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Abstract

We introduce the SPHERE project which is devoted to eHealth in a smart-home
context, and discuss the implications for such a system in terms of the quantifi-
cation and management of uncertainty for automated decision making in health
care. We then discuss the importance of calibration in such systems, particularly
in light of the differing operational contexts that will be encountered.

1 Shifting to a new health-care paradigm: the SPHERE IRC

Due to well-known demographic challenges, traditional regimes of health-care are in need of re-
examination. Many countries are experiencing the effects of an ageing population, which coupled
with a rise in chronic health conditions is expediting a shift towards the management of a wide
variety of health related issues in the home. In this context, advances in Ambient Assisted Living
(AAL) are providing resources to improve the experience of patients, as well as informing necessary
interventions from relatives, carers and health-care professionals.

To this end the EPSRC-funded “Sensor Platform for HEalthcare in a Residential Environment
(SPHERE)” Interdisciplinary Research Collaboration (IRC) [13, 14] has designed a multi-modal
system driven by data analytics requirements. The system is under test in a single house, and will
be deployed in a general population of 100 homes in Bristol (UK). The data sets collected will be
made available to researchers in a variety of communities.

Current research on data fusion and machine learning in the SPHERE project addresses two main
challenges, which are transparent decision making under uncertainty and adapting to multiple oper-
ating contexts. We proceed to describe these two challenges.

2 First challenge: Transparent decision making under uncertainty

Naturally, the SPHERE setting presents many sources of uncertainty. Firstly, we are dealing with
multiple sensor modalities (environmental, body-worn, video), each of which will have different
noise profiles and failure modes. Secondly, we are dealing with a situation where annotated or
labelled data is expensive and intrusive to acquire, and the resulting labels are potentially noisy and
inaccurate (indeed in some cases there may be no “ground truth” in the classical sense, and we need
to resort to modelling annotator disagreement explicitly). Lastly, patterns of human behaviour are
subject to many factors (internal and external) that may or may not be attributed to the particular
health context of a given individual.

Faced with such a situation, the most sensible approach would be to use “white-box” modelling
methods as far as possible. Model-based machine learning [5, 12] attempts to follow this ideal
by encoding assumptions about the problem domain explicitly in the form of a model. Indeed,
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the model can be viewed simply as this set of assumptions, expressed in a precise mathematical
form. These assumptions include the number and types of variables in the problem domain, which
variables affect each other, and what the effect of changing one variable is on another variable. The
result is that any decisions made by the system can be inspected, so that if the model is performing
poorly, the solution is to re-examine the assumptions being made.

In the Bayesian paradigm, degrees of belief in states of nature are specified through the use of
probabilities, which through the construction of probabilistic graphical models [10] allow us to
apply a principled mathematical framework of the quantification of uncertainty to perform model-
based machine learning. On the basis of the models we build, Bayesian decision theory tries to
quantify the trade-off between various decisions, making use of probabilities and costs [4, 3].

A typical problem that we face is that the differences between individuals will too large to be cap-
tured by a single model. Hierarchical Bayesian models [7] allow us to simultaneously generalise
over communities of residents whilst also learning personalised models. In addition, they allow us
to be more flexible with our priors, by specifying “hyper-priors”, and then performing inference over
the priors instead.

3 Second challenge: Adapting to multiple operating contexts

However, transparently dealing with degrees of belief does not solve all modelling challenges posed
by the SPHERE project. Our models and inferences have to be applied in multiple contexts, and
indeed any given context is liable to both gradual and abrupt shifts. In such situations, it will be
crucial that we are able to trust the probabilities coming from the system. A machine learning
system is well “calibrated” if the predicted probabilities it gives correspond to observed frequencies.
This is natural in forecasting (we would expect it to rain in 60% of cases where a weather forecaster
predicts a 60% chance of rain [11]) but carries over to machine learning as well. If a system is poorly
calibrated then it suggests a problem either in the model (such as an overly restrictive assumption)
or in the inference.

Different operating contexts also call for different performance metrics which perhaps incorporate
a different notion of expected loss [8]. If the goal is to minimise loss, for example for the case of
classification, a systematic approach would be that given a model, threshold choice methods that
correspond with the available information about the operating condition should be applied, followed
by comparison of their expected losses. Different classification performance metrics such as F-
score also imply a different notion of calibration [6]. More generally, the choice of the performance
metrics in use should be seen as another modelling assumption rather than being independent from
the model. Given that we expect the end users of our systems to include medical professionals as
well as the residents themselves, we can easily see how the types of decision we would want to
surface should be adaptable.

Explicitly modelling context change also favours domain adaptation and model reuse. We are build-
ing on the results of the REFRAME project [1], which developed a general methodology for model
reuse in machine learning called reframing [9]. The setting is exemplified by the recent ECML-
PKDD’15 Discovery Challenge MoReBikeS: Model Reuse with Bike rental Station data [2], which
encouraged participants to build predictive models for new bicycle rental stations making use of
previously trained models on other stations (for which the training data was however no longer
available).
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