
                          Pitas, I., Iosifidis, A., & Tefas, A. (2016). Graph Embedded Extreme
Learning Machine. IEEE Transactions on Cybernetics, 46(1), 311-324. DOI:
10.1109/TCYB.2015.2401973

Peer reviewed version

Link to published version (if available):
10.1109/TCYB.2015.2401973

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at 10.1109/TCYB.2015.2401973. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

http://dx.doi.org/10.1109/TCYB.2015.2401973
http://research-information.bristol.ac.uk/en/publications/graph-embedded-extreme-learning-machine(fb9ea67e-1057-4eb3-8d0f-0165023a07c9).html
http://research-information.bristol.ac.uk/en/publications/graph-embedded-extreme-learning-machine(fb9ea67e-1057-4eb3-8d0f-0165023a07c9).html


1

Graph Embedded Extreme Learning Machine
Alexandros Iosifidis, Member, IEEE, Anastasios Tefas, Member, IEEE, and Ioannis Pitas, Fellow, IEEE

Abstract— In this paper, we propose a novel extension of the
Extreme Learning Machine algorithm for Single-hidden Layer
Feedforward Neural network training that is able to incorporate
Subspace Learning (SL) criteria on the optimization process
followed for the calculation of the network’s output weights.
The proposed Graph Embedded Extreme Learning Machine
(GEELM) algorithm is able to naturally exploit both intrinsic
and penalty SL criteria that have been (or will be) designed
under the Graph Embedding framework. In addition, we extend
the proposed GEELM algorithm in order to be able to exploit SL
criteria in arbitrary (even infinite) dimensional ELM spaces. We
evaluate the proposed approach on eight standard classification
problems and nine publicly available datasets designed for three
problems related to human behaviour analysis, i.e., the recogni-
tion of human face, facial expression and activity. Experimental
results denote the effectiveness of the proposed approach, since
it outperforms other ELM-based classification schemes in all the
cases.

Index Terms— Extreme Learning Machine, Graph Embedding,
Human action recognition, Facial Image Classification.

I. INTRODUCTION

Extreme Learning Machine (ELM) is a relatively new al-
gorithm for Single-hidden Layer Feedforward Neural (SLFN)
networks training that leads to fast network training requir-
ing low human supervision [1]. Conventional SLFN network
training approaches, like the Back-propagation [2] and the
Levenberg-Marquardt [3] algorithms, adjust the input weights
and the hidden layer bias values by following an optimization
process, e.g., by applying gradient descend-based optimiza-
tion. However, gradient descend-based learning techniques are
generally slow and may decrease the network’s generalization
ability, since the solution may be trapped in local minima.
In ELM the input weights and the hidden layer bias values
of the SLFN network are randomly assigned. By adopting the
squared loss of the prediction error, the network output weights
are, subsequently, analytically calculated. ELMs not only tend
to reach the smallest training error, but also the smallest
output weight norm. For feedforward networks reaching a
small training error, smaller output weight norm results in
better generalization performance [4]. Despite the fact that
the determination of the network hidden layer outputs is
based on randomly assigned input weights, it has been proven
that SLFN networks trained by using the ELM algorithm
have the properties of global approximators [5], [6]. Due
to its effectiveness and its fast learning process, the ELM
network has been adopted in many classification problems
and many ELM variants have been proposed in the last few
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years, extending the ELM network properties along different
directions [7], [8], [9], [10].

Based on the observation that ELM optimization process
can be seen from a Subspace Learning perspective [11], in
this paper we propose a novel extension of the ELM algorithm
that is able to exploit criteria employed by SL techniques for
linear and nonlinear data projection. We formulate the ELM
optimization problem as the one of learning the network output
weights that provide a compromise between the minimization
of both the network training error and the adopted SL criterion.
This is achieved by incorporating an appropriate regularization
term on the ELM optimization problem. In order to derive a
compact solution that can be exploited for the calculation of
the network output weights under several existing SL criteria
(and in order to be able to design new ones) we design the
proposed regularization term within the Graph Embedding
framework [12], [13]. That is, it is assumed that the training
data form the vertex set of an (intrinsic) graph G whose
corresponding weight matrix expresses the relationships of
the training data that are subject minimization. Furthermore,
a penalty graph Gp can also be defined, whose corresponding
weight matrix penalizes specific characteristics of the relation-
ships between the training data. By using such an approach,
an elegant interpretation of several linear and nonlinear SL
techniques can be obtained. In addition, by exploiting new
graph structures describing desired intrinsic and penalty data
relationships, new SL techniques can be designed. Here it
should be noted that previous work [11], [14], [15], [16]
exploits only SL criteria that are subject to minimization in the
ELM optimization process. In terms of the Graph Embedding
framework, this means that only intrinsic graph structures have
been investigated so far. In this paper we exploit network
output weights solutions that exploit both intrinsic and penalty
graph structures. Such an approach has the potential of a better
generalization performance, when compared to the works in
[11], [14], [15], [16].

We evaluate the proposed approach in three classification
problems relating to human behaviour analysis, namely the
recognition of human face, facial expression and activity.
Experimental results on nine publicly available databases
denote the effectiveness of the proposed algorithms. In these
experiments, we exploit criteria used in two unsupervised and
three supervised SL techinques, namely Laplacian Eigenmaps
(LE) [17], Locally Linear Embedding (LLE) [18], Linear
Discriminant Analysis (LDA) [19], Marginal Fisher Analysis
(MDA) [12] and Local Fisher Discriminant Analysis (LFDA)
[20]. In all the cases, we compare the performance of the
proposed approach with that of the standard ELM [1], the
Regularized ELM (RELM) [21], the Minimum Class Variance
ELM (MCVELM) [11] and the Discriminant Graph Regular-
ized ELM (DGRELM) [15] algorithms.
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The contributions of the paper are:

• A novel extension of the ELM algorithm that is able
to exploit both intrinsic and penalty SL criteria in its
optimization problem is proposed.

• The proposed Graph Embedded Extreme Learning Ma-
chine (GEELM) algorithm is also extended in order to
exploit both intrinsic and penalty SL criteria in arbitrary-
dimensional ELM spaces.

• We evaluate the proposed approach on eight stan-
dard classification problems and nine publicly available
datasets relating to human behavior analysis, where its
effectiveness is proven by comparing its performance
with that of other relating classification methods.

The rest of the paper is organized as follows. We provide
an overview of the related previous work in Section II. The
proposed GEELM algorithm is described in Section III. An
extension of the proposed GEELM algorithm that can be
exploited in order to incorporate SL criteria in arbitrary-
dimensional ELM spaces is described in Subsection III-A
and a discussion on several aspects of the proposed GEELM
algorithm including its time complexity and its connection to
the Spectral Regression framework [22], [23]. Experimental
results evaluating the performance of the proposed approach
in face, facial expression and activity recognition problems
are described in Section IV. Finally, conclusions are drawn in
Section V.

II. PREVIOUS WORK

In this section, we briefly describe the ELM, RELM and
MCVELM algorithms proposed in [1], [21] and [11], respec-
tively. Subsequently, we briefly describe the Graph Embedding
framework [12].

Let us denote by {xi, ci}i=1,...,N a set of N vectors xi ∈

RD and the corresponding class labels ci ∈ {1, . . . , C}. We
would like to use {xi, ci}i=1,...,N in order to train a SLFN
network. Such a network consists of D input (equal to the
dimensionality of xi), L hidden and C output (equal to the
number of classes involved in the classification problem)
neurons. The number of hidden layer neurons is usually
selected to be much greater than the number of classes [21],
[11], i.e., L ≫ C. The elements of the network target vectors
ti = [ti1, ..., tiC ]

T , each corresponding to a training vector xi,
are set to tik = 1 for vectors belonging to class k, i.e., when
ci = k, and to tik = −1 otherwise. In ELM-based approaches,
the network input weights Win ∈ RD×L and the hidden layer
bias values b ∈ RL are randomly assigned, while the network
output weights Wout ∈ RL×C are analytically calculated.

Let us denote by qj , wk, wkj the j-th column of Win, the
k-th row of Wout and the j-th element of wk, respectively.
Given an activation function Φ(·) for the network hidden
layer and using a linear activation function for the network
output layer, the response oi = [oi1, . . . , oiC ]

T of the network
corresponding to xi is calculated by:

oik =

L∑
j=1

wkj Φ(qj , bj ,xi), k = 1, ..., C. (1)

It has been shown [21], [11] that, several activation functions
Φ(·) can be employed for the calculation of the network hidden
layer outputs, like the sigmoid, sine, Gaussian, hard-limiting,
Radial Basis Function (RBF) and the RBF-χ2 ones. By storing
the network hidden layer outputs ϕi ∈ RL corresponding to
all the training vectors xi, i = 1, . . . , N in a matrix Φ =
[ϕ1, . . . ,ϕN ], equation (1) can be expressed in a matrix form
as:

O = WT
outΦ, (2)

where O ∈ RC×N is a matrix containing the network re-
sponses for all training data xi.

A. Extreme Learning Machine

Standard ELM algorithm [1] assumes zero training error.
That is, it is assumed that oi = ti, i = 1, . . . , N , or by
using a matrix notation O = T, where T = [t1, . . . , tN ] is a
matrix containing the network target vectors. By using (2), the
network output weights Wout can be analytically calculated
by:

Wout = Φ† TT , (3)

where Φ† =
(
ΦΦT

)−1
Φ is the generalized pseudo-inverse

of ΦT . After the calculation of the network output weights
Wout, the network response for a given vector xl ∈ RD is
given by:

ol = WT
outϕl, (4)

where ϕl is the network hidden layer output for xi.
The calculation of the network output weights Wout

through (3) is sometimes inaccurate, since the matrix ΦΦT

may be singular. A regularized version of the ELM algorithm
that allows small training errors and tries to minimize the
norm of the network output weights Wout has been proposed
in [21], where the network output weights are calculated by
solving the following optimization problem:

Minimize: JRELM =
1

2
∥Wout∥2F +

c

2

N∑
i=1

∥ξi∥
2
2 (5)

Subject to: WT
outϕi = ti − ξi, i = 1, ..., N, (6)

where ξi ∈ RC is the error vector corresponding to xi and c is
a parameter denoting the importance of the training error in the
optimization problem, satisfying c > 0. Based on the Karush-
Kuhn-Tucker (KKT) theorem [24], the network output weights
Wout can be determined by solving the dual optimization
problem:

JD,RELM =
1

2
∥Wout∥2F +

c

2

N∑
i=1

∥ξi∥22

−
N∑
i=1

ai
(
WT

outϕi − ti + ξi
)
, (7)

which is equivalent to (5). By calculating the derivatives of
JD,RELM with respect to Wout, ξi and ai and setting them
equal to zero, the network output weights Wout are obtained
by:

Wout =

(
ΦΦT +

1

c
I

)−1

ΦTT , (8)
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or

Wout = Φ

(
K+

1

c
I

)−1

TT , (9)

where K ∈ RN×N is the ELM kernel matrix, having elements
equal to [K]i,j = ϕT

i ϕj [25]. In [21] it has been also shown
that, by exploiting the kernel trick [26], [27], [28], K can be
any kernel matrix defined over the input data xi. By using (9),
the network response for a given vector xl ∈ RD is given by:

ol = WT
outϕl = T

(
K+

1

c
I

)−1

kl, (10)

where kl ∈ RN is a vector having its elements equal to kl,i =
ϕT

i ϕl.

B. Extreme Learning Machine exploiting variance criteria
By allowing small training errors and trying to minimize

both the norm of the network output weights and the (within-
class/total) variance of the training vectors in the feature space
determined by the network target vectors RC , Wout can be
calculated by solving the following optimization problem:

Minimize: JMCV ELM =
1

2
∥S

1
2
wWout∥2F +

c

2

N∑
i=1

∥ξi∥
2
2, (11)

Subject to: WT
outϕi − ti = ξi, i = 1, ..., N. (12)

In the above, Sw is a matrix expressing either the variance of
classes forming the classification problem [11], or the variance
of the entire training set [15]. In the first case Sw is defined
by:

Sw =
C∑

j=1

N∑
i=1

βij

Nj
(ϕi − µj)(ϕi − µj)

T , (13)

while in the second case, it is defined by:

Sw =
N∑
i=1

(ϕi − µ)(ϕi − µ)T . (14)

In (13), βij is an index denoting if vector ϕi belongs to class j,
i.e., βij = 1, if ci = j and βij = 0 otherwise. Nj =

∑N
i=1 βij

is the number of training vectors belonging to class j and
µj = 1

Nj

∑N
i=1 βijϕi is the mean vector of class j. In (14),

µ = 1
N

∑N
i=1 ϕi is the mean vector of the entire training set.

By substituting (12) in (11) and solving for ϑJMCV ELM

ϑWout
=

0, Wout is given by:

Wout =

(
ΦΦT +

1

c
Sw

)−1

ΦTT . (15)

By using (15), the network response for a given vector xl ∈

RD is given by:

ol = WT
outϕl = TΦT

(
ΦΦT +

1

c
Sw

)−1

ϕl. (16)

The calculation of the network output weights Wout

through (15) is sometimes inaccurate, since the matrix(
ΦΦT + 1

cSw

)
may be singular. In order to address this prob-

lem, an additional dimensionality reduction step performed by
applying Principal Component Analysis on the network hidden
layer outputs has been proposed in [11].

C. Graph Embedding

The Graph Embedding framework [12] assumes that the
training data xi, i = 1, . . . , N are employed in order to form
the vertex set of an undirected weighted graph G = {X,V},
where X = [x1, . . . ,xN ] and V ∈ RN×N is a similarity
matrix whose elements denote the relationships between the
graph vertices xi. Furthermore, a penalty graph Gp = {X,Vp}
can be defined, whose weight matrix Vp ∈ RN×N penalizes
specific relationships between the graph vertices xi.

In the case of linear data projections1, the original data xi ∈

RD are projected to a low-dimensional feature space Rd, d <
D, by applying a linear transformation, i.e., si = VTxi. This
can be achieved by optimizing for:

V∗ = argmin
tr(VTXCXTV)=q

N∑
i,j=1

∥VTxi −VTxj∥22Wij

= argmin
tr(VTXCXTV)=q

tr
(
VTXLXTV

)
, (17)

where tr(·) is the trace operator, q is a constant value (usually
q = 1) and L ∈ RN×N is the so-called graph Laplacian matrix
defined as L = D−V. D is the diagonal degree matrix having
elements Dii =

∑N
j=1 Vij . C ∈ RN×N is a constraint matrix

that is used in order to avoid trivial solutions and is typically a
diagonal matrix for scale normalization, or the graph Laplacian
matrix of Gp, that is C = Lp = Dp −Vp.

The solution of (17) is obtained by solving the generalized
eigenvalue decomposition problem:

Siv = λSpv, (18)

where Si = XLXT and Sp = XCXT . That is, the columns of
the transformation matrix W are formed by the eigenvectors
of the matrix S = S−1

p Si corresponding to the d minimal
eigenvalues λi. In the case where the matrix Sp is singular,
its generalized pseudoinverse can be used instead, i.e., we can
perform eigenanalysis to the matrix S = S†

pSi.
From the above, it can be seen that the matrix S = S†

pSi

can be employed in order to describe both intrinsic and penalty
relationships between the training data. We employ S in order
to devise an extension of the ELM algorithm that is able
to naturally incorporate such SL criteria in its optimization
process, as will be described in the next Section.

III. GRAPH EMBEDDED EXTREME LEARNING MACHINE

In this Section, we describe in detail the proposed Graph
Embedded ELM (GEELM) algorithm. After the calculation of
the network hidden layer outputs ϕi, i = 1, . . . , N , we propose
to calculate the network output weights Wout by optimizing
for:

Minimize: JGEELM =
1

2
∥Wout∥2F +

c

2

N∑
i=1

∥ξi∥
2
2

+
λ

2
tr

(
WT

outSWout

)
(19)

Subject to: WT
outϕi − ti = ξi, i = 1, ..., N, (20)

1While nonlinear projections can also be exploited, we are interested in
linear ones, since as has been explained in previous Sections the second step
of ELM corresponds to a linear data mapping process. This is due to the ELM
assumption that nonlinear data relationships can be well described by using
appropriate hidden layer activation functions Φ(·).
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where S is a matrix expressing SL criteria, as described
in subsection II-C, and λ is a trade off parameter betweeen
the two regularization terms of Wout, satisfying λ > 0. By
substituting the constraints (20) in JGEELM and solving for
ϑJGEELM

ϑWout
= 0, Wout is given by:

Wout =

(
ΦΦT +

1

c

(
I+ λS

))−1

ΦTT . (21)

The calculation of the network output weights Wout through
(21) can always be achieved, since the matrix

(
ΦΦT +

1
c (I+ λS)

)
is nonsingular.

After the calculation of the network output weights Wout,
the network response for a given vector xl ∈ RD is given by:

ol = WT
outϕl, (22)

where ϕl is the network hidden layer output for xi.
We can define the following two cases for the matrix S:
• S is used in order to express intrinsic training data rela-

tionships (that is, Sp = I). In this case, we assume that
the network hidden layer output vectors ϕi corresponding
to the training data xi, i = 1, . . . , N are used in order to
form the vertex set of an (intrinsic) graph G = {Φ,V},
where V ∈ RN×N is a similarity matrix whose elements
denote the relationships between the graph vertices ϕi. S
can be defined by S = ΦLΦT , where L ∈ RN×N is the
graph Laplacian matrix defined by L = D−V, D being
the diagonal degree matrix of G having elements Dii =∑N

j=1 Vij . It should be noted here that the calculation of
S in the ELM space RL, rather than in the input space RD

has the advantage that nonlinear relationships between the
input data xi can be better expressed.

• S is used in order to express both intrinsic and penalty
training data relationships. In this case, we assume that
the network hidden layer output vectors ϕi corresponding
to the training data xi, i = 1, . . . , N are used in order to
form the vertex set of an (intrinsic) graph G = {Φ,V},
where V ∈ RN×N is a similarity matrix whose elements
denote the relationships between the graph vertices ϕi

that are subject minimization. Furthermore, a penalty
graph G = {Φ,Vp} is also defined, whose weight matrix
Vp ∈ RN×N penalizes relationships between the graph
vertices ϕi that are subject maximization. The matrices
Si = ΦLΦT and Sp = ΦLpΦT are defined, where
L, Lp are the graph Laplacian matrices of G and Gp,
respectively. S can be defined by using Si, Sp as S =
S−1
p Si. In the case where Sp is singular, the matrix S

can be defined by S = S†
pSi. Similar to the first case, the

calculation of Si, Sp in the ELM space RL, rather than
in the input space RD has the advantage that nonlinear
intrinsic and penalty relationships between the input data
xi can be better expressed.

By following such an analysis, the proposed GEELM algo-
rithm can naturally exploit SL criteria expressing both intrinsic
and penalty relationships between the training data for Wout

calculation. In our experiments we have exploited the ones
adopted by LE [17], LLE [18], LDA [19], MDA [12] and

LFDA [20] methods. In the following we describe the graph
structures used in these cases.

Both LE and LLE construct a neighboring graph G =
{Φ,V} such that:

Vij =

{
vij ϕj ∈ Ni,
0, otherwise,

(23)

where Ni denotes the neighborhood of ϕi. In our experiments
we have used 5-NN graphs, that have been shown to provide
satisfactory performance in many classification problems. In
LE, vij is a measure of the similarity between ϕi and ϕj , like

the heat kernel function defined by vij = exp

(
−∥ϕi−ϕj∥

2
2

2σ2

)
,

where σ is a parameter scaling the Euclidean distance between
ϕi and ϕj . In LLE, vij is determined by applying a local fitting
process solving for:

min∑
j∈Ni

vij=1
∥ϕi −

∑
ϕj

∈Ni

vij
(
ϕj − ϕi

)
∥22. (24)

In LDA, MDA and LFDA the structure of the corresponding
graphs is determined by the labeling information that is
available for the training vectors ϕi. LDA uses the following
graph weights:

Vij =

{ 1
Nci

, cj = ci,

0, otherwise,
(25)

V p
ij =

{ 1
N − 1

Nci
, cj = ci,

1
N , otherwise,

(26)

for the intrinsic and penalty graphs, respectively. MDA uses
graph weights defined by:

Vij =


1, ci = cj and ϕj ∈ Ni,
1, ci = cj and ϕi ∈ Nj ,
0, otherwise,

(27)

V p
ij =


1, ci ̸= cj and ϕj ∈ Ni,
1, ci ̸= cj and ϕi ∈ Nj ,
0, otherwise.

(28)

Finally, LFDA uses graph weights defined by:

Vij =

{ vij

Nci
, cj = ci,

0, otherwise.
(29)

V p
ij =

{
vij

(
1
N − 1

Nci

)
, cj = ci,

1
N , otherwise.

(30)

where vij is a measure of the similarity between ϕi and ϕj ,
like the heat kernel function. The processing steps followed
for the calculation of the GEELM network parameters are
illustrated in Algorithm 1.

In the above discussion, we assume that the network hidden
layer outputs for the training vectors xi can be calculated
using Φ(·). However, as has been discussed in subsection
II-A, ELM can be formulated as a kernel machine, where
the dimensionality of the ELM space is arbitrary (possibly
infinite). We extend the proposed GEELM algorithm to this
direction and describe a kernel algorithm in the following
subsection. We refer to this version of the GEELM algorithm
as Graph Embedded Kernel ELM (GEKELM), hereafter.
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Algorithm 1 Graph Embedded Extreme Learning Machine
Input {xi, ci}, i = 1, . . . , N , L, Φ(·).
Randomly assign input parameters Win,b.
Calculate the network hidden layer outputs Φ.
Calculate graph weights V,Vp from (23) - (30).
Calculate graph Laplacian matrices L = D−V and Lp =
Dp −Vp.
Calculate Si = ΦLΦT , Sp = ΦLpΦT and S = S†

pSi.
Calculate Wout from (21).
return Win,b,Wout.

A. Graph Embedded Kernel Extreme Learning Machine

In order to derive a kernel formulation of the proposed
GEELM algorithm, we exploit the assumption that the network
output weights Wout can be expressed as a linear combination
of the training vectors (represented in the ELM space) [26],
[27], [28], i.e.,:

Wout =
N∑
i=1

ϕiα
T
i = ΦAT , (31)

where A ∈ RC×N is a matrix containing the reconstruction
weights of Wout, with respect to the training vectors in the
ELM space.

By substituting (31) and (20) in (19) we obtain:

JGEKELM =
1

2
tr
(
AΦTΦAT

)
+

c

2
tr
(
ΦTΦATAΦTΦ

)
− c tr

(
ΦTΦATT

)
+ tr

(
TTT

)
+

λ

2
tr
(
AΦTSΦAT

)
. (32)

Similar to the GEELM case, we can define the following
two cases for the matrix S:

• S is used to express intrinsic training data relationships.
In this case, S = ΦLΦT , where L ∈ RN×N is the
graph Laplacian matrix defined by L = D − V, D
being the diagonal degree matrix of G having elements
Dii =

∑N
j=1 Vij . In this case, (32) can be expressed as

follows:

JGEKELM =
1

2
tr
(
AKAT

)
+

c

2
tr
(
KATAK

)
− c tr

(
KATT

)
+ tr

(
TTT

)
+

λ

2
tr
(
AKLKAT

)
. (33)

By solving for ϑJGEKELM

ϑA = 0, A is given by:

A = T

(
1

c
I+K

(λ
c
L+ I

))−1

. (34)

• S is used to express both intrinsic and penalty train-
ing data relationships. In this case, S = S†

pSi =(
ΦLpΦT

)†
ΦLΦT , where L ∈ RN×N , Lp ∈ RN×N are

the Laplacian matrices of the intrinsic and penalty graphs,
respectively, defined by L = D−V and Lp = Dp−Vp.

D, Dp are the diagonal degree matrices of G and Gp,
respectively. Thus, (32) can be expressed as follows:

JGEKELM =
1

2
tr
(
AKAT

)
+

c

2
tr
(
KATAK

)
− c tr

(
KATT

)
+ tr

(
TTT

)
+

λ

2
tr
(
A(Lp)†LKAT

)
. (35)

By solving for ϑJGEKELM

ϑA = 0, A is given by:

A = T

(
1

c
I+

λ

c
(Lp)†L+K

)−1

. (36)

After the calculation of the reconstruction weight matrix A,
the network response for a given vector xl ∈ RD is given by:

ol = WT
outϕl = AΦTϕl = Akl. (37)

As can be seen by the above discussion, the proposed
GEELM algorithm can also be considered as a kernel machine,
where the dimensionality of the ELM space is arbitrary (even
infinite). The processing steps followed for the calculation of
the GEKELM network parameters are illustrated in Algorithm
2.

Algorithm 2 Graph Embedded Kernel Extreme Learning
Machine

Input {xi, ci}, i = 1, . . . , N , κ(·, ·), xt.
Calculate the training kernel matrix K and test kernel vector
kt from Kij = κ(xi,xj) and kt,i = κ(xi,xt).
Calculate graph weights V,Vp from (23) - (30).
Calculate graph Laplacian matrices L = D−V and Lp =
Dp −Vp.
Calculate A from (36).
return K,kt,A.

B. Discussion

In this Section, we discuss several aspects of the proposed
Graph Embedded ELM algorithms. We start by showing that
the calculation of the graph Laplacian matrices in the ELM
space RL (or in the kernel space for the kernel formulation of
the proposed GEKELM algorithm) rather in the input space
RD has the advantage that nonlinear relationships between the
input data xi can be exploited, enhancing performance. We
have created a synthetic dataset consisting of three classes,
formed by 200 1000D data each and following Normal dis-
tributions. The classes are centered at −1, 0 and 1, respec-
tively, and have standard deviations equal to 0.8 · 1, where
1,0 ∈ R1000 are vectors having elements equal to 1 and 0,
respectively.

We have applied the proposed GEELM algorithms on the
above-described synthetic dataset. We have randomly chosen
100 samples per class in order to train the competing al-
gorithms and used the remaining samples for testing their
performance. We have used L = 100 hidden neurons and
optimized the regularization parameters c, λ by applying two-
fold cross-validation on the training set. The obtained experi-
mental results are illustrated in Table I. As can be seen in this
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TABLE I
PERFORMANCE OF GEELM METHODS ON THE SYNTHETIC DATASET.

Input space RD ELM space RL

GEELM (LE) 73% 74.33%
GEELM (LLE) 83.33% 85.67%
GEELM (LDA) 73% 73%
GEELM (MDA) 85% 88.33%
GEELM (LFDA) 74.33% 89%

TABLE II
PERFORMANCE OF ELM METHODS ON THE SYNTHETIC DATASET USING

DATA REPRESENTATIONS IN DIFFERENT SPACES.

Space RELM GEELM (LDA) GEELM (MDA) GEELM (LFDA)
Input 71.66% 73% 88.33% 89%
LDA 73.66% 74.33% 89% 89%
MDA 73.33% 73.66% 88.66% 89.33%
LFDA 74.33% 74.33% 89% 89%

Table, the calculation of the matrices used in the ELM methods
exploiting graph structures used in LE, LLE, MDA and LFDA
in the ELM space RL leads to an enhanced performance,
when compared to the case where the corresponding matrices
calculation is performed in the input space RD. It can also
be seen that in the LDA case, the performance obtained
by following the two approaches is the same. This can be
explained by the fact that in this case the corresponding graph
Laplacian matrices are calculated based on the training data
labels only and, thus, the corresponding ELM solutions are
identical.

Subsequently, in order to observe the effect of applying
the ELM variants in different feature spaces, we repeated
the above-described experiment using data representations in
the input space, as well as in feature spaces determined
by applying LDA, MDA and LFDA on the training data.
The classification rates obtained by applying RELM and the
proposed ELM methods exploiting graph structures used in
LDA, MDA and LFDA are illustrated in Table II. As can
be seen in this Table, the adoption of data representations
in different feature spaces may impact the performance of
the RELM algorithm, since the adoption of discriminant data
representations obtained by applying LDA, MDA and LFDA
on the training data enhances its performance. A similar result
is observed also for the proposed ELM methods exploiting
graph structures for the calculation of the network parameters.

Regarding the time complexity of the proposed algorithms,
for general graph structures we have the following two cases:

• For the GEELM solution given in (21), one needs to
calculate the matrix S first. In the case where S takes into
account only intrinsic graph structures, the time complex-
ity of this process is equal to O(L2N). In the case where
S takes into account both intrinsic and penalty graph
structures, the time complexity of this process is equal to
O(L3+L2N). Subsequently, a matrix inversion and two
matrix multiplication steps having time complexity equal
to O(L3+L2N) are required. Thus, the time complexity
of the proposed GEELM algorithms in the case of general
graph structures is equal to O(L3 + L2N).

• For the GEKELM solution given in (34), one needs to
calculate the matrix L first, having time complexity equal
to O(N2D). For the the GEKELM solution given in (36),
one needs to calculate the matrix (Lp)†L first, having
time complexity equal to O(N3+N2D). Subsequently, a
matrix inversion and a matrix multiplication steps having
time complexity equal to O(N3+N2) are required. Thus,
the time complexity of (34) is equal to O(N3 +N2D).

It should be noted here that, in the case of graph structures
defined in several SL methods (like LDA and PCA) the
calculation of the corresponding graph Laplacian matrices is
performed by taking into account only the labeling information
of the training data and, thus, the time complexity of the
corresponding GEELM algorithms can be considered to be
equal to that of the regularized ELM solution [21].

Finally, we show how the proposed methods can be in-
terpreted in terms of a related framework, i.e., Spectral Re-
gression [22], [23]. Let us consider the case of the two-class
classification problem expressed by the outputs of the k-th
output neuron of the ELM network. The network output weight
associated with the k-th output neuron can be obtained by
applying a two-step process:

• Solution of the generalized eigenanalysis problem Siq =
µSpq. This process will lead to the determination of
a data projection matrix Q ∈ RL×d, where d is the
minimum rank of the matrices Si,Sp. The matrix Q can
be used in order to map the training data to the space Rd

by applying Y = QTΦ.
• Calculation of the the vector wk which satisfies wT

k Y =
tk, where tk is a vector containing the target values for
the k-th binary classification problem. In reality, such wk

may not exist. A possible way is to find the wk which
can best fit the equation in the least squares sense:

wk = arming
ak

N∑
i=1

(wT
k yi − tki)

2, (38)

where tki is the target value for the i-th training sample.
In the case where N < d, this problem is ill posed. The
most popular way to solve this problem is to impose a
penalty on the norm of wk, i.e.:

wk = arming
wk

(
N∑
i=1

(wT
k yi − tki)

2 + a∥wk∥22

)
. (39)

The optimal solution of (39) is given by:

wk =
(
YYT + aI

)−1
Ytk. (40)

The network output weights can be subsequently obtained
by using Wout = [Qw1, . . . ,QwC ].

IV. EXPERIMENTS

In this section, we present experiments conducted in order
to evaluate the performance of the proposed GEELM algo-
rithm. We have employed eight standard classification problem
datasets and nine datasets relating to human behavior analysis
to this end, namely the ORL, AR and Extended YALE-B (face
recognition), the COHN-KANADE, BU and JAFFE (facial
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expression recognition) and the Hollywood2, Olympic Sports
and Hollywood 3D (human action recognition) datasets. A
brief description of the datasets is provided in the following
subsections. Experimental results are provided in subsection
IV-E. In all our experiments we compare the performance of
the GEELM-based classification schemes with that of relating
classification schemes, i.e., ELM [1], RELM [21], Kernel
ELM (KELM) [21], MCVELM [11] and Discriminative Graph
Regularized ELM (DGRLEM) [14] based classification.

In all the experiments on standard classification problems,
we have employed the RBF kernel function for the ELM
methods exploiting a kernel formulation:

K(xi,xj) = exp
(
− ∥xi − xj∥22

2σ2

)
, (41)

where the value of σ is set equal to the mean Euclidean
distance between the training vectors xi, which corresponds
to the natural scaling value for each dataset. For the ELM
formulations exploiting random input weights qj , we have
employed the RBF activation function:

Φ(xi,qj , b) = exp
(
− ∥xi − qj∥22

2b2

)
, (42)

where the value b is set equal to the mean Euclidean distance
between the training data xi and the network input weights
qj .

In all the experiments involving facial image classification,
we have resized the facial images provided by the databases
in 40 × 30 pixel images and vectorized these images in
order to create vectors xi ∈ R1200 and used the RBF kernel
function and RBF activation function given in (41) and (42),
respectively.

In human action recognition, we use the state-of-the-art
method proposed in [29] as a baseline approach. We employ
the Bag of Words (BoW)-based video representation by us-
ing HOG, HOF, MBHx, MBHy and (normalized) Trajectory
descriptors evaluated on the trajectories of densely sampled
interest points. We follow [29] and use 4000 codewords
for each BoW representation. Classification is performed by
employing the RBF-χ2 kernel [30], where different descriptors
are combined by concatenating the five video representations:

K(xi,xj) = exp
(
− 1

2A

D∑
d=1

(xid − xjd)
2

xid + xjd

)
. (43)

A is set to the mean value of the χ2 distances between the
training vectors. In the case of ELM formulations exploiting
random input weights qj , we have employed the multi-channel
RBF-χ2 activation function:

Φ(xi,qj , b) = exp
(
− 1

2b

D∑
d=1

(xid − qjd)
2

xid + qjd

)
. (44)

where the value b has been set equal to the mean χ2 distance
between the training vectors xi and the network input weights
qj .

The number of hidden layer neurons has been set equal to
L = 1000 for all the ELM methods exploiting random hidden
layer parameters, a value that has been shown to provide

satisfactory performance in many classification problems [21],
[11]. For fair comparison, in all the experiments, we make
sure that the the same ELM space is used in all the ELM
variants. That is, we first map the training data in the ELM
space and, subsequently, calculate the network output weights
according to each ELM algorithm. Regarding the optimal
values of the regularization parameters (c, λ) used in different
ELM-based classification schemes, they have been determined
by following a grid search strategy, which is applied on the
training data, e.g., on the four splits used for training in the
face datasets where the five-fold cross-validation process is
applied. The values used in our experiments are: c = 10r, r =
−6, . . . , 6 and λ = 10p, p = −6, . . . , 6. All the experiments
have been conducted on a 4-core, i7 - 4790, 3.6GHz PC with
32GB RAM using a MATLAB implementation.

A. Standard classification problem datasets

We have employed eight publicly available datasets from
the machine learning repository of University of California
Irvine (UCI) [31]. Table III provides information concerning
the data sets used in our experiments.

TABLE III
UCI DATASETS DETAILS.

Dataset Samples Dimensions (D) Classes (C)
Column 310 6 3
Glass 241 9 6
Indians 768 8 2
Libras 360 90 2
Relax 182 12 2
Spectf 267 44 2
Synth.Cont. 600 60 6
TicTacToe 958 9 2

B. Face recognition datasets

1) The ORL dataset [32]: consists of 400 facial images
depicting 40 persons. The images were captured at different
times and with different conditions, in terms of lighting,
facial expressions (smiling/not smiling) and facial details
(open/closed eyes, with/without glasses). Facial images were
taken in frontal position with a tolerance for face rotation and
tilting up to 20 degrees. Example images of the dataset are
illustrated in Figure 1.

Fig. 1. Facial images depicting a person of the ORL dataset.

2) The AR dataset [33]: consists of over 4000 facial images
depicting 70 male and 56 female faces. In our experiments we
have used the preprocessed (cropped) facial images provided
by the database, depicting 100 persons (50 males and 50
females) having a frontal facial pose, performing several
expressions (anger, smiling and screaming), in different illu-
mination conditions (left and/or right light) and with some
occlusions (sun glasses and scarf). Example images of the
dataset are illustrated in Figure 2.
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Fig. 2. Facial images depicting a person of the AR dataset.

3) The Extended YALE-B dataset [34]: consists of facial
images depicting 38 persons in 9 poses, under 64 illumination
conditions. In our experiments we have used the frontal
cropped images provided by the database. Example images
of the dataset are illustrated in Figure 3.

Fig. 3. Facial images depicting a person of the Extended YALE-B dataset.

C. Facial expression recognition datasets

1) The COHN-KANADE dataset [35]: consists of facial
images depicting 210 persons of age between 18 and 50. We
have randomly selected 35 images for each facial expression,
i.e., anger, disgust, fear, happyness, sadness, surprise and
neutral. Example images of the dataset are illustrated in Figure
4.

Fig. 4. Facial images from the COHN-KANADE dataset. From left to right:
neutral, anger, disgust, fear, happy, sad and surprise.

2) The BU dataset [36]: consists of facial images depicting
over 100 persons with a variety of ethnic/racial background,
including White, Black, East-Asian, Middle-east Asian, His-
panic Latino and others. In our experiments, we have em-
ployed the images depicting the most expressive intensity of
each facial expression. Example images of the dataset are
illustrated in Figure 5.

Fig. 5. Facial images depicting a person of the BU dataset. From left to
right: neutral, anger, disgust, fear, happy, sad and surprise.

3) The JAFFE dataset [37]: consists of 210 facial images
depicting 10 Japanese female persons. Each of the persons is
depicted in 3 images for each expression. Example images of
the dataset are illustrated in Figure 6.

Fig. 6. Facial images depicting a person of the JAFFE dataset. From left
to right: neutral, anger, disgust, fear, happy, sad and surprise.

D. Action recognition datasets

1) The Hollywood2 dataset [38]: consists of 1707 videos
depicting 12 actions. The videos have been collected from
69 different Hollywood movies. Example video frames of
the dataset are illustrated in Figure 7. We used the standard
training-test split provided by the database (823 videos are
used for training and performance is measured in the re-
maining 884 videos). Training and test videos come from
different movies. The performance is evaluated by computing
the average precision (AP) for each action class and reporting
the mean AP over all classes (mAP) [39].

Fig. 7. Video frames of the Hollywood2 dataset depicting instances of all
the twelve actions.

2) The Olympic Sports dataset [40]: consists of 783 videos
depicting athletes practicing 16 sports. Example video frames
of the dataset are illustrated in Figure 8. We used the standard
training-test split provided by the database (649 videos are
used for training and performance is measured in the remain-
ing 134 videos). The performance is evaluated by computing
the mean Average Precision (mAP) over all classes [39].

Fig. 8. Video frames of the Olympic Sports dataset depicting instances of
all the sixteen actions.

3) The Hollywood 3D dataset [41]: consists of 951 video
pairs (left and right channel) depicting 13 actions and a
‘no action’ class collected from Hollywood movies. Example
video frames of this dataset are illustrated in Figure 9. We
used the standard (balanced) training-test split provided by the
database (643 videos are used for training and performance
is measured in the remaining 308 videos). Training and
test videos come from different movies. The performance is
evaluated by computing both the mean AP over all classes
(mAP) [39].



9

TABLE IV
PERFORMANCE FOR ELM METHODS EXPLOITING RANDOM PARAMETERS ON UCI DATASETS.

Dataset ELM RELM MCVELM DGRELM GEELM (LE) GEELM (LLE) GEELM (LDA) GEELM (MDA) GEELM (LFDA)
Column 39.68% 80.11% 82.11% 82.11% 82.11% 82.11% 82.67% 82.56% 82.56%
Glass 40.65% 64.15% 65.67% 65.67% 66.25% 66.03% 66.25% 66.76% 66.25%
Indians 56.12% 70.99% 71.47% 72.5% 72.68% 72.76% 72.78% 72.76% 72.76%
Libras 61.39% 80.56% 80.83% 80.56% 80.56% 80.83% 82.22% 82.22% 82.22%
Relax 45.05% 50% 50.58% 50.58% 50.38% 50.77% 52.88% 53.27% 53.27%
Spectf 62.92% 62.35% 63.63% 63.4% 63.4% 75.21% 66.9% 65.01% 64.27%
Synth.Con. 87.67% 96.67% 96.83% 96.83% 96.83% 97% 97% 97.33% 97.33%
TicTacToe 89.25% 97.59% 97.66% 97.59% 97.74% 97.74% 98.04% 99.02% 99.02%

TABLE V
PERFORMANCE FOR ELM METHODS EXPLOITING KERNEL FORMULATIONS ON UCI DATASETS.

Dataset KELM GEKELM (LE) GEKELM (LLE) GEKELM (LDA) GEKELM (MDA) GEKELM (LFDA)
Column 82.22% 82.22% 82.22% 83.22% 84.11% 84.11%
Glass 63.79% 64.15% 64.55% 64.55% 69.99% 68.66%
Indians 71.99% 72.17% 72.19% 74.07% 74.07% 74.96%
Libras 83.06% 85% 85% 85.83% 86.39% 86.39%
Relax 50% 57.88% 56.15% 52.5% 59.04% 54.42%
Spectf 66.9% 66.9% 66.9% 68.75% 75.21% 75.21%
Synth.Con. 96.83% 97.83% 97.83% 97.67% 97.67% 97.67%
TicTacToe 98.09% 99.02% 99.1% 99.25% 99.25% 99.77%

TABLE VI
TRAINING TIMES (SECONDS) OF ELM METHODS EXPLOITING RANDOM PARAMETERS ON UCI DATASETS.

Dataset ELM RELM MCVELM DGRELM GEELM (LE) GEELM (LLE) GEELM (LDA) GEELM (MDA) GEELM (LFDA)
Column 0.038 0.092 0.134 0.133 0.179 0.186 0.292 0.314 0.346
Glass 0.026 0.087 0.122 0.121 0.168 0.177 0.293 0.273 0.288
Indians 0.192 0.171 0.267 0.267 0.261 0.275 0.414 0.512 0.493
Libras 0.055 0.098 0.155 0.154 0.195 0.193 0.32 0.337 0.346
Relax 0.017 0.08 0.113 0.112 0.172 0.168 0.281 0.307 0.314
Spectf 0.036 0.096 0.135 0.137 0.175 0.178 0.37 0.363 0.355
Synth.Con. 0.124 0.122 0.192 0.191 0.219 0.237 0.371 0.427 0.486
TicTacToe 0.259 0.149 0.298 0.298 0.299 0.329 0.419 0.61 1.72

TABLE VII
TRAINING TIMES (SECONDS) OF ELM METHODS EXPLOITING KERNEL FORMULATIONS ON UCI DATASETS.

Dataset KELM GEKELM (LE) GEKELM (LLE) GEKELM (LDA) GEKELM (MDA) GEKELM (LFDA)
Column 0.002 0.007 0.011 0.014 0.028 0.025
Glass 0.001 0.004 0.006 0.008 0.016 0.014
Indians 0.019 0.064 0.081 0.385 0.194 0.21
Libras 0.004 0.011 0.014 0.023 0.041 0.039
Relax 0.002 0.004 0.006 0.008 0.011 0.011
Spectf 0.002 0.005 0.008 0.011 0.019 0.019
Synth.Con. 0.017 0.036 0.046 0.12 0.114 0.108
TicTacToe 0.032 0.114 0.14 0.363 0.382 0.322

Fig. 9. Video frames of the Hollywood 3D dataset depicting instances of
twelve actions.

E. Experimental Results
In our first set of experiments, we have applied the com-

peting algorithms on the UCI datasets. Since there is not a

widely adopted experimental protocol for these datasets, we
perform the five-fold cross-validation procedure [42] by taking
into account the class labels of the data. That is, we randomly
split the data belonging to each class in five sets and we use
four splits of all the classes for training and the remaining
splits for evaluation. This process is performed five times, one
for each evaluation split. On each fold, we have normalized the
training data to have zero mean and unit standard deviation.
Test data were normalized accordingly. Experimental results
obtained by applying the competing algorithms are illustrated
in Tables IV and V for the ELM methods exploiting random
parameters and kernel formulations, respectively. As can be
seen in these Tables, the incorporation of the local class
information on the ELM optimization process enhances clas-
sification performance, since the GEELM methods exploiting
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graph structures used in LLE outperform the ELM, RELM,
MCVELM and DGRELM methods in most cases. In addition,
the incorporation of SL criteria expressing both intrinsic and
penalty data relationships provides classification performance.
Comparing the obtained classification rates, it can be seen that
the kernel ELM formulations outperform the original ones in
most cases. In Tables VI and VII, we also provide the mean
training times of each ELM variant on the UCI datasets. As
expected, the computational cost of the proposed methods is
higher, when compared to the original ones. This is due to the
fact that the proposed methods require the computation of the
matrices expressing the corresponding SL criteria.

In our second set of experiments, we have applied the
competing algorithms on the face recognition datasets. Details
of these datasets are illustrated in Table VIII. Since there is
not a widely adopted experimental protocol for these datasets,
we perform the five-fold cross-validation procedure [42] by
taking into account the ID labels of the persons on each
database. That is, we randomly split the facial images de-
picting the same person in five sets and we use four splits
of all the persons for training and the remaining splits for
evaluation. This process is performed five times, one for each
evaluation split. Experimental results obtained by applying

TABLE VIII
FACIAL IMAGE DATASETS DETAILS.

Dataset Samples Dimensions (D) Classes (C)
AR 2600 1200 100
ORL 400 1200 40
Yalle 2432 1200 38

BU 700 1200 7
JAFFE 210 1200 7
KANADE 245 1200 7

the competing algorithms are illustrated in Tables IX and
X for the ELM methods exploiting random parameters and
kernel formulations, respectively. As can be seen in these
Tables, the incorporation of the local class information on the
ELM optimization process enhances facial image classification
(in terms of face recognition), since the GEELM methods
exploiting graph structures used in LE and LLE outperform the
ELM, RELM, MCVELM and DGRELM methods in all the
cases. In addition, the incorporation of SL criteria expressing
both intrinsic and penalty data relationships provides enhanced
facial image classification performance. Comparing the ob-
tained classification rates, it can be seen that the kernel ELM
formulations outperform the original ones in most cases. In
Tables XI and XII, we also provide the mean training times
of each ELM variant on the face recognition datasets.

In Table XIII, we also compare the performance obtained
by following the proposed approach with that of other,
recently proposed state-of-the-art, methods evaluating their
performance on the AR, ORL and Yalle databases using the
same experimental protocol. As can be seen, the proposed
approach achieves satisfactory performance, outperforming the
remaining methods, in all cases.

In our third set of experiments, we have applied the compet-
ing algorithms on the facial expression recognition datasets.
Details of these datasets are illustrated in Table VIII. Since

TABLE XIII
COMPARISON OF OUR RESULTS WITH SOME STATE-OF-THE-ART METHODS

ON THE AR, ORL AND YALLE DATASETS.

AR ORL Yalle
Method [43] 95.7% - 98.1%
Method [44] - 94.35% 94.76%
Method [45] 97% - -
Method [46] 74.67% 83.89% -
Method [47] - 98.93% -
Method [48] - - 97.2%
Proposed method 99.81% 99% 98.52%

there is not a widely adopted experimental protocol for these
datasets too, we apply the five-fold cross-validation procedure
[42] by employing the facial expression labels. That is, we
randomly split the facial images depicting the same expression
in five sets and we use four splits of all the expressions for
training and the remaining splits for evaluation. This process is
performed five times, one for each evaluation split. Experimen-
tal results obtained by applying the competing algorithms are
illustrated in Tables IX and X for the ELM methods exploiting
random parameters and kernel formulations, respectively. As
can be seen in these Tables, the incorporation of local class
information on the ELM optimization process enhances facial
image classification (in terms of facial expression recognition),
since the GEELM methods exploiting graph structures used
in LE and LLE outperform the ELM, RELM, MCVELM and
DGRELM methods in all the cases. The incorporation of SL
criteria expressing both intrinsic and penalty data relationships
seems not to enhance performance, when compared to the
GEELM methods exploiting graph structures used in LE and
LLE. However, it can be seen that, the incorporation of SL
criteria expressing both intrinsic and penalty data relationships
enhances performance when compared to the ELM, RELM,
KELM, MCVELM and DGRELM methods in all the cases.
In addition, it can be see in Tables IX and X, the kernel for-
mulations of the ELM networks generally achieve the highest
performance. The confusion matrices obtained by applying the
KELM and the proposed GEKELM algorithms are provided
in Figure 10. In Tables XI and XII, we also provide the mean
training times of each ELM variant on the facial expression
recognition datasets.

In Table XIV, we also compare the performance obtained
by applying the proposed approach with that of other, re-
cently proposed state-of-the-art, methods evaluating their per-
formance on the BU, Jaffe and Kanade databases. As can be
seen, the proposed approach achieves satisfactory performance
in all the cases. Specifically, it can be seen that the proposed
approach outperforms [49] and [48] in all the cases, while the
method in [50] provides the best performance. This may be
explained by the fact that the resolution of the facial images
used in [50] was equal to 150 × 200 pixels, i.e., five times
the resolution of the facial images used in our experiments.
Even in this case, it can be seen that the proposed approach
outperforms MMP and SVM-based facial image classification.

Finally, we have applied the competing algorithms on the
human action recognition datasets. We have employed the
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TABLE IX
PERFORMANCE FOR ELM METHODS EXPLOITING RANDOM PARAMETERS.

Dataset ELM RELM MCVELM DGRELM GEELM (LE) GEELM (LLE) GEELM (LDA) GEELM (MDA) GEELM (LFDA)
AR 97.26% 98.58% 98.81% 99% 99% 99.12% 99.23% 99.12% 99.27%
ORL 92.25% 96.75% 98% 98% 98% 98.25% 98.25% 98.5% 98.5%
Yalle 97.25% 97.25% 97.74% 98.15% 98.15% 98.15% 98.23% 98.23% 98.31%
BU 35.29% 65.29% 66.29% 66.29% 67.14% 66.57% 66.71% 66.71% 67.14%
JAFFE 43.33% 50.95% 50.95% 51.43% 50.95% 50.95% 51.43% 51.43% 55.24%
KANADE 64.49% 72.65% 73.06% 73.06% 73.06% 73.06% 73.47% 73.47% 73.06%
Ol.Sports 63.33% 81.79% 81.9% 81.85% 82.42% 81.98% 82.22% 82.08% 82.12%
Holl.2 21.54% 54.49% 55.03% 55.08% 55.14% 55.24% 55.05% 55.08% 55.2%
Holl.3D 23.12% 27.68% 27.82% 27.8% 27.92% 27.94% 28.98% 28.66% 29.17%

TABLE X
PERFORMANCE FOR ELM METHODS EXPLOITING KERNEL FORMULATIONS.

Dataset KELM GEKELM (LE) GEKELM (LLE) GEKELM (LDA) GEKELM (MDA) GEKELM (LFDA)
AR 99.42% 99.62% 99.69% 99.69% 99.69% 99.81%
ORL 98.5% 98.75% 98.5% 98.75% 99% 99%
Yalle 98.15% 98.52% 98.44% 98.52% 98.44% 98.52%
BU 67.43% 67.43% 67.57% 67.57% 67.86% 67.86%
JAFFE 55.71% 57.14% 55.71% 55.71% 57.14% 57.14%
KANADE 67.35% 68.57% 67.35% 67.76% 70.61% 69.8%
Olympic Sports 88.85% 88.92% 88.94% 89.74% 88.97% 89.12%
Hollywood2 61.34% 62.07% 62.07% 62.5% 62.5% 62.5%
Hollywood 3D 31.14% 31.14% 31.34% 31.8% 31.23% 31.79%

TABLE XI
TRAINING TIMES (SECONDS) OF ELM METHODS EXPLOITING RANDOM PARAMETERS.

Dataset ELM RELM MCVELM DGRELM GEELM (LE) GEELM (LLE) GEELM (LDA) GEELM (MDA) GEELM (LFDA)
AR 1.583 2.05 2.887 2.858 3.214 3.446 4.756 4.67 4.29
ORL 0.151 0.21 0.307 0.307 0.486 0.498 0.667 1.714 1.676
Yalle 1.558 1.53 2.812 2.131 2.867 2.118 2.065 2.446 2.125
BU 0.334 0.38 1.666 0.499 1.502 1.514 0.807 1.729 1.899
JAFFE 0.077 0.189 0.227 0.236 0.341 0.342 0.579 1.709 1.696
KANADE 0.087 0.179 0.233 0.238 0.449 0.45 0.608 1.709 1.6295
Ol.Sports 0.271 0.166 0.3285 0.3287 0.587 0.514 0.692 0.862 0.809
Holl.2 0.205 0.143 0.342 0.342 0.421 0.459 0.593 0.872 0.817
Holl.3D 0.173 0.137 0.295 0.296 0.564 0.505 0.595 0.762 0.884

TABLE XII
TRAINING TIMES (SECONDS) OF ELM METHODS EXPLOITING KERNEL FORMULATIONS.

Dataset KELM GEKELM (LE) GEKELM (LLE) GEKELM (LDA) GEKELM (MDA) GEKELM (LFDA)
AR 2.645 3.618 3.693 4.722 4.579 4.433
ORL 0.028 0.087 0.095 0.136 0.167 0.165
Yalle 0.988 1.345 1.461 1.937 2.907 2.835
BU 0.101 0.225 0.253 0.655 0.499 0.483
JAFFE 0.014 0.043 0.045 0.059 0.075 0.071
KANADE 0.016 0.044 0.053 0.072 0.098 0.09
Olympic Sports 0.12 1.46 1.598 1.572 2.497 2.458
Hollywood2 0.2 0.225 1.271 0.914 1.275 1.324
Hollywood 3D 0.1 0.143 1.24 1.129 1.08 1.01

standard training/test splits provided by the databases and
illustrated in Table XV. We illustrate the performance of
the ELM methods exploiting random parameters and kernel
formulations in Tables IX and X, respectively. Similarly to
the facial image classification cases, it can be seen that the
proposed GEELM methods outperform the ELM, RELM,
KELM, MCVELM and DGRELM methods in most of the
cases. Kernel ELM formulations achieve higher performance,
when compared to the ones exploiting random parameters.
This is in line with the state-of-the-art action recognition
methods denoting that BoF-based action video representation

should be combined with kernel classification schemes using
the χ2 kernel function. The AP values obtained for different
actions when using the RELM, the KELM and the proposed
approach are illustrated Tables XVI, XVII and XVIII for the
Olympic Sports, Hollywood2 and Hollywood 3D datasets,
respectively. As can be observed, the proposed formulations
clearly outperform the RELM and KELM ones in most cases.
In Tables XI and XII, we also provide the mean training times
of each ELM variant on the action recognition datasets.

We also compare the performance obtained by adopting the
Dense Trajectory-based video description combined with the
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(a) (b)

Fig. 10. Confusion matrices obtained by applying the KELM (top) and the proposed GEKELM (bottom) algorithms on the a) BU, b) Jaffe and c) Kanade
facial expression recognition datasets.

TABLE XIV
COMPARISON OF OUR RESULTS WITH SOME STATE-OF-THE-ART METHODS

ON THE BU, JAFFE AND KANADE DATASETS.

BU Jaffe Kanade
Method [49] - 56.72% 69.05%
Method [48] 66.4% - 72.9%
Method [50] - MMP - - 70.3%
Method [50] - RP - - 75.2%
Method [50] - SVM - - 73.4%
Method [50] - MMRP - - 80.1%
Proposed method 67.86% 57.14% 73.47%

BoW model and the GEKELM classifier with that of some
other state-of-the-art methods evaluating their performance on
these datasets in Table XIX. As can be seen in this Table, the
proposed approach provides satisfactory performance in all the
cases.

TABLE XV
ACTION RECOGNITION DATASETS DETAILS.

Dataset Training Samples Test Samples Classes (C)
Olympic Sports 649 134 16
Hollywood2 823 884 12
Hollywood 3D 643 308 13

Overall, the adoption of SL criteria under the Graph
Embedding framework for ELM-based classification clearly
enhances classification performance, when compared to the
ELM, RELM and KELM methods. The exploitation of local
class information seems to be a better choice for the proposed
GEELM method, since GEELM formulations exploiting graph
the structures used in LE, LLE, MDA and LFDA outperform
the one exploiting the global class information used in LDA,
as well as the MCVELM and DGRELM methods.

TABLE XVI
AVERAGE PRECISION VALUES ON THE OLYMPIC SPORTS DATASET.

RELM GEELM KELM GEKELM
Basket lay-up 95.87% 96.33% 96.69% 97.76%
Bowling 73.33% 73.9% 90.03% 91.19%
Clean & Jerk 80.6% 81.11% 88.19% 89.51%
Discus 90.58% 91.28% 92.33% 93.31%
Diving 3m 100% 100% 100% 100%
Diving 10m 98.18% 98.85% 100% 100%
Hammer 91.07% 91.57% 96.36% 97.31%
H. Jump 71.43% 71.94% 71.62% 72.97%
Javelin 100% 100% 100% 100%
L. Jump 88.31% 88.74% 88.31% 89.45%
P. Vault 82.8% 83.34% 84.7% 85.77%
Shot Put 54.09% 54.49% 85.45% 86.69%
Snatch 74.78% 75.42% 77.08% 78.54%
T. Jump 43.99% 44.62% 67.27% 68.5%
T. Serve 84.99% 85.65% 100% 100%
Vault 77.78% 78.42% 83.6% 87.72%
Mean 81.79% 82.22% 88.85% 89.74%

TABLE XVII
AVERAGE PRECISION VALUES ON THE HOLLYWOOD2 DATASET.

RELM GEELM KELM GEKELM
An. Phone 22.56% 23.11% 38.2% 39.12%
Dr. Car 86.7% 86.81% 90.54% 91.85%
Eat 62.79% 63.85% 66.43% 67.94%
Fight 77.41% 77.58% 79.83% 80.39%
G.O. Car 50.86% 51.19% 59.44% 60.31%
H. Shake 33.25% 33.63% 39.78% 40.73%
Hug 42.11% 42.84% 45.33% 48.61%
Kiss 56.14% 56.18% 63.2% 63.42%
Run 77.8% 78.02% 83.29% 83.87%
Sit D. 61.78% 62.49% 70.1% 70.37%
Sit up 18.85% 19.27% 24.95% 27.72%
Stand up 66.99% 67.27% 75.1% 75.55%
Mean 54.77% 55.2% 61.34% 62.5%
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TABLE XVIII
AVERAGE PRECISION VALUES ON THE HOLLYWOOD 3D DATASET.

RELM GEELM KELM GEKELM
Dance 34.42% 35.68% 38.91% 39.59%
Drive 51.93% 47.89% 65.01% 65.52%
Eat 10.72% 12.73% 8.04% 8.87%
Hug 8.95% 15.97% 10.56% 11.2%
Kick 19.21% 21.13% 22.76% 23.35%
Kiss 36.88% 38.61% 43.23% 43.95%
Punch 11.53% 13.39% 11.73% 12.29%
Run 9.25% 9.02% 26.78% 27.55%
Shoot 49.84% 50.55% 48.78% 49.34%
Sit down 44.18% 46.93% 47.35% 48.19%
Stand up 8.16% 9.84% 9.85% 10.46%
Swim 45.09% 49.29% 57.58% 58.62%
Use phone 42.93% 42.12% 29.11% 29.68%
No action 14.63% 15.26% 16.22% 16.48%
Mean 27.68% 31.14% 31.14% 31.79%

TABLE XIX
COMPARISON OF OUR RESULTS WITH SOME STATE-OF-THE-ART METHODS

ON THE OLYMPIC SPORTS, HOLLYWOOD2 AND HOLLYWOOD 3D
DATASETS.

Olympic Sports Hollywood2 Hollywood 3D
Method [41] - - 15%
Method [51] - - 26.11%
Method [52] 77.33% - -
Method [53] - 61.9% -
Method [54] 82.7% - -
Method [55] - 61% -
Method [56] 80.6% 59.5% -
Method [57] 83.2% 62.5% -
Proposed method 89.74% 62.5% 31.79%

V. CONCLUSIONS

In this paper, we proposed a novel extension of the Extreme
Learning Machine algorithm for SLFN network training that
is able to incorporate SL criteria on the optimization process
followed for the calculation of the network’s output weights.
The proposed Graph Embedded ELM (GEELM) algorithm
is able to naturally exploit both intrinsic and penalty SL
criteria that have been (or will be) designed under the Graph
Embedding framework. The proposed GEELM algorithm has
also been extended in order to exploit both intrinsic and
penalty SL criteria in arbitrary (even infinite) dimensional
ELM spaces. Extensive evaluation on nine publicly available
datasets shows the effectiveness of the proposed approach.
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