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ABSTRACT ARTICLE HISTORY
We develop a random effects discrete choice model for the analysis of households’ choice of neighborhood Rec?ived April 2014
over time. The model is parameterized in a way that exploits longitudinal data to separate the influence Revised March 2016

of neighborhood characteristics on the decision to move out of the current area (“push” effects) and on KEYWORDS

the choice of one destination over another (“pull” effects). Random effects are included to allow for unob- Conditional logit model:

served heterogeneity between households in their propensity to move, and in the importance placed on Discrete choice model;

area characteristics. The model also includes area-level random effects. The combination of a large choice Neighborhood choice;

set, large sample size, and repeated observations mean that existing estimation approaches are often infea- Random effects panel model;
sible. We, therefore, propose an efficient MCMC algorithm for the analysis of large-scale datasets. The model Residential mobility

is applied in an analysis of residential choice in England using data from the British Household Panel Survey
linked to neighborhood-level census data. We consider how effects of area deprivation and distance from
the current area depend on household characteristics and life course transitions in the previous year. We
find substantial differences between households in the effects of deprivation on out-mobility and selection
of destination, with evidence of severely constrained choices among less-advantaged households. Supple-
mentary materials for this article are available online.

1. Introduction and factors that attract or “pull” households toward a particular
neighborhood (Lee, Oropesa, and Kanan 1994). However,
most previous research has focused exclusively on push factors
(e.g., Crowder and South 2008; van Ham and Clark 2009),
while studies that have investigated pull factors have restricted
analysis to the sample of movers and characterised origin and
destination areas along a single dimension of neighborhood
quality (e.g., Clark 1992; Clark and Ledwith 2007; Rabe and
Taylor 2010). A promising approach adopted in recent research
is a conditional logit model, a type of discrete choice model
where the categorical response is the neighborhood of residence
and neighborhood attributes are included as predictors (Ioan-
nides and Zabel 2008; Hedman, van Ham, and Manley 2011;
Bruch and Mare 2012). These models allow location choice
to depend on multiple neighborhood characteristics, but their
use to date has been confined to cross-sectional data or, when
applied to longitudinal data, has not fully exploited information
on repeated residential choices.

Longitudinal data of the type collected in household panel
studies and population registers provide rich information
on changes in households’ place of residence and in their
demographic and socioeconomic characteristics. A particular
advantage of longitudinal data, thus far ignored, is the ability

The sorting of households into neighborhoods has fundamental
implications for many social outcomes. Patterns of residential
mobility shape the spatial distribution of populations and the
extent to which certain groups, such as ethnic minorities, immi-
grants and the economically disadvantaged, are geographically
concentrated. Any study of neighborhood effects—the causal
effect of place on people—must tackle the issue of nonrandom
selection into places of residence. Indeed, it can be argued that
the selection process is integral to understanding the key issues
of interest (Bergstrém and van Ham 2010).

The availability of geographical identifiers in many datasets
means it is relatively easy to document where different types of
household are located. It is far more challenging to understand
why households have chosen the neighborhoods in which they
live. The difficulty arises because neighborhoods are multi-
dimensional packages of different attributes, in which types
of dwellings, physical geography, and social composition are
chosen simultaneously and tradeoffs between different area
characteristics when making a decision are inevitable. Of par-
ticular interest in residential location choice is the distinction
between factors that “push” households to leave a neighborhood
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to disentangle push and pull effects of area characteristics;
these effects are confounded when a cross-sectional approach is
taken. In this article, we develop a longitudinal discrete choice
model parameterized in a way that permits separation and joint
estimation of push and pull effects. While mixed logit models
have been developed for the analysis of longitudinal discrete
choice data (Jain, Vilcassim, and Chintagunta 1994; Bhat and
Guo 2004), to our knowledge, the distinction between push
and pull effects of alternative-specific attributes has not been
considered previously. Our model also allows the importance
of area characteristics to depend on observed time-varying
household characteristics, and household-level random effects
are included to account for unobserved heterogeneity in the
effects of neighborhood characteristics which may lead to
dependency in household choices over time. The random
effects are assumed to follow a multivariate normal distribution
which allows for correlation between push and pull effects of
a given neighborhood characteristic and between the effects of
different characteristics. We show that nonzero random effect
correlations have an important role to play in relaxing the
“independence of irrelevant alternatives” assumption. Spatial
correlation can be incorporated by including random effects
at a higher geographical level than neighborhood, for example
districts, allowing for correlation in the choice propensities for
neighborhoods within the same district.

A potential barrier to the application of random effects dis-
crete choice models to neighborhood choice is the computa-
tional challenges presented by typically large analysis datasets.
National panel studies usually have several thousands of respon-
dents which, when combined with multiple waves of measure-
ment and a large choice set, renders existing likelihood-based
and Bayesian estimation approaches infeasible. Even when
cross-sectional models have been used, previous studies have
reduced the size of the problem by focusing on choices within
a small geographical area (Bruch and Mare 2012) or by taking a
small subsample of the full choice set (Hedman, van Ham, and
Manley 2011). We propose an efficient, flexible Bayesian proce-
dure for estimation of random effects (mixed) discrete choice
models to longitudinal data with large choice sets.

The mixed logit model is illustrated in an analysis of residen-
tial choice in England between 1998 and 2008 using data from
the British Household Panel Survey linked with neighborhood-
level census data. In particular, we consider how the push and
pull effects of area deprivation and the pull effect of distance
from the current neighborhood depend on observed household
characteristics, while allowing for unobserved household het-
erogeneity. More generally, the methods we propose have appli-
cations in other settings where push and pull effects may be
of interest. For example, in studies of brand loyalty in market
research, a high price could push customers away from a par-
ticular brand, while a low price of a rival product could cause
customers to switch brands.

2. A Longitudinal Mixed Logit Model for Residential
Location Choice
2.1. Preliminaries

The following models are described in terms of household rather
than individual choices, while recognising that co-resident

nonrelated adults may be independent decision makers with
regard to residential mobility and neighborhood choice. Our
working definition of a household is given in Section 3.

We begin by setting out the classic discrete choice model
before considering extensions that allow separation of push and
pull effects of area characteristics, and differential push and pull
effects by observed and unobserved household characteristics.
Suppose that household i (i = 1, ..., n) chooses its area of res-
idence at year t (t =2,...,T) from a set C; containing R
potential areas. Some households will move between years t — 1
and ¢, which will typically lead to a change of area. The choice
set is permitted to vary across households and time because it is
both behaviorally unrealistic and computationally infeasible for
households to choose from a common fixed set of areas (Lee and
Waddell 2010). For example, the choice set might be restricted
to the set of areas within a specified distance of a household’s
location at t — 1.

Let y; be the categorical response indicating the observed
area of residence for household i at year t. A general discrete
choice model for the response probability is

eXp(nrit)

= r=1,..
ZkeC,-l exp (Mkir)

., Ry,
(1)

where 7, is the linear predictor which will usually be a func-
tion of area characteristics and their interactions with household
characteristics, both defined at year t — 1, and »,, is the vector
of linear predictors for household-year observation it.

The model in Equation (1) can also be expressed in terms
of the log-ratio of the choice probabilities for a pair of areas

rand s
log <p5it> = Nsit — Nrit- (2)

rit

Pr(yy =rin;y) = pris =

2.2. A Multinomial Logit Model with Push and
Pull Effects of Area Characteristics

We begin with a model that includes only area characteristics,
but allow their effects on the choice between areas r and s at ¢
in Equation (2) to depend on whether a household is resident in
one of these areas at t — 1. We show how this distinction, pos-
sible only with longitudinal data, allows estimation of push and
pull effects of area characteristics.

Let wyi—1) = I(yi¢—1) = r) where I(.) is the indicator func-
tion, and denote by z,_;) a p-vector of characteristics of area
r defined at wave t — 1. More generally, area characteristics can
also be household specific, for example the distance between a
potential area and the current place of residence. The linear pre-
dictor for a simple model including only area characteristics is

Nrit = Wrig-1) (@ + B 2r¢-1)) + (1 = Wrig—1) ¥ Zr1),

©)
where o is ascalar and 8 and y are parameter vectors. The type of
model defined by Equations (1) and (3), with covariates relating
to response alternatives and fixed coefficients across alternatives,
was originally referred to as a conditional logit model (McFad-
den 1974). However, it was subsequently shown to be equivalent
to the multinomial logit model, which traditionally has subject-
specific covariates and alternative-specific coefficients (Maddala
1983). In common with most of the discrete choice literature,



we therefore refer to the model as a multinomial logit model
hereafter. These models are widely used for analyzing categor-
ical responses where interest lies in the effects of attributes of
the response alternatives on individual choice, including appli-
cations to brand preference (e.g., Jain, Vilcassim, and Chinta-
gunta 1994) and transportation demand (e.g., Ben-Akiva and
Lerman 1985).

In the case of residential choice, Bruch and Mare (2012) first
proposed the inclusion of the lagged choice indicator w,;;_1)
and its interaction with area characteristics z,;_) to allow for
the possibility that households “evaluate their current location
differently from other potential destinations.” Equation (3) rep-
resents a reparameterization of their model in which B and
y may be interpreted as push and pull effects of z,;_;). The
interpretation of B and y, and our definition of push and
pull effects, can be seen more clearly by considering how a
household’s choice between two areas r and s at ¢ depends on
their residence at t — 1 according to the values of w,;;_1) and
Wsi(t—1)-

Case 1. Residentinr att — 1 (wyi—1) = 1, wsi¢—1) = 0). From
Equations (2) and (3), the log-odds of moving to area s between
t — 1 and t versus remaining in area r are

log <&> = )’TZs(tﬂ) - (05 + ﬂTZr(zfn) .
prit

We can also derive the log-odds of moving out of area r to any

area as

log (i) =log (%) =log [ > exp(r"z-1)

rit rit sshr

(4)

—(@+ B z,¢-1)). (5)

From Equations (4) and (5) we see that area characteristics influ-
ence residential mobility and location choice in two ways. First,
there are effects of the characteristics of the current area r on
moving out of r, represented by B. We refer to f as the “push”
effect of z,;,_1). Second, the characteristics of a potential area s
may attract (or repel) households from choosing s as a new des-
tination. We refer to y as the “pull” effect of z,;_1). The push
effect of z is conditional on the level of z in other areas in the
choice set, while the pull effect of z is conditional on the level of
z in the current area. The model may be extended to allow for
interactions between elements of z,;—1y and z;_;). For exam-
ple, a household’s sensitivity to area deprivation when choosing
a new area may depend on the level of deprivation experienced
in the current area.

In Equation (4), each area characteristic z has both a push and
pull effect. For some types of z, for example the distance or travel
time between a potential destination s and the origin area, only a
pull effect is defined. When the origin area is r, this is equivalent
to setting z,;—1) = 0.

« is the baseline log-odds of staying in r rather than moving
to a new area, referred to as the inertia parameter. The estimate
of o is expected to be large and positive because most households
do not change area between t — 1 and ¢.

Case 2. Resident in neither r nor s at t —1 (wyiq—1) =
0, wsi¢—1) = 0). For a household which is not resident in area
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rorsatt — 1, the log-odds of choosing area s over area r are

log <&> =7 @) = Z1-1)

rit

(6)

where, as in Case 1, y may be interpreted as a pull effect, but now
of one new area over another.

2.3. Allowing for Household Heterogeneity in Inertia and
the Effects of Area Characteristics

The linear predictor in Equation (3) can be extended to allow
inertia and the push and pull effects of z,,_; to depend on a g-
vector of household characteristics X;¢—1):

T T
Nrit = Writ—1) {Olo + o Xi—1) + By Zr—1)

+ BT (Xige—1) * Zri-1)}

+ (1 — wyig-1)) {}’glr(t—n + 7] (XKig—1) * Zr(t—l))} ,
(7)

where Xi(t—1) * Zy(t—1) = [xli(t_l)er(tfl), ey xqi(t_l)zf(tfl)]T is
the gp-vector formed by taking the element-wise product of x
and z.

o, is the effect of x on the log-odds of a move out of area r
between years t — 1 and ¢, and S, and p,, are the push and pull
effects of z when x = 0. Writing 8, = [ﬂlTl, cee, ﬁqu]T, By is the
change in the push effect of z for a 1-unit change in household
characteristic x; (k=1,...,q), and py; is the corresponding
change in the pull effect. For simplicity of notation, the same
set of household characteristics is assumed to influence mobility
and to moderate the effects of the z, but this restriction may be
relaxed.

It is straightforward to extend Equation (7) to include choice-
specific random intercepts and coeflicients of x. We consider the
addition of choice random effects, and random effects defined at
a higher level than neighborhood, in Section 2.6.

2.4. TheIndependence of Irrelevant Alternatives
Assumption

It follows from Equations (1) and (2) that the log ratio of the
choice probabilities for areas s and r depends on measured char-
acteristics of these areas, but not of other potential areas. This
property of the discrete choice model is known as the “inde-
pendence of irrelevant alternatives” (IIA), and it implies that the
choice between s and r is unaffected by the addition or exclusion
of other alternatives (Ben-Akiva and Lerman 1985).

The source of the IIA assumption can be seen more clearly
if the model is expressed in terms of continuous latent choice
propensities (or utilities) y7;, which underlie the observed choice
yir such that y; = r if y¥, > y¥, for r # s. The discrete choice
model given by Equation (1) can be written

Vi = Nyir + €rits
where €, are iid residuals, assumed to follow a Type I extreme
value distribution with variance %/6. The IIA property stems
from the independence of €,;, and will be invalid if the latent

propensities to choose areas r and s are correlated. In the con-
text of residential choice, nonzero residual correlation may arise
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because of similarity between areas on unmeasured factors used
by households in deciding where to live.

Various approaches have been proposed to relax the IIA
assumption, including generalized extreme value (GEV) models
and the multinomial probit model. The nested logit model is the
most widely used type of GEV model (e.g., Hensher, Rose, and
Greene 2005), but it requires the researcher to a priori partition
subsets (nests) of similar alternatives within which ITA might
reasonably hold. While the nested logit model is of limited use in
modeling residential choice because of the difficulty in identify-
ing areas that might be similar on unmeasured characteristics, it
has been used to model residential location choice jointly with
related decisions such as mode of transport and time of travel
for various types of activity (Ben-Akiva and Bowman 1998)
and residential mobility (Lee and Waddell 2010). Both appli-
cations embed a multinomial logit model for residential choice
within a nested logit model for the joint decision processes. The
multinomial probit model allows explicitly for residual correla-
tion by assuming that €,; follow a multivariate normal distri-
bution, but this is infeasible in situations where the choice set is
large. A more flexible way of accommodating similarity between
alternatives is to use a mixed model which allows for unob-
served heterogeneity between households in the effects of area
characteristics.

2.5. Unobserved Household Heterogeneity

The most popular models for unobserved between-subject het-
erogeneity are the normal-mixed model and the latent class
model (see Hensher and Greene (2003) and Keane and Wasi
(2013) for reviews of mixed logit models). The normal-mixed
model includes normally distributed random coefficients for the
effects of z,;—1). Log-normal distributions may be assumed for
coeflicients that are expected to have the same sign for all sub-
jects. The latent class model avoids parametric distributional
assumptions and assumes that subjects come from a finite set of
subpopulations (Greene and Hensher 2003; Domanski and von
Haefen 2010). We focus on normal-mixed models for several
reasons. First, a large number of latent classes may be required
to capture complex patterns of heterogeneity. In the applica-
tion to residential choice, for example, there may be between-
household differences in push and pull effects of multiple area
characteristics, leading to a multidimensional finite mixture dis-
tribution. Second, the estimation and interpretation of latent
class models is complicated by having a separate set of param-
eters for each class. Third, the direction and magnitude of the
correlations between multivariate normal random effects are
of direct substantive interest. For instance, correlated random
effects can provide insights into the nature of the association
between the household-specific push and pull effects of an area
attribute z, or between the push or pull effects of two different
area attributes.

While mixed logit models have been applied to cross-
sectional data, identification of unobserved household hetero-
geneity will generally be much improved by the availability
of longitudinal data. (See Revelt and Train (1998) for discus-
sion and applications of mixed logit models with normal and
log-normal random effects for repeated choice data.) In a
normal-mixed model the coefficients of the main effects of z,

B, and y, in Equation (7), are replaced by

Boi = By + ugi,
Yoi = Yo T Wi,

where ug; and u,; are vectors of household-specific random
effects which capture variation between households in the
importance placed on z in location decisions. We also allow
for unobserved heterogeneity in households’ attachment to their
current areas by replacing the inertia intercept parameter o by
the random coefficient

Qi = Qg + Ugi-
The random effects u; = [uy;, ugi, ugi]T are assumed to fol-
low a multivariate normal distribution with mean 0 and vari-
ance 2,,. Thus the linear predictor can be partitioned as n,; =
Wit + 8¢ Where 4, is the systematic (or fixed) component
given by Equation (7) and 4, is a random component which
varies across households:

Srit = Writ—1) (uai + ugi Zr(z71)) + (1 - wri(tfl))u)j;i Zr(t—1).
(8)
From (8) 6, also varies over time, but only through the observed
predictors wyi¢—1y and z,¢—1).

We now show how the inclusion of household random effects
relaxes the ITA assumption by considering how they affect the
ratio of (conditional and marginal) choice probabilities and the
correlation between latent choice propensities.

Ratio of Choice Probabilities. Equation (1) with 1,4 now defined
as the sum of (7) and (8) gives the probability of choosing area
r conditional on the household random effects u;. The addi-
tion of random coefficients ug; and u,,; allows the ratio of the
subject-specific choice probabilities for areas r and s to vary
across households according to differences in the (unobserved)
importance placed on observed area characteristics z. The ITA
property is still assumed to hold at the household level because
the ratio of subject-specific probabilities for areas r and s does
not depend on characteristics of any other area. However, this is
not the case for the ratio of unconditional or marginal choice
probabilities. Letting 7,4 (u;) denote the linear predictor for
the random effects model, the marginal (population-averaged)
response probability is given by

exp{nrir (w;)}
> kec, PNk (w;)}

Pr(y; = rln;) = ¢(u) du;,  (9)
where ¢ (.) is a multivariate normal pdf.

The log-ratio of the marginal response probabilities for areas
r and s is no longer simply the difference in the linear predic-
tors, as in Equation (2), because the summation in the denom-
inator of (9) does not cancel. Thus the ratio of the marginal
probabilities for r and s will depend on characteristics of other
areas, and the ITA assumption is relaxed at the population level
(Train 2003).

Correlation Between Latent Choice Propensities. The inclusion
of household-specific effects induces a correlation between the
latent choice propensities for any pair of areas r and s because
u; is common across the response alternatives faced by house-
hold i at time ¢. Consider a simplified form of Equations (7) and



(8) with one area characteristic z,;_1), leading to three random
effects (uqi, upi, uy;) with covariance matrix

2

0(1
52 _ 2
u=| %«p Op
2
Ouy Oy O,

Random effect covariances have received little attention in
previous applications of mixed logit models and, indeed, ran-
dom effects are commonly assumed to be independent. A
notable exception is Revelt and Train (1998) who contended
that correlation between random effects would generally be
expected. In the present application, the random effect covari-
ances are of particular interest because they provide information
about the associations between households’ latent mobility pref-
erences and the importance they place on z in residential deci-
sions. Suppose, for example, that high values of z in an area are
associated with an increased probability of moving out of that
area (By < 0) and a reduced probability of moving in (y, < 0).
Then og, > 0 implies a positive association between the push
and pull effects of z, adjusting for the moderating effects of x:
households who attach a higher-than-average importance to z
in the decision to move out of an area (ug; < 0) also tend to
have a higher-than-average sensitivity to z when choosing a new
destination (u,,; < 0). The random effect covariances also play
a crucial role in relaxing the IIA assumption, as shown below.

The covariance between the propensities to choose areas r
and s for household i at t depends on a household’s residence at
t — 1 as follows.

Case 1. Resident inr att — 1 (Wrie—1) = 1, wsi¢—1) =0). Fora
household considering a move from area r to s between t — 1
and ¢, the covariance between the latent propensities of remain-
ing in r and moving to s can be derived from Equation (8) as

Cov (Y, Vi) = cov(Ugi + UpiZri—1), UyiZsi—1))

= Zy(t—1)0ay + Zr(t—1)Zs(t—1)0 By (10)

when cov(e,;, €5;) = 0 and cov(,, €s5;) = 0 for r # s.

Thus the covariance depends on two components: (i) the
value of z in the potential area, weighted by the covariance
between the household-specific mobility propensity (u;) and
importance of z as a pull factor (u,;), and (ii) the similarity
between areas r and s on z, weighted by the covariance between
household-specific importance of z as a push and pull factor. If
z is mean centred, the second component of the covariance will
be highest for two areas with extreme above-average or below-
average values on z and 0 for two average areas.

Case 2. Resident in neither r nor s at t —1 (wy—1) =
0, wsi¢—1y = 0). The covariance between the latent propensities
of choosing between two potential areas when currently resident
in neither is

COV()’Z: , y;[) = COV(uinr(tfl) s uyizs(tfl)) = Zr(tfl)zs(tfl)odj .
(11)
Thus the covariance between the latent attractiveness of two
potential areas depends on their similarity with respect to z and
on the between-household variance in the pull effect of z.
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2.6. Unobserved Area Heterogeneity

The model may be further extended to allow for the effects of
unmeasured area characteristics on location choice by includ-
ing choice-specific random effects v, in the linear predictor.
However, it can be seen from the expressions for the covari-
ance between the latent propensities of choosing neighborhoods
r and s given by Equations (10) and (11) that the inclusion of
choice-specific random effects does not help to relax the IIA
assumption unless cov(v,, vs) 7# 0. A natural extension would
be to impose a spatial autocorrelation structure on the neighbor-
hood effects, for example to allow a nonzero covariance between
neighborhoods that share a boundary. Such spatial correlation
would arise if neighborhoods in close proximity share unmea-
sured attributes that influence a household’s location choice.
Bhat and Guo (2004) proposed a mixed spatially correlated logit
model for residential choice at a cross-section that includes a
dissimilarity parameter measuring the correlation between adja-
cent areas.

One issue when considering the addition of choice-specific
effects in applications where the choice set is large is that the
number of potential choices can exceed the number of decisions
actually made, leading to an identification problem because
many potential neighborhoods will not be chosen by the sur-
vey respondents over the observation period. An alternative
approach is to specify random effects for a broader area clas-
sification which we refer to as “districts” Denote by v, ~
N(0, 02) the random effect for the district d containing neigh-
borhood r. When neighborhoods in the choice set are nested
within districts, we have a hierarchical structure and the inclu-
sion of higher-level random effects allows for a form of spatial
correlation. Specifically, for neighborhoods r and s in the same
district, Equations (10) and (11) will include ;2 as an additional
term. The model assumes that neighborhoods are exchangeable
within districts, but this may be reasonable after adjusting for
neighborhood characteristics such as distance from the current
location.

The area-level random effects capture differences between
districts in the mobility propensity of their residents and in their
attractiveness as places to live. We might expect the influence of
these unmeasured area characteristics to differ for residents and
nonresidents, perhaps due to differences in knowledge about
area attributes that are not captured by covariates. A possible
specification of the area effects, that mirrors the structure of
Equation (7), is

Writ—1) A0y + (1 — Wrir—1))0r(a)» (12)

where parameter A allows the effect of unmeasured district char-
acteristics on household location choice, and thus the between-
district variance, to depend on whether the household is cur-
rently resident in district d.

2.7. Sampling Alternatives in Large Choice Sets

Estimation of a multinomial logit model with alternative-
specific attributes requires the data to be structured so that
there is a record for each of the R; response alternatives for
household i at year t. This can lead to a prohibitively large
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analysis file when the choice set is large, especially when deci-
sions are observed over a long period for a large sample of
households. A useful consequence of the IIA property, how-
ever, is that consistent parameter estimates can be obtained
from a random subset of the full choice set, selected with-
out replacement and including the record corresponding to the
chosen alternative (McFadden 1978). For each household-year
observation it, denote by g, the probability that the record
for alternative r is selected, where ¢,+ = 1 if y; = r. McFad-
den (1978) described a situation where the choice set is fixed
and ¢, = q. More generally, we may wish to include informa-
tion about the likelihood that household i chooses alternative r
at t, referred to as importance sampling (Ben-Akiva and Bow-
man 1998; Bhat, Govindarajan, and Pulugurta 1998; Brown-
stone, Bunch, and Train 2000). In residential location choice,
for example, the choice set for many households is restricted
to areas within commuting distance of the current place of
work. This leads to substantial variation in R;; across house-
holds and time, where R; will typically be considerably larger in
metropolitan areas than in rural areas. In such cases g, will be
inversely proportional to R;, and unequal selection probabilities
are accommodated in the model by including —log(q,i) as an
offset term (e.g., Ben-Akiva and Lerman 1985; Bruch and Mare
2012).

Unfortunately, when the IIA assumption is relaxed, for
example by including household-specific random coefhicients,
McFadden’s theoretical result no longer holds and random sam-
pling of choice sets may yield inconsistent estimates (Nerella
and Bhat 2004; Keane and Wasi 2012). This has led authors
to explore empirically the impact of the size of the sampling
fraction g on parameter estimates and standard errors from
mixed multinomial logit models. Nerella and Bhat (2004) con-
ducted a simulation study with 750 individuals, a choice set of
size 200 and g varying between 0.025 and 0.75. They found a
substantial impact of g on the bias and efficiency of the esti-
mated parameters, and suggested that g should be set at 0.25
as a minimum. However, their study was based on a cross-
sectional design for which mixed logit models may be weakly
identified. Other research, using data on repeated choices as
in our application to neighborhood choice, suggests that reli-
able estimates may be obtained using much smaller sam-
pling fractions. From a potential choice set of 689 alternatives,
Brownstone, Bunch, and Train (2000) used a random subset of
28 (4%) and reported that increasing the sampling fraction
had little effect on parameter estimates. In the most compre-
hensive study to date Keane and Wasi (2012) considered the
impact of using random subsets of the choice set for three
alternative mixed MNL models for panel data, including the
normal mixed model, through Monte Carlo simulation and sen-
sitivity analysis of real data. Based on simulations with 200 indi-
viduals, 20 choice occasions and 60 alternatives, biases were
small when random subsets of 10 or 20 alternatives were used.

2.8. MCMC Estimation

The most commonly used approaches for fitting mixed logit
models are maximum simulated likelihood and Markov chain
Monte Carlo (MCMC) estimation. Train (2001) compares these

approaches and favors MCMC for both theoretical and com-
putational speed reasons. He gives an MCMC algorithm for
such models which generalizes work by Allenby (1997), and
builds on ideas of Albert and Chib (1993). In this article, we
modify Trains algorithm to accommodate parameterizations
designed to improve the efficiency of MCMC estimation, which
is especially important when the sample size and choice set are
large. We consider a combination of hierarchical centering and
orthogonal parameterization, adapting algorithms used for esti-
mation of multilevel binary response models (as in Browne et al.
2009). This section provides an overview of estimation of the
model with household-level random effects, given by the sum of
Equations (7) and (8). Further details of the MCMC algorithm
for the extension to area effects are provided in the online sup-
plementary materials.

The fixed part of the model, Equation (7), includes parame-
ters for mobility (e and @), and push effects (B, and B,) and
pull effects (y, and ;) of choice-specific attributes z. From an
algorithmic point of view, it is convenient to distinguish between
coeflicients that have an associated household-specific random
effect (o, By, ¥o)> as described in Section 2.5, and those with a
fixed effect only (a;, B,, y,). Train (2003) focused on a general
model where all coeflicients are random at the subject level, but
considers the above specification as a special case that may be
useful in certain situations, such as when the full random effects
covariance matrix cannot be identified. In the application that
follows, the variances of the random effects for 8, and p,, the
main push and pull effects of area attributes z,_), are of par-
ticular interest as measures of between-household heterogeneity
in the effects of z,;_1) that is unexplained by household covari-
ates Xj—1)-

Let 0 = [a, ,BOT, yg T and 0; = 0 + u; with associated data
vector A,;;_1), and let ¢ = [a], ﬂlT, yIT with data vector
B,i¢t—1). The linear predictor for the mixed logit model can be
reexpressed as

it = 0] Asie—1) + @ Brig—1) — 10g(qrit)

where 6; ~ MVN(0, ) and log(g,i) is an offset (see Section
2.7).

It is common to parameterize the model in terms of ; rather
than @ and u,. This parameterization, known as hierarchical cen-
tering (Gelfand, Sahu, and Carlin 1995), can improve mixing
when the random effect variances in ,, are not too small, as
it allows a Gibbs sampling step for @ rather than a Metropolis
step. The other speed up we consider is an orthogonal repa-
rameterization similar to that of Browne et al. (2009). This
involves replacing B,;;_1) by an orthogonal vector that spans the
same space. This is achieved using a standard orthogonalising
algorithm and we can then run MCMC using the transformed
predictors. The chains for the parameters in the original param-
eterization can be retrieved by a simple matrix transform based
on the inverse of the transformation of the predictors (see
Browne et al. 2009, for details).

The algorithm has been implemented in the Stat-JR pack-
age (Charlton et al. 2013) which allows MCMC chains to be
run in parallel with both hierarchical centering and orthog-
onal parameterization of the fixed predictors. The code has
also been optimized so that estimation times are significantly



faster than implementing the same model in alternative pack-
ages such as WinBUGS (Lunn et al. 2000). Optimization for the
mixed logit model involves the storage of intermediate quanti-
ties and constants within the likelihood to reduce the number of
computationally-expensive calculations, for example exponenti-
ations. The likelihood also contains, for each observation, a lin-
ear predictor with many parameters and several steps involve
calculation of terms that are equal to the linear predictor minus
one element. Storage of the linear predictor for each observation
and a technique of subtracting the relevant element, updating it
and then adding it back to the linear predictor lead to a substan-
tial reduction in computing time.

2.9. Monte Carlo Simulation Study

A simulation study was conducted to explore the impact of sam-
ple size (number of households #) and panel length T on the bias
and accuracy of estimates of the regression coefficients and ran-
dom effect parameters. The linear predictor of the data gener-
ating model has the same form as Equations (7) and (8), with
one area-level variable z and one household characteristic x
and household random effects for inertia and the push and pull
effects of z. The simulation conditions included sample sizes of
1000 and 1500 households and panel lengths of 5, 10, and 15. We
also investigated the extent to which the correct random effects
covariance structure was recovered by fitting models to simu-
lated data with correlated and independent household random
effects.

As expected, bias decreases as the number of waves per
household increases, with the greatest impact on the inertia vari-
ance (02), the largest of the random effect variances. However,
even in the case of 1000 households and 5 waves, the biases are
not large (and are in line with posterior mean estimates from
a simulation study by Browne and Draper (2000) that assessed
MCMC estimation of random effects binary logistic models with
a uniform prior). Increasing the number of households by 50%
also leads to bias reduction. Finally, when a model with corre-
lated random effects is fitted to data generated from a model
with independent random effects, the correct correlation struc-
ture is recovered. There are substantial improvements in accu-
racy with increases in either the number of households or the
number of waves, with the largest impact observed for the ran-
dom effect parameters and in particular the inertia variance. For
the regression coefficients, the mean standard error across repli-
cations and the empirical standard error (standard deviation of
the parameter estimates) are very similar for all scenarios con-
sidered, and there is minimal loss in accuracy when the random
effects correlation structure is incorrectly specified. Details of
the design of the simulation study and results are given in online
supplementary materials.

3. Between-Household Heterogeneity in the Effects
of Area Deprivation and Distance on Residential
Choice in England

3.1. Data

Neighborhood Definition and Variables. We define a neighbor-
hood as a Lower Super Output Area (LSOA), census areas which
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contain between 400 and 1200 households and an average of
1500 individuals. There were 32,482 LSOAs in England by the
2001 Census definition. We characterize neighborhoods along
two dimensions: deprivation and distance from a person’s cur-
rent residence. Deprivation has been widely used as a measure
of neighborhood quality in earlier analyses of residential choice.
Previous studies have considered the push effect of deprivation
and, among movers, compared the level of deprivation in the ori-
gin and destination neighborhood (e.g., Rabe and Taylor 2010).
The distance between the current neighborhood and a poten-
tial destination has not been previously studied, but is likely to
be an important factor in location choice. We anticipate that
many households would prefer to remain close to their cur-
rent residence when considering a local move, especially fami-
lies with school-age children. However, for new homeowners or
for households seeking a larger home, a longer-distance move
may be necessary to secure affordable housing.

The measure of deprivation used is the LSOA-level English
Index of Multiple Deprivation (IMD), a weighted combina-
tion of seven domain indices which capture different aspects of
deprivation within a neighborhood, relating to income; employ-
ment; health and disability; education, skills, and training; bar-
riers to housing and geographical access to services; crime; and
living environment (see Dibben et al. 2007, for details). Three
versions of the IMD have been constructed for 2004, 2007, and
2010. The score we allocate to a particular LSOA depends on
the household survey year, as described below, and is standard-
ised using the English LSOA-level average and standard devia-
tion from 2007.

The second neighborhood measure is the distance in kilome-
tres between a household’s LSOA of current residence and each
alternative LSOA. These are the straight-line distances between
the population-weighted centroids of each area, calculated from
the Ordnance Survey centroid grid references provided by the
Office for National Statistics (ONS). An important difference
between our distance and deprivation measures is that distance
is household specific and, as a consequence, only its pull effect
can be defined. If z;;_1) denotes the distance between area s and
the current location of household i att — 1, then z,4;—;) = 0 and
B vanishes from the expression for the log-ratio of the probabil-
ities of moving to area s rather than remaining in r (Equation
4).

To define the choice set of neighborhoods relevant to a
household we use the household’s current Travel-to-Work-Area
(TTWA). TTWA is a labor market area definition, derived from
2001 Census information on home and work addresses, and
used by the ONS to reflect areas where the bulk of the resident
population also work within the same area. TTWA boundaries
are nonoverlapping and contiguous, and cover the whole of the
United Kingdom. TTWAs do cross national boundaries, and of
the 243 that cover the entire United Kingdom, 166 contain at
least one LSOA in England. In our study a household’s choice
set of neighborhoods includes all English LSOAs within the cur-
rent TTWA. The mean number of LSOAs per TTWA is 196, but
TTWAs are substantially larger in metropolitan areas such as
London with 5467 LSOAs.

Due to the large number of LSOAs, it was not possible to
identify choice-specific random effects to allow for between-
area heterogeneity. Random effects were therefore specified at a
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higher “district” level, as described in Section 2.6, where “dis-
tricts” are defined as Medium Super Output Areas (MSOA).
MSOAs are census areas with between 2000 and 6000 house-
holds. There were 6781 MSOAs in England at the 2001 Census,
and LSOAs are nested within MSOAs.

Household Panel Data. Data on the characteristics and res-
idential locations of households are taken from the British
Household Panel Survey (BHPS) (ISER 2009). The BHPS is a
nationally representative sample of about 5500 private house-
holds recruited in 1991, containing approximately 10,000 adults
who are interviewed annually. The core questionnaire elicits
information on topics such as household composition, housing
tenure, employment and income at each annual interview. Our
analysis uses information from waves 8-18, covering the period
1998-2008. Earlier waves are excluded because of lack of com-
parable area-level IMD data in this period.

One challenge in the analysis of household panel data is
how to define a household longitudinally when its composition
may change over time. The usual approach to this problem is
to follow individuals, rather than attempt to track households,
with analyses based on person-year observations. However,
this is inappropriate for couple households where decisions
are likely to be made jointly while partners are co-resident
(Steele, Clarke, and Washbrook 2013). For this reason, couples
contribute only one person-year record to the analysis file while
they are together. Using this approach, couples are regarded as a
single decision-making unit, and any other individual is treated
as an independent decision-maker. Thus an individual living
with unrelated adults is treated the same as an individual living
on their own.

We model a household’s residential location choices for up to
10 years but, due to a combination of late entry to the study and
dropout, only 17.7% of households are present at all waves and
the mean number of waves is 4.9. (Late entrants include children
of original sample members (OSMs) who join the panel at age 18
and new partners of OSMs.) The following analysis is based on
records from any household observed for at least two adjacent
years t — 1 and t. Households contribute records to the analy-
sis file up to the time of dropout and, for cases with intermit-
tent nonresponse, after their return to the study. This approach
assumes that incomplete data are missing at random, condi-
tional on observed residential location choices together with
household and area covariates. In reality, a “missing not at ran-
dom” (MNAR) mechanism is more plausible because moving
house between t — 1 and t is a cause of dropout at . Washbrook
et al. (2014) investigated the effect of nonignorable dropout in
an analysis of residential mobility using two types of selection
model applied to BHPS. Although they found strong evidence of
nonignorability, modeling the dropout process had little effect
on the coefficient estimates of the residential mobility model.
Our model of residential choice could also be extended to incor-
porate a dropout model, but we do not pursue this here because
it seems reasonable to expect that MNAR is more of a concern
for mobility than for choice of area.

In the residential mobility literature, it is usual to distin-
guish local or short-distance moves from longer-distance moves
because the two types of moves have very different determinants.
By restricting the choice set to LSOAs within the TTWA of

residence at t — 1, we focus on local moves within a given labor
or housing market which tend to be triggered by family events
such as the arrival or departure of a child (Clark and Huang
2003). Because of our focus on movement within labor market
areas, the sample is further restricted to individuals of working
age, defined as between 18 and 59 years old at ¢.

Household-level characteristics considered in the analysis are
for the most part defined at t — 1. We define seven categories
of household type, distinguishing single males and females; sin-
gle parents (of either sex) of a child under 16; and couples with
a resident youngest child aged 0-4, 5-10, 11-15, and 16 or
more. Housing tenure is categorized as owned (outright or with
mortgage), private rented, social (council or Housing Associa-
tion) rented, and living with family. This last group consists of
people who are a relative (other than a spouse) of the house-
hold reference person (HRP). The HRP is the person legally
or financially responsible for the accommodation. Ninety-five
percent of individuals in the “living with family” group are
children living in the parental home, with siblings of the HRP
making up the largest group among the remainder. We mea-
sure the gross household income over the previous 12 months
as the combined incomes of the two members of a couple, or
the individual income of a single person. The log of income in
pounds is included in the model. We also include some indi-
cators of life course transitions that occur between ¢ — 1 and
t, that is, contemporaneously with the choice of location at ¢.
These include the birth of a child, a move into or out of home
ownership, a move out of the family home into social or pri-
vate rental, and all other tenure transitions (e.g., between private
and social rented accommodation). Indicators of partnership
formation and dissolution between t — 1 and t were considered
in preliminary analysis, but were not retained as the additional
effects of these variables on location choice were found to be
insignificant.

We also tested for period effects on mobility and in the push
and pull effects of area characteristics by including year dum-
mies among the predictors of inertia and their interactions with
deprivation and distance. As there was little evidence of period
effects over our observation period of 1998-2008, we adopted a
simpler model specification which assumes time-invariant iner-
tia and push and pull effects.

The analysis sample consists of 30,912 person-wave observa-
tions from 6249 individuals (treating couples as a single “indi-
vidual” as described above). The overall annual mobility rate is
10.8% and 34.8% of households move at least once during the
10-year observation period.

Sampling Choice Sets. Expanding the data to obtain one record
for each LSOA in a household’s choice set results in a person-
wave-LSOA dataset of over 29 million observations. LSOAs were
randomly sampled from this expanded dataset with probabil-
ity inversely proportional to the size of the TTWA, while always
retaining the records for the LSOAs of residence at t — 1 and ¢.
Thus, for household i resident in TTWA jatt — 1 the probabil-
ity that LSOA r is selected from their choice set is

c
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Rj)j is the number of areas in the choice set of household i at
year t given residence in TTWA j, and the constant ¢ is chosen
so that the number of records in the person-wave-LSOA file is
approximately equal to a target of m,,, according to
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where R; is the total number of LSOAs in TTWA j and m; is
the total number of person-wave-LSOA records in TTWA j.
The following results are based on an analysis file with my,, =
800,000. To assess sensitivity of estimates to random sampling
of the choice set, the analysis was repeated for two different ran-
dom subsets of person-wave-LSOA records: the first with the
same value of m;,, and the second with m;, = 1,600,000. The
parameter estimates and credible intervals were found to be very
similar for these different random samples.

c

3.2. Results

As described above, we focus on the effects of two neighbor-
hood (LSOA) characteristics on location choice: area depriva-
tion (IMD), and distance from a household’s current residence.
We allow for both observed and unobserved heterogeneity in
the push and pull effects of IMD and the pull effect of dis-
tance through their interactions with the household character-
istics x;;—1) described in the previous section and the inclu-
sion of household-specific random effects. In addition, mobility
(inertia) is modeled as a function of x;;_1), again allowing for
unobserved heterogeneity. We also consider models with ran-
dom effects at the MSOA level.

Assessment of Convergence and Model Fit. The results presented
below are based on five parallel chains of 100,000 MCMC iter-
ations, each using a different starting value and with a burn-in
sample of 10,000. Uniform priors were assumed for all parame-
ters. Convergence was assessed using a range of graphical diag-
nostics and the potential scale reduction factor (PSRF) (Gelman
et al. 2004). Visual inspection of trace plots of each parameter
for the multiple chains suggested adequate mixing. Following
the iterative graphical approach of Brooks and Gelman (1998),
the within-chain variance, a weighted average of the within and
between-chain variance, and the PSRF were examined for sub-
sets of the chains. All had stabilized by 100,000 iterations, and
the final PSRF estimates were close to 1 for all parameters. Fur-
thermore, increasing the chain length led to little change in
the running means of the posterior estimates. Hierarchical cen-
tering and orthogonal parameterization were considered, sep-
arately and in combination, in an attempt to improve mixing.
For the fixed parameters, orthogonal parameterization led to
substantial reductions in the effective sample size (ESS) (Kass
etal. 1998). As in this case hierarchical centering had almost no
impact on the ESS of the random effect variances and covari-
ances, we present results from using only orthogonal parame-
terization.

Three models were fitted and compared using the Bayesian
Deviance Information Criterion (DIC) (Spiegelhalter et al.
2002). A model with household and area covariates, as in Equa-
tion (7), has a DIC of 52,525. The DIC decreases to 44,854 with
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the addition of household random effects, and there is a fur-
ther decrease to 41,151 when area (MSOA) random effects are
included. The specification of the area effects in the selected
model is a special case of Equation (12) with A = 1. In the more
general model with A unconstrained, the chains for the between-
area variance and A mixed very poorly, suggesting that the data
did not support the extra complexity. We, therefore, assume
that unmeasured area characteristics have the same influence on
moves out of an area and on that area being chosen as a new
destination.

The fit of the selected model was assessed using graphical
posterior predictive checks (Gelman and Hill 2007). Replicates
of the multinomial response y*P were simulated using every
1000th draw from the parameter chains for the fitted model,
including predicted values of the random effects. Simulation was
carried out sequentially with the lagged choice indicator w;¢—1)
and covariates relating to the current area (distance and depriva-
tion at origin) updated at each wave to reflect the dynamic struc-
ture of the model. The replicates were generated from predicted
response probabilities computed for each area in the full choice
set, not only the random subset selected for analysis. Test statis-
tics T (y"P) were chosen to assess the model’s ability to capture
the two main components of the model: household mobility and
residential choice among movers. Figure 1 shows the distribu-
tion across replicates of the proportion of households who never
moved over the observation period and the proportion of moves
where there was an increase or decrease in deprivation of more
than 0.5 standard deviation units between the destination and
origin area. Comparison of the posterior predictions of each test
statistic with the same statistic computed for the observed data
T'(y) shows that the model provides a good fit to these aspects
of the data.

Effects of Household Characteristics and Differential Push Effects
of Area Deprivation on Mobility. The results for the full mixed
logit model are shown in Tables 1-3 and Figure 2. The estimates
shown in the “main effects” columns of Table 1 are the effects of
household characteristics X;_1) on the odds of a move to a new
area between years t — 1 and t; these are the exponents of the «
parameters in Equation (7) after reversing their signs. The first
row gives exp(—ap) the odds of a move for households taking
the reference value for each variable in X;;_1). The remaining
estimates are the odds ratios (OR) for each household charac-
teristic k, exp(—oax), where an OR greater than 1 implies that a
higher value on that covariate (or being in a particular covari-
ate category) is associated with an increased odds of a move.
These estimates are for households in an area with an average
level of deprivation. As the model includes household and area
random effects, all estimates are median ORs, that is the covari-
ate effects for households at the mean of the multivariate random
effects distribution and for neighborhoods (LSOA) in an area
(MSOA) at the mean of the area-level random effects distribu-
tion. Lower household income and the presence of a new baby
or young (preschool) child are associated with a higher annual
probability of moving to a new neighborhood. There is a strong
relationship between housing tenure and neighborhood change
(estimates not shown): private renters are the most mobile and,
not surprisingly, a change in tenure usually coincides with a
move.
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Figure 1. Posterior predictive checks for the probability (a) that a household never moves and, among movers, that deprivation in destination area is more than 0.5 standard
deviations (b) lower and (c) higher than in origin area. The vertical lines indicate the observed values of the test statistics T (y). The histograms show T (y"P) for 100 replicates

under the selected model.

Differential Push and Pull Effects of Deprivation and Distance on
Mobility and Area Choice. Also shown in Table 1 are the inter-
action effects between x;,_1) and area deprivation (IMD) on
the odds of a move. These estimates are the exponents of the
B parameters in Equation (7), after reversing their sign. The
first row gives exp(—po), which is the multiplicative effect of a
1 standard deviation increase in IMD in the current area on the
odds of moving out for the reference group. Two types of IMD
effects are presented: the interaction effects exp(—fS1x), which
represent differential push effects of IMD compared to the ref-
erence group, and, for categorical household covariates, the total
or overall push effects for each households in each category,
exp(—(Bo + Pik)). Similarly, the estimates shown in Table 2 are
the pull effects of IMD and distance from the current area on
neighborhood choice for the reference group, exp(y,) in Equa-
tion (7), and the differential and total pull effects by household
characteristics, exp(y;;) and exp(y, + ¥1x). The estimates for
IMD are the effects of a 1 standard deviation increase in IMD
in area s on the odds of choosing s rather than another area r at
year t, holding constant IMD in r, where r could be the area of
residence att — 1. The estimates for distance are the effects of an
increase of 1 km in the distance between area s and the area at
t — 1 on the odds of choosing s rather than 7, holding constant
the distance between r and the current area.

Table 1. Effects of selected household characteristics and differential push effects
of deprivation (IMD) on odds of moving out of current area of residence.

Effects of IMD

Main effects Interaction Total
Household
characteristict Mean 95% ClI Mean 95% Cl Mean
Reference group®  0.0002  (0.0002,0.0003) 1.66  (1.22,2.19) -

log(income) 0.90 (0.85,0.95) 1.05

Household type t — 1 (ref=couple no child)

(0.99,1.11) -

Single female 0.82 (0.53,1.21) 0.85 (0.57,1.22) 1.40
Single male 0.64 (0.44,0.91) 077  (0.54,1.06) 127
Single parent 0.99 (0.61,1.50) 0.44 (0.28,0.65) 0.72
Couple, y 0-4 1.60 (1.11,1.58) 0.71  (0.50,0.97) 116
Couple, y 5-10 1.14 (0.72,1.71) 0.74 (0.47,1.1) 1.21
Couple, y 11-15 0.90 (0.52,1.47) 076  (0.44,1.20) 1.24
Couple, y 16+ 0.59 (0.33,0.96) 0.96  (0.58,1.51) 158
Birth (t — 1, t] 3.28 (2.16,4.75) 149 (1.04,2.06) 2.45

For the reference group of households we find that, as
expected, a higher level of deprivation in a neighborhood is
associated with an increase in the probability of out-mobility
(Table 1) and a decrease in the probability of being chosen as a
destination by movers (Table 2). Households are also less likely
to move to neighborhoods that are far from their current place of
residence (Table 2). However, the interaction effects in Tables 1
and 2 show that the effects of IMD, and to a lesser extent of dis-
tance, vary by household characteristics. In Table 1 an interac-
tion OR > 1 for characteristic k indicates that the positive push
effect of IMD for that subgroup of households is stronger than
for the reference group, implying a greater aversion to remaining
in a deprived area (and a total OR exceeding the OR for the ref-
erence group). An interaction OR < 1 may imply a weaker posi-
tive effect of deprivation or even a negative effect for a particular
group. As the pull effects of IMD and distance are negative for
the reference group (Table 2), an interaction OR < 1 implies a
stronger negative effect of increasing deprivation or distance in
area s on the odds of choosing s over another area.

Although there is little evidence that the push effect of
deprivation depends on household income, higher income is
associated with a stronger aversion to deprivation when choos-
ing a new area, most likely because higher-income households

Table 2. Differential pull effects of deprivation (IMD) in area s and its distance from
the current area on odds of choosing s over another area r.

IMD Distance

Interaction Total Interaction Total
Household
characteristic’ Mean 95%Cl Mean Mean 95%Cl Mean
Reference group* 0.29 (0.24,036) - 0.55 (0.52,0.58) -
log(income) 0.96 (0.93,0.99) 0.28 1.01 (1.00,1.02) -
Household type t — 1 (ref = couple no child)
Single female 0.89 (0.72,1.09) 0.26 104 (0.99,1.09) 0.57
Single male 1.04 (0.86,1.26) 0.31 1.07 (1.03,1.12) 0.59
Single parent 120 (0.93,152) 0.35 0.97 (0.92,1.03) 0.54
Couple, y 0-4 115 (0.92,1.42) 0.34 0.98 (0.94,1.02) 0.54
Couple, y 5-10 1.08 (0.79,1.42) 0.31 0.94 (0.89,0.99) 0.52
Couple, y 11-15 0.98 (0.65,1.40) 0.29 0.93 (0.87,0.98) 0.51
Couple, y 16+ 1.62 (1.12,2.25) 0.47 0.94 (0.88,1.00) 0.52
Birth (t —1,t] 1.47 (1.14,1.85) 0.43 0.94 (0.90,0.98) 0.52
Deprivationinareaatt —1 112 (1.04,119) 033 - - -

*The model also includes housing tenure and change in tenure. The push effects
of IMD by tenure are shown in Figure 2(a). *Couple with no children at t — 1 or
birthin (t — 1, t], owner-occupiers att — 1with no changeintenurein (t — 1, t]
and mean log(household income).

Note: Estimates are posterior means and 95% credible intervals (2.5 and 97.5 per-
centiles) of odds ratios (OR). ORs with 95% Cl excluding 1are highlighted in bold.

*The model also includes housing tenure and change in tenure. The pull effects of
IMD and distance by tenure are shown in Figure 2(b)-(c). *Couple with no chil-
dren at t — 1 or birth in (t — 1, t], owner-occupiers at t — 1 with no change in
tenurein (t — 1, t] and mean log(household income).

Note: Estimates are posterior means and 95% credible intervals (2.5 and 97.5 per-
centiles) of odds ratios (OR). ORs with 95% Cl excluding 1are highlighted in bold.
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Figure 2. Effects of IMD and distance from current area on mobility and area choice by housing tenure att — 1and t: (a) shows the effect of increasing IMD in the current
area on the odds of a move out of that area, while (b) and (c) show the effects of increasing IMD and distance from the current area for area s on the odds of choosing s
rather than another area. Estimates are the posterior means and 95% credible intervals of odds ratios for the effects of a 1SD increase in IMD and a 1km increase in distance.

are better able to act on preferences toward living in better-off
areas. This result is consistent with research in the United States,
Sweden and Britain that finds that household income constrains
movers access to more advantaged neighborhoods (Ioannides
and Zabel 2008; Hedman, van Ham, and Manley 2011; Clark,
van Ham, and Coulter 2013). The differential pull effect of depri-
vation by the level of area deprivation at origin is in line with
the income effect: deprivation is a less important factor when
choosing a new area for households currently living in a more
deprived area. The effect of distance also depends on income,
with a weaker effect for higher-income households.

Previous research on Britain suggests that area deprivation
exerts a push effect on mobility among couples but not sin-
gles (Rabe and Taylor 2010) while singles are more likely than

Table 3. Estimated standard deviations (diagonal) and correlations (off-diagonal)
of household-level random effects, and SD of area-level random effect.

Inertia Push:IMD  Pull:IMD Pull: Distance
Inertia 3.03
(2.83,3.23)
Push: IMD —0.09 1.56
(—0.22,0.05)  (1.29,1.81)
Pull: IMD —0.10 0.23 0.68
(—0.25,0.05) (0.03,0.43) (0.57,0.80)
Pull: Distance 0.58 —0.01 0.08 0.44
(0.54,0.63) (— 0.13,0.09) (— 0.03,0.21)  (0.42,0.47)
Random effect means® 838 —0.49 -123 —059
95% plausible range* (2.44,14.32)(— 3.55,2.57) (—2.56,0.10) ( —1.45,0.27)
Between-area SD 138
(1.29,1.47)

TEstimates of inertia, push and pull effects of IMD, and pull effect of IMD on the
log-odds scale for the reference group, that is o, B, Yo.1:D and Y0.pistance:
*Calculated as the random effect mean =+ 1.96 times the random effect SD.
Note: Estimates are posterior means and 95% credible intervals (2.5 and 97.5 per-
centiles). Correlations with 95% Cl excluding 0 are highlighted in bold.

couples to move to less advantaged areas (Clark, van Ham,
and Coulter 2013). However, we find little evidence of a differ-
ence in the push or pull effects of deprivation for singles and
couples without children: differences between singles and cou-
ples only emerge when they have dependent children. Depri-
vation in the current area of residence has a weaker effect on
the decision to move out for single parents and couples with
a preschool child than for other household types, and there is
also a suggestion that deprivation has a weaker deterrent effect
on choosing a new area among couples with older children
(aged 16+) than for households with a younger child or no chil-
dren. Distance is a more important factor in movers’ choice of
destination for couples with school-age children than for other
household types, which may reflect stronger local ties and a
reluctance to move far from current schools among these fam-
ilies. A birth between years t — 1 and ¢ strengthens the push
effect of deprivation during the same period, but also weak-
ens aversion to deprivation when choosing a new area to live.
These apparently contradictory findings may be due to a desire
to move out of a deprived area among some new parents while
others compromise on neighborhood quality in the search for
an affordable family home.

Another source of heterogeneity in the importance of depri-
vation and distance in residential location decisions is hous-
ing tenure and changes in tenure. Figure 2 shows estimates
of the push effect of IMD on mobility and the pull effects
of IMD and distance from the current area for households
whose tenure remains the same at t — 1 and ¢ (“static”) and for
households who change tenure (“transitions”). Starting with
households whose tenure did not change, we find that higher
deprivation in the current area is associated with increased
odds of a move for homeowners, but the effect of deprivation
switches direction and becomes nonsignificant for private and
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social renters (Figure 2(a)). Furthermore, private renters are less
averse to deprivation than homeowners when choosing a new
area (Figure 2(b)), while the effect of deprivation on the area
choices of social renters is not significant. Distance is an impor-
tant factor for all three tenure groups, but less so for renters than
for homeowners (Figure 2(c)). In Britain, private renters tend
to be more mobile than owner-occupiers (e.g., Rabe and Taylor
2010; Steele, Clarke, and Washbrook 2013) and may, therefore,
be less concerned about neighborhood factors. On the other
hand, rented accommodation, especially social housing, tends
to be located in the most deprived areas (Clark, van Ham, and
Coulter 2013) which limits the chance of a move to an affluent
area without a change in tenure. Low mobility within the social
housing sector, particularly in high-demand areas in the South,
is well documented (e.g., Kearns and Parkes 2003) and previous
research has found that social renters have limited opportunities
to “move up” to less-advantaged areas or to maintain residence
in better-off areas (Clark, van Ham, and Coulter 2013).

Turning to households who changed tenure, higher depriva-
tion in the area of origin is associated with a lower probability of
leaving that area for private renters who made the transition into
home-ownership (Figure 2(a)), although new homeowners tend
to choose less-deprived areas when choosing a new destination
(Figure 2(b)). Individuals who left the family home for private
rented housing have a tendency either to remain in or move to
a deprived area, most likely because of a greater availability of
lower-cost accommodation in such areas. Finally, proximity to
the current residence is an important factor for all households
who change tenure, but less so for new homeowners and home-
leavers.

Unobserved Heterogeneity in Push and Pull Effects. Table 3
shows estimates of the variances and correlations between
the four household-level random effects representing time-
invariant propensities to stay in the same area (inertia), and sen-
sitivities to deprivation as a push or pull factor in residential
location choice and distance from the current area as a pull fac-
tor. The results presented are from the full model that allows for
differential effects of deprivation and distance by the observed
household characteristics of Tables 1 and 2 and Figure 2. There
is considerable variation between households in the propensity
to stay in the same area and in the effects of deprivation and
distance on location choice. Based on the normality assump-
tion, 95% of households are expected to have a baseline log-
odds of remaining in the same area between 2.44 and 14.32,
while the corresponding ranges for the effects of IMD and dis-
tance span zero. The proportion of households for whom higher
deprivation is associated with higher odds of a move is esti-
mated as Pr(—py; > 0) = Pr(f;; < 0.49/1.56) = 62%, where
Bg; ~ N(0, 1), which suggests that a substantial number of
households are unable to move out of deprived areas (assuming
an underlying preference to live in more prosperous neighbor-
hoods). By similar calculations, the proportion of households
with an aversion to deprivation when choosing a new area and
with a preference toward areas that are close to their current res-
idence are 96.5% and 91%, respectively.

After accounting for differential effects of deprivation and
distance by observed household characteristics, there remains
a significant correlation between inertia and the pull effect of

distance. This strong, positive correlation suggests that more
mobile households have a stronger-than-average preference
to remain close to their current neighborhood when moving
house. Put another way, households that move less frequently
are prepared to move greater distances when they do so. There
is also a moderate, positive correlation between the push and
pull effects of deprivation, which implies that households with
a stronger-than-average aversion to remaining in a deprived
neighborhood have a tendency to avoid more deprived areas
when choosing a new place to live.

For neighborhoods (LSOAs) r and s in different MSOAs, the
log-odds of choosing s versus r depends on the difference in their
unmeasured MSOA-level characteristics vy — vr(4). The con-
tribution of area effects to the standard deviation in the log-odds
is estimated as +/2 x 1.38 = 1.95. Thus area effects are sizeable,
although variation between households in neighborhood choice
is dominated by the substantial variation in household inertia.
This between-MSOA variation also implies that there is a sim-
ilarity between neighborhoods in close proximity (in the same
MSOA) in their probability of being chosen as a place to live.

4. Discussion

This article has presented a general mixed logit model which
makes use of longitudinal data to distinguish, and estimate
simultaneously, the push and pull effects of multiple area
attributes on residential location choice. An efficient MCMC
algorithm was proposed which, together with sampling of the
choice set, allows consideration of a larger set of potential desti-
nation areas, larger sample size, and longer observations period
than has been possible in previous research.

Our analysis of household heterogeneity in the effects of
neighborhood deprivation on out-mobility and movers’ selec-
tion of a new destination suggests that the residential choices
of less-advantaged households are severely constrained. We find
that low income is associated with a lower probability of mov-
ing to a more advantaged neighborhood while private and social
renters are less likely than owner-occupiers to move out of
deprived areas. As argued by other authors (e.g., Clark, van
Ham, and Coulter 2013), such constraints in the housing mar-
ket lead to increasingly selective migration with disadvantaged
households unable to “move up” to better-off areas, a situa-
tion which is likely to worsen with rising house prices in the
United Kingdom. We also find that even for local moves within
labor market areas, the influence of distance of a potential
destination from the current residence depends on household
characteristics.

The focus of the analysis presented here is household het-
erogeneity in the importance placed on two area character-
istics, deprivation and distance, in location choices. Another
avenue for research would be to compare the push and pull
effects of multiple area attributes—such as crime, house prices,
and school quality—for different types of household. It is also
straightforward to extend the model to include random coetf-
ficients on interactions between household and area character-
istics, Xj—1 * Z—; in Equation (7), thus allowing for hetero-
geneity in the importance placed on an area characteristic z
within groups defined by x. A consequence of this more general
specification is that the covariance between individual choice



propensities given by Equations (10) and (11) would depend not
only on z, but also on (possibly time-varying) household char-
acteristics.

Supplementary Materials

The online supplementary materials contain further details of the MCMC
algorithm and the extension to include area effects. Also provided are details
of the design of the simulation study and results.
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