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Abstract—In this work, we propose a novel approach to
multiple measurement vector (MMV) compressed sensing. We
show that by exploiting the statistical properties of the sources,
we can do better than previously derived lower bounds in
this context. We show that in the MMV case, we can identify
the active sources with fewer sensors than sources. We first
develop a general framework for recovering the sparsity profile
of the sources by combining ideas from compressed sensing with
blind identification methods. We do this by comparing the large
known sensing matrix to the smaller matrix estimated by a blind
identification method. Finally, we demonstrate the performance
of this technique with a variety of data and blind identification
methods, and show that under certain assumptions, it is possible
to identify the active sources with only 2 sensors, regardless of
the number of sources.

Index Terms—Compressed Sensing, Blind identification

I. INTRODUCTION

W ork on compressed sensing began with the work of
Candès, Romberg, Tao [1], and Donoho [2] on the

single measurement vector (SMV) model, and it was later
demonstrated that improved results could be obtained by
employing a multiple measurement vector (MMV) model [3].
The latter constitutes the focus of this work.

Compressed sensing techniques are typically based on
computationally efficient methods for approximating the min-
imisation of the `0 pseudonorm. However, as we show in this
work `0 minimisation is not necessarily optimal.

The related problem of Blind Source Separation (BSS)
was first initiated through work on motion decoding in
vertebrates [4]. It has found uses in medical imaging [5],
signal processing [6] and electrocardiogram [7]. A number
of algorithms [8], [9] have been developed that are capable
of recovering the sources up to permutation and scaling (and
without further information, this is the best that can be done).
The problem of underdetermined BSS is much more difficult,
and typically it is only possible to accurately recover the
mixing model, which corresponds to the problem of blind
identification.

Blind identification is very closely related to BSS. Al-
though it has been known for quite some time that under-
determined blind identification methods are possible [10],
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it has not been until much more recently that practical
methods have been demonstrated for the general case [11],
[12], although there were some methods proposed for specific
cases and sparsity-based approaches [13], [14], [15].

It has been previously shown that the performance of
compressive sensing algorithms can be improved by using
partial information about the support [16], [17], and our
proposed method provides a way of estimating this in the
MMV case. To the best of oour knowledge, there are no
existing algorithms capable of estimating the sparsity profile
in the MMV case when there are at most as many sensors
as sources.

The rest of this work is organised as follows. In Section
II we introduce the mixing model we use. In Section III we
introduce a general framework for recovering the sparsity
profile. In Section IV we introduce several preexisting blind
identification algorithms, and in Section V we demonstrate
the effectiveness of applying these methods to suitable data.
Finally, we conclude our work in Section VI.

II. BACKGROUND

The SMV model is given by

x = As+ v (1)

Here, s ∈RN is the source vector, v ∈RM is the noise vector
which is typically assumed to follow a Gaussian distribution,
x ∈ RM is the vector of observations, and A ∈ RM×N is the
sensing matrix.

It has been been shown that under certain assumptions on A
[18] if s is k-sparse in the sense that at most k of its entries
are non-zero, 2k measurements are sufficient to recover s
exactly. However, it has also been shown that for practical
recovery algorithms we need O(k log(N

k )) measurements.
On the other hand, the following is a standard MMV CS

problem:
X = AS+V (2)

Here, S ∈ RN×L is the source matrix, v ∈ RM×L is the noise
matrix which is typically assumed to follow a Gaussian
distribution, x ∈ RM×L is the matrix of observations, and
A ∈ RM×N is the sensing matrix. In the MMV case, we
call S k-sparse if k rows of S are non-zero. Similarly, when



referring to `0 pseudonorm minimisation in this context, we
are referring to minimising the number of non-zero rows.

It has been shown that in the MMV case, if the columns
of S share the same sparsity profile and are k-sparse (i.e. at
most k non-zero components), we can relax the bounds from
the SMV case and M = k + 1 measurements are sufficient
to guarantee exact recovery [3]. We can also see that this
is the best that can be done by minimising the number of
non-zero rows. If we assume S is k−sparse and that we
have only k measurements (i.e. N = k), then we can pick
any arbitrary set of k rows of S, and then take Ã to be the
matrix we obtain by taking the corresponding rows of A. We
now take ˆ̃S = Ã−1X , and then construct an estimate of S, Ŝ by
mapping the rows of ˆ̃S back to the set of k rows we chose.
By construction, we have that AŜ = Â ˆ̃S = X , hence Ŝ is a
valid k−sparse solution. However, since the selection of the
set of k rows was arbitrary, in general Ŝ 6= S and therefore k
measurements are insufficient to recover S if our approach is
to minimise the number of non-zero rows.

By notation, Ai. denotes the ith row of the matrix A and
A. j the jth column of A.

III. METHOD

Let us note that equation 2 can be rewritten as

X = ÃS̃+V (3)

Here, S̃ is S after all the zero rows have been removed, and
Ã is A after all the columns of A corresponding to the zero
rows of S are removed. Ã is unknown, but we know each
column of Ã is equal to a column of A.

It has been known for some time that under some weak
assumptions blind identification algorithms can recover the
mixing matrix up to permutation and scaling if M = 2 [10],
no matter how large N is, with the accuracy of recovery
improving as L→ ∞. However, we can use the knowledge
of A to resolve the permutation and scaling ambiguities, and
therefore accurately recover the sparsity profile.

To solve the scaling ambiguity, we rescale the columns
of A (and therefore Ã) by dividing each column by its first
entry and then rescaling to unit norm. This works even if A
is complex.

The algorithm for identifying the sources that are active
(non-zero) as follows:

1) Choose the Blind Identification algorithm most appro-
priate for the nature of your data, and use it to recover
an estimate of Ã. Call this estimate ˆ̃A.

2) Rescale ˆ̃A and A by dividing each column of each
matrix by its first entry and scaling to unit norm.

3) For each column of ˆ̃A , ˆ̃A. j find the j that minimises
(4) and say that the jth source is active.∥∥∥ ˆ̃A. j−A. j

∥∥∥
2

(4)

Where Ai. denotes the ith row of the matrix A and A. j the jth

column of A.
Assuming that the entries of A are drawn from a continuous

probability distribution, with probability 1:

min
i, j,i6= j

(
∥∥A.i−A. j

∥∥
2) = ε > 0 (5)

Alternatively, this condition is also satisfied if spark(A)> 2.
Note that both the Restricted Isometry Property (RIP) and
the weaker Null Space Property (NSP) commonly found in
compressed sensing also imply this condition. Hence, if the
recovered column is within ε

2 of the real column, it will be
matched to the correct column of A. Therefore, assuming
that the blind identification algorithm used converges in the
following sense

P(max
i
(min

j
(
∥∥∥ ˆ̂A.i− Â. j

∥∥∥
2
))≥ ε

2
)→ 0 as L→ ∞ (6)

We have that the set of active sources is correctly identified
with probability tending to 1 as L→ ∞

IV. BLIND IDENTIFICATION ALGORITHMS

In this section, we provide a brief overview of the blind
identification algorithms that we will be using to test our
approach.

A. FastICA

The case M = k corresponds to the determined BSS case, and
therefore we have the choice of a vast variety of options. We
have chosen to use the popular FastICA algorithm [8].

FastICA is an Independent Component Analysis (ICA)
algorithm, requiring the sources to be non-Gaussian and
independent. Given X = AS +V , ICA algorithms work by
finding an unmixing matrix W such that the rows of WX
are statistically independent. The FastICA algorithm works
by minimising the mutual information through approximation
of the negentropy.

Although the number of sensors is reduced by only one
from the case of `0 pseudonorm minimisation (we need k as
opposed to k+1 sensors), this approach is still of significant
interest because it is still a determined problem, and therefore
recovering the sparsity profile is equivalent to recovering the
sources. The intuitive explanation is that we are effectively
imposing the dual conditions that S must have k non-zero
rows, and that these rows must be independent.

B. SOBIUM

For our blind identification algorithm, we used the Sec-
ond Order Blind Identification of Underdetermined Mixtures
(SOBIUM) algorithm [12]. This can identify the sources so
long as 2k(k−1) ≤M2(M−1)2, i.e. the number of sensors
required is proportional to the square root of the number
of active sources. The SOBIUM algorithm requires that the
sources be temporally correlated.



The SOBIUM algorithm works by calculating the covari-
ance matrices given by

Cp = E{xtxH
t+τp}, p = 1, ...,P (7)

These matrices are then stacked in a tensor in CM×M×P, and
the canonical rank-1 decomposition in k terms is calculated,
using the alternating least squares approach. Although [12]
states that one of the delays τp can be equal to zero, this
is in fact only true for high SNR, as can be clearly seen in
Figure 3.

C. ALESCAF

Finally, we examine the case with the absolute mini-
mum number of sensors, M = 2. For this case, we use the
ALESCAF algorithm [11].

In addition to the assumptions already made, we assume
that the sources are non-Gaussian and that their second char-
acterstic functions are finite, and have finite non-vanishing
derivatives up to order 3 in a region around the origin.

Blind identification using the second characteristic func-
tion was first proposed in [19] as an algebraic method for
M = 2 sensors and an arbitrary number of sources, and
was later extended for an arbitrary number of sensors in
[11], where the more robust tensor decomposition approach
was also proposed. The ALESCAF algorithm uses a similar
tensor factorisation approach to the SOBIUM approach, but
instead of estimating the covariance matrices, we estimate
the derivatives of the second characteristic function. When
using only third order derivatives, ALESCAF requires that
k≤ 3M−3. However with higher order derivatives this can be
relaxed. The ALGECAF algorithm which is also described in
[11] has no theoretical limit on k, but does require computing
derivatives up to order k which may be problematic.

V. RESULTS

For the sake of simplicity, we will assume that the number
of non-zero of S, denoted by k is known.

The success rate is defined as the number of truly active
sources that were marked as active divided by the total
number of truly active sources.

A. FastICA

For testing our approach with FastICA, we used the FastICA
MATLAB software package [20]. We used the tanh nonlin-
earity option.

In our experiments, S is a 6×5000 matrix, of which 3 of
the rows are non-zero, each corresponding to the real part of
distinct quadrature phase-shift keying (QPSK) signals.

The results can be seen in Figures 1 and 2. Figure 1 shows
how the success rate changes as the noise varies, and Figure
2 shows how the success rate varies as the number of samples
changes with a signal-to-noise ratio (SNR) of 50 dB.
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Figure 1. Success Rate of recovering sparsity profile with FastICA as noise
varies
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Figure 2. Success rate of recovering sparsity profile with FastICA as L
varies

B. SOBIUM

For testing our approach with SOBIUM, we implemented
the SOBIUM algorithm using the Tensor Lab package [21].
We generated our sources in the same way as in the original
SOBIUM paper - by first generating them as complex Gaus-
sian random variables, and then filtering them using a row
of a 16×16 Hadamard matrix - specifically the rows 1,2,4,7,
and 8. S is a 12×10000 matrix, of which 5 of the rows are
non-zero, each of the non-zero rows are a different one of
the filtered sources. A is a 4×12 matrix with entries drawn
from a complex Gaussian distribution. Noise was added in
the form of additive white Gaussian noise. The results are
shown in Figures 3 and 4. Figure 3 shows how the success
rate changes as the noise varies, and Figure 4 shows how the
success rate varies as the number of samples changes with a
SNR of -5 dB.

C. ALESCAF

For testing our approach with ALESCAF, we used the
implementation of ALESCAF from the CAF toolbox [22],
and used fourth order derivatives only.

Our sources were generated using the CAF toolbox using
the 4psk option with a support of {-1,1}. S is a 8×256 matrix
of which 4 of the rows are non-zero. A is a 2×8 matrix with
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Figure 3. Success Rate of recovering sparsity profile with SOBIUM
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Figure 4. Success rate of recovering sparsity profile with SOBIUM as L
varies

entries drawn from a Gaussian distribution. Noise was added
in the form of additive white Gaussian noise.

The results can be seen in Figures 5 and 6. Figure 5 shows
how the success rate changes as the noise varies, and Figure
6 shows how the success rate varies as the number of samples
changes with a SNR of 50 dB.

VI. CONCLUSIONS

In this work, we have developed a general framework for
recovering the sparsity profile with a minimal number of
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Figure 5. Success Rate of recovering sparsity profile with ALESCAF as
noise varies
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Figure 6. Success rate of recovering sparsity profile with ALESCAF as L
varies

sensors in the MMV model by using blind identification
methods, and we have demonstrated successful results using
a range of data and blind identification methods. In doing
so, we have also demonstrated that minimisation of the `0
pseudonorm is not always the optimal approach.

The results with the FastICA and ALESCAF algorithms
provide a strong motivation for investigating non-Gaussian
models for compressed sensing, which some researchers have
already begun to investigate [23], and the results with the
SOBIUM algorithm similarly provide motivation for using
compressed sensing models which take into account temporal
correlation, as has also been begun to be investigated [24].

Although our framework cannot provide the absolute
guarantees that `0 pseudonorm minimisation can provide,
it should be noted that those guarantees are only available
in the unrealistic noise free case. Further, `0 pseudonorm
minimisation is a computationally difficult problem, and so
approximate methods are used, with `1 minimisation being
one of the most popular techniques used in compressed
sensing.
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