± 0.62% (0.6) 66.39± 1.31% 68.03± 2.01% (0.1)
AR 99.21± 0.27% 99.21± 0.27% (0.1) 99.24± 0.29% 99.33± 0.16% (0.1)
ORL 98.42± 0.14% 98.42± 0.14% (0.1) 98.75± 0.14% 98.83± 0.14% (0.1)
Yale 98.03± 0.01% 98.07± 0.01% (0.1) 98.03± 0.01% 98.08± 0.01% (0.1)

Table 8: Performance on facial image datasets for DRELM and GEELM algorithms.

Dataset DRELM DropDRELM GEELM DropGEELM
BU 61.81± 1.84% 62.48± 1.44% (0.3) 61.81± 0.57% 62.57± 1.11% (0.3)
Jaffe 58.89± 1.1% 59.21± 0.99% (0.4) 58.89± 0.82% 59.21± 0.48% (0.3)
Kanade 66.67± 0.62% 68.44± 1.31% (0.1) 66.67± 0.62% 68.98± 2.04% (0.2)
AR 99.21± 0.2% 99.33± 0.2% (0.2) 99.23± 0.28% 99.3± 0.29% (0.2)
ORL 98.5± 0.14% 98.83± 0.14% (0.1) 98.75± 0.25% 98.83± 0.14% (0.2)
Yale 97.74± 0.18% 98.07± 0.12% (0.1) 98.16± 0.17% 98.23± 0.15% (0.1)

19

Table 9: Comparison of our results with some state-of-the-art methods on the BU, Jaffe and
Kanade datasets.

BU Jaffe Kanade
Method [43] - 56.72% 69.05%
Method [44] 66.4% - 72.9%
Method [45] - MMP - - 70.3%
Method [45] - RP - - 75.2%
Method [45] - SVM - - 73.4%
Method [45] - MMRP - - 80.1%
Proposed method 62.57% 59.21% 68.98%

5. Conclusions

In this paper, we proposed an extension of the Extreme Learning Machine
algorithm for Single-hidden Layer Feedforward Neural network training that in-
corporates Dropout and DropConnect regularization in its optimization process.
We have shown that Dropout and DropConnect applied to the network hidden
layer outputs and the network output weights, respectively, lead to the same type
of regularization, which is incorporated in the proposed DropELM algorithm. Ex-
perimental results showed that the incorporation of the proposed regularization
term in several recently proposed ELM variants leads to enhanced classification
performance, without requiring iterative network weights tuning.

Acknowledgment

The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 316564 (IMPART).

Appendix A.

Here we discuss the importance of the constraint (17) in ELM optimization
process. In the proposed method the network output weights Wout are calculated
by:

Wout =

(
ΦΦT +

1

c
S+

λ

c
R1

)−1

ΦTT . (A.1)

20

Table 10: Comparison of our results with some state-of-the-art methods on the AR, ORL and Yale
datasets.

AR ORL Yale
Method [46] 95.7% - 98.1%
Method [47] - 94.35% 94.76%
Method [48] 97% - -
Method [49] 74.67% 83.89% -
Method [50] - LRC - 98.25% -
Method [50] - SRC - 98.37% -
Method [50] - WGSRC - 98.93% -
Method [45] - MMP - - 91%
Method [45] - RP - - 89.4%
Method [45] - SVM - - 85.6%
Method [45] - MMRP - - 97.2%
Method [51] 99.5% - -
Proposed method 99.33% 98.83% 98.23%

Following an approach similar to that of [27, 28], we have:

S = r1ΦLΦT + r2I, (A.2)

where it is assumed that the data representations in the ELM space are employed
in order to form the vertices of a graph and L is the corresponding graph Laplacian
matrix. In addition, the regularization term R1 can be expressed as follows:

R1 = (1− p)2ΦΦT + (1− p)2D, (A.3)

where D = (ΦΦT) ◦ I. By substituting (A.2) and (A.3) in (A.1), we have:

Wout =

(
ΦΦT +

r1
c
ΦLΦT +

r2
c
I+

λ(1− p)2

c
ΦΦT +

λ(1− p)2

c
D

)−1

ΦTT

=

[
Φ

(
c+ λ(1− p)2

c
I+

r1
c
L

)
ΦT +

1

c

(
r2I+ λ(1− p)2D

)]−1

ΦTT

= A−1ΦTT . (A.4)

By observing the first term of A = Q + 1
c
E, we can see that the incorporation

of the constraint (17) in the ELM optimization process equally contributes to the

21

diagonal of the matrix Q =
(

c+λ(1−p)2

c
I+ r1

c
L
)

. Thus, we would expect it to
have minimal importance in the optimization process (since it is just a constant
multiplication factor). On the other hand, the elements of diagonal matrix E have
values equal to:

[E]ii = r2 + λ(1− p)2
N∑
j=1

ϕ2
j,i, i = 1, . . . , L. (A.5)

That is, the incorporation of the constraint (17) in the ELM optimization process
has the effect of changing the regularization term of (A.4), according to the im-
portance of each ELM space dimension. This fact leads to better regularization of
the matrix A and is expected to lead to better solutions.

As an example, let us consider the case where some (of the randomly cho-
sen) network hidden layer weights are not appropriately chosen. For instance,
in the case where the RBF activation function is used this situation may occur
when some of the weights are far from all the training samples, leading to similar
hidden layer neuron outputs (close to zero) for all the training samples. In the
case where a sigmoid function is used, a similar result may occur for hidden layer
weights close to zero. Clearly, the dimensions of the ELM space corresponding
to such hidden layer weights do not contain much discriminative power, since the
responses for all the training data are very similar. On the other hand, appropri-
ately chosen weights, will lead to all sorts of response values for the training data.
For example, in the case where the RBF activation function is used, the response
values for training data similar to the weights will be large, the response values for
training data at a distance from the weights will be moderate, while the response
values for the remaining data will be close to zero. Thus, the ELM space dimen-
sions corresponding to such weights will contain high discriminative power. The
adoption of the regularization term in (A.5) will result to a lower regularization
factor for the ELM space dimensions of the first category, when compared to ELM
space dimensions corresponding to the latter one.

References

[1] G. Huang, Q. Zhu, C. Siew, Extreme learning machine: a new learning
scheme of feedforward neural networks, IEEE International Joint Confer-
ence on Neural Networks 2 (2004) 985–990.

[2] D. Rumelhart, G. Hinton, R. Williams, Learning representations by back-
propagating errors, Nature 323 (6088) (1986) 533–536.

22

[3] P. Bartlett, The sample complexity of pattern classification with neural net-
works: the size of the weights is more important than the size of the network,
IEEE Transactions on Information Theory 44 (2) (1998) 525–536.

[4] R. Zhang, Y. Lan, G. Huang, Z. Zu, Universal approximation of extreme
learning machine with adaptive growth of hidden nodes, IEEE Transactions
on Neural Networks and Learning Systems 23 (2) (2012) 365–371.

[5] G. Huang, L. Chen, C. Siew, Universal Approximation Using Incremen-
tal Constructive Feedforward Networks with Random Hidden Nodes, IEEE
Transactions on Neural Networks 17 (4) (2006) 879–892.

[6] G. Huang, Y. Chen, H. Babri, Classification ability of single hidden layer
feedforward neural networks, IEEE Transactions on Neural Networks 11 (3)
(2000) 799–801.

[7] K. Hornik, Some new results on neural network approximation, Neural Net-
works 6 (8) (1993) 1069–1072.

[8] H. Rong, G. Huang, Y. Ong, Extreme learning machine for multi-categories
classification applications, IEEE International Joint Conference on Neural
Networks (2008) 1709–1713.

[9] B. Chacko, V. Krishnan, G. Raju, B. Anto, Handwritten character recogni-
tion using wavelet energy and extreme learning machine, International Jour-
nal of Machine Learning and Cybernetics 3 (2) (2012) 149–161.

[10] R. Minhas, A. Baradarani, S. Seifzadeh, Q. Jonathan Wu, Human action
recognition using extreme learning machine based on visual vocabularies,
Neurocomputing 73 (10-12) (2010) 1906–1917.

[11] Y. Lan, Y. Soh, G. Huang, Extreme Learning Machine based bacterial pro-
tein subcellular localization prediction, IEEE International Joint Conference
on Neural Networks (2008) 1859–1863.

[12] T. Helmy, Z. Rasheed, Multi-category bioinformatics dataset classification
using extreme learning machine, IEEE Evolutionary Computation (2009)
3234–3240.

[13] A. Iosifidis, A. Tefas, I. Pitas, Multi-view Human Action Recognition under
Occlusion based on Fuzzy Distances and Neural Networks, European Signal
Processing Conference (2012) 1129–1133.

23

[14] A. Iosifidis, A. Tefas, I. Pitas, Dynamic action recognition based on
Dynemes and Extreme Learning Machine, Pattern Recognition Letters 34
(2013) 1890–1898.

[15] W. Zong, G. Huang, Face recognition based on Extreme Learning Machine,
Neurocomputing 74 (16) (2011) 2541–2551.

[16] M. Li, G. Huang, P. Saratchandran, N. Sundararajan, Fully complex extreme
learning machine, Neurocomputing 68 (13) (2005) 306–314.

[17] N. Liang, G. Huang, P. Saratchandran, N. Sundararajan, A fast and accu-
rate on-line sequantial learning algorithm for feedforward networks, IEEE
Transactions on Neural Networks 17 (6) (2006) 1411–1423.

[18] G. Huang, L. Chen, Convex incremental extreme learning machine, Neuro-
computing 70 (16) (2008) 3056–3062.

[19] G. Feng, G. Huang, Q. Lin, R. Gay, Error minimized extreme learning ma-
chine with growth of hidden nodes and incremental learning, IEEE Transac-
tions on Neural Networks 20 (8) (2009) 1352–1357.

[20] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, A. Lendasse, OP-ELM:
Optimally pruned extreme learning machine, IEEE Transactions on Neural
Networks 21 (1) (2010) 158–162.

[21] G. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for re-
gression and multiclass classification, IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics 42 (2) (2012) 513–529.

[22] A. Iosifidis, A. Tefas, I. Pitas, Minimum Class Variance Extreme Learning
Machine for Human Action Recognition, IEEE Transactions on Circuits and
Systems for Video Technology 23 (11) (2013) 1968–1979.

[23] G. Huang, S. Song, J. Gupta, C. Wu, Semi-supervised and Unsupervised Ex-
treme Learning Machine, IEEE Transactions on Cybernetics 44 (12) (2014)
2405–2417.

[24] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutsekever, R. Salakhutdinov,
Improving neural networks by preventing co-adaptation of feature detectors,
arXiv:1207.0580 [cs.NE] .

24

[25] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, R. Fergus, Regularization of Neural
Network using DropConnect, International Conference on Machine Learn-
ing (2013) 1–9.

[26] A. Iosifidis, A. Tefas, I. Pitas, Minimum Class Variance Extreme Learning
Machine for human action recognition, IEEE Transactions on Circuits and
Systems for Video Technology 23 (11) (2013) 1968–1979.

[27] A. Iosifidis, A. Tefas, I. Pitas, Regularized extreme learning machine for
multi-view semisupervised action recognition, Neurocomputing 145 (2014)
250–262.

[28] Y. Peng, S. Wang, B. Long, X.and Lu, Discriminative graph regularized Ex-
treme Learning Machine for face recognition, Neurocomputing 149 (2015)
340–353.

[29] A. Iosifidis, A. Tefas, I. Pitas, Graph Embedded Extreme Learning Machine,
IEEE Transactions on Cybernetics, accepted January 2015 .

[30] E. Million, The Hadamard Product, Technical Report (2007) 1–7.

[31] R. Horn, Topics in Matrix Analysis, Cambridge University Press, 1994 .

[32] P. Sen, J. Singer, Large sample methods in statistics, Chapman & Hall, 1993
.

[33] A. Frank, A. Asuncion, UCI Machine Learning Repository, 2010.

[34] W. Deng, Q. Zheng, K. Zhang, Reduced Extreme Learning Machine, Inter-
national Conference on Computer Recognition Systems (2013) 63–69.

[35] A. Iosifidis, A. Tefas, I. Pitas, On the Kernel Extreme Learning Machine
Classifier, Pattern Recognition Letters 54 (2015) 11–17.

[36] A. Martinez, A. Kak, Pca versus lda, IEEE Transactions on Pattern Analysis
and Machine Intelligence 23 (2) (2001) 228–233.

[37] F. Samaria, A. Harter, Parameterisation of a stochastic model for human face
identification, IEEE Workshop on Applications of Computer Vision (1994)
138–142.

25

[38] K. Lee, J. Ho, D. Kriegman, Acquiriing linear subspaces for face recognition
under variable lighting, IEEE Transactions on Pattern Analysis and Machine
Intelligence 27 (5) (2005) 684–698.

[39] L. Yin, X. Wei, Y. Sun, J. Wang, M. Rosato, A 3D facial expression database
for facial behavior research, IEEE International Conference on Automatic
Face and Gesture Recognition (2006) 211–216.

[40] T. Kanade, Y. Tian, J. Cohn, Comprehensive database for facial expression
analysis, IEEE International Conference on Automatic Face and Gesture
Recognition (2000) 46–53.

[41] M. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, Coding facial expressions
with Gabor wavelets, IEEE International Conference on Automatic Face and
Gesture Recognition (1998) 200–205.

[42] P. Devijver, J. Kittler, Pattern Recognition: A Statistical Approach, Prentice-
Hall, 1982.

[43] S. Nikitidis, A. Tefas, I. Pitas, Subclass Discriminant Nonnegative Matrix
Factorization for facial image analysis, Pattern Recognition 45 (2012) 4080–
4091.

[44] S. Nikitidis, A. Tefas, I. Pitas, Projected Gradients for Subclass Discriminant
Nonnegative Subspace Learning, IEEE Transactions on Cybernetics, in press
.

[45] S. Nikitidis, A. Tefas, I. Pitas, Maximum Margin Projection Subspace
Learning for Visual Data Analysis, IEEE Transactions on Image Process-
ing 23 (10) (2014) 4413–4425.

[46] J. Wright, A. Yang, A. Ganesh, S. S.S., Y. Ma, Robust Face Recognition via
Sparse Representation, IEEE Transactions on Pattern Analysis and Machine
Intelligence 31 (2) (2009) 1–18.

[47] X. Liu, S. Yan, J. H., Projective Nonnegative Graph Embedding, IEEE
Transactions on Image Processing 19 (5) (2010) 1126–1137.

[48] A. James, One-sample face recognition with local similarity decisions, In-
ternational Journal of Applied Pattern Recognition 1 (1) (2013) 61–80.

26

[49] Z. Sun, K. Lam, Z. Dong, H. Wang, Q. Gao, C. Zheng, Face Recog-
nition with Multi-Resolution Spectral Feature Images, PLOS ONE, DOI:
10.1371/journal.pone.0055700 .

[50] X. Tang, G. Feng, J. Cai, Weighted group sparse representation for under-
sampled face recognition, Neurocomputing 145 (2014) 402–415.

[51] T. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, Y. Ma, PCANet: A Simple Deep
Learning Baseline for Image Classification?, arXiv:1404.3606v2 .

27

