
                          Molnár, T. G., Insperger, T., Hogan, J., & Stepan, G. (2016). Estimation of
the bistable zone for machining operations for the case of a distributed
cutting-force model. Journal of Computational and Nonlinear Dynamics,
11(5), [ 051008-1]. DOI: 10.1115/1.4032443

Peer reviewed version

Link to published version (if available):
10.1115/1.4032443

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via American Society of Mechanical Engineers at http://dx.doi.org/10.1115/1.4032443.

Copyright © 2016 by ASME

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73982814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1115/1.4032443
http://research-information.bristol.ac.uk/en/publications/estimation-of-the-bistable-zone-for-machining-operations-for-the-case-of-a-distributed-cuttingforce-model(42e48a3d-8f6a-48a1-b254-4c77bda12280).html
http://research-information.bristol.ac.uk/en/publications/estimation-of-the-bistable-zone-for-machining-operations-for-the-case-of-a-distributed-cuttingforce-model(42e48a3d-8f6a-48a1-b254-4c77bda12280).html


Estimation of the bistable zone for machining
operations for the case of a distributed

cutting-force model

Tamás G. Molnár
Department of Applied Mechanics

Budapest University of Technology and Economics
Budapest, Hungary

e-mail: molnar@mm.bme.hu

Tamás Insperger
Department of Applied Mechanics

Budapest University of Technology and Economics
Budapest, Hungary

e-mail: insperger@mm.bme.hu

S. John Hogan
Department of Engineering Mathematics

University of Bristol
Bristol, UK

e-mail: s.j.hogan@bristol.ac.uk
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Regenerative machine tool chatter is investigated for a
single-degree-of-freedom model of turning processes. The
cutting force is modeled as the resultant of a force system dis-
tributed along the rake face of the tool, whose magnitude is a
nonlinear function of the chip thickness. Thus, the process is
described by a nonlinear delay-differential equation, where
a short distributed delay is superimposed on the regenerative
point delay. The corresponding stability lobe diagrams are
computed, and it is shown that a subcritical Hopf bifurcation
occurs along the stability boundaries for realistic cutting-
force distributions. Therefore, a bistable region exists near
the stability boundaries, where large-amplitude vibrations
(chatter) may arise for large perturbations. Analytical for-
mulas are obtained to estimate the size of the bistable region
based on center manifold reduction and normal form cal-
culations for the governing distributed-delay equation. The
locally and globally stable parameter regions are computed
numerically as well using the continuation algorithm imple-
mented in DDE-BIFTOOL. The results can be considered as

an extension of the bifurcation analysis of machining opera-
tions with point delay.
Keywords: metal cutting, turning, delay-differential equa-
tion, distributed delay, Hopf bifurcation, center manifold re-
duction, bistable zones

1 Introduction
Suppressing or avoiding harmful vibrations (chatter)

during machining is very important in terms of increasing the
accuracy and productivity of metal cutting processes. Ma-
chine tool chatter has many unfavorable effects: it reduces
the surface quality, limits productivity, increases tool wear,
produces noise, and may even damage the tool. One of the
most accepted explanations for machine tool chatter is the
so-called surface regeneration effect [1,2]: the machined sur-
face becomes wavy due to the relative vibrations between
the tool and the workpiece, and the surface waviness ex-
cites the oscillations of the machine tool-workpiece system



in the subsequent cut. Hence the surface waviness is regen-
erated during consecutive cuts and vibrations amplify in a
self-excited manner. This phenomenon can be described by
delay-differential equations. Chatter corresponds to a large-
amplitude oscillating solution of this equation. Based on the
stability analysis of the stationary motion, so-called stabil-
ity lobe diagrams can be created, which identify the chatter-
free parameter domains on the plane of the spindle speed
and the depth of cut. These stability charts help in the choice
of technological parameters associated with optimal material
removal rate.

In this paper we present stability lobe diagrams of or-
thogonal turning operations. According to experimental re-
sults, see e.g. [3–5], the stability lobes tend to shift upward
at low spindle speeds. One possible explanation for this phe-
nomenon is the concept of process damping: the increased
stability is due to an additional damping force inversely pro-
portional to the spindle speed. According to [3–6], this addi-
tional damping force originates from the interference of the
tool flank with the wavy surface of the workpiece. Accord-
ing to the model described in [6], this force is also due to
the dependence of the instantaneous chip thickness on the
vibration velocity of the cutting tool. An alternative expla-
nation of the same phenomenon is the so-called short regen-
erative effect [7, 8]: the interface between the tool and the
chip is represented by a finite contact surface, and the cutting
force is modeled as the resultant of a force system distributed
along the rake face of the tool. Since the chip needs a certain
time to slip along the tool, an additional (short) distributed
delay is introduced in the model equations. Although the
distributed delay is significantly shorter than the regenera-
tive delay, it may result in qualitative changes in the stability
lobe diagrams. Thus, the change in the stability properties at
low spindle speeds can be described by a multiscale mech-
anism: by the interplay of a large point delay and the short
distributed delay.

In this paper, we extend the model of [7] and investigate
the short regenerative effect for orthogonal cutting taking the
nonlinearity of the cutting-force characteristics into account.
Section 2 describes the investigated mechanical model and
derives the governing delay-differential equation. Section 3
explains the results of the linear stability analysis and shows
the occurrence of a Hopf bifurcation at the stability bound-
aries. In Sec. 4, center manifold reduction and normal form
calculations are carried out to estimate the amplitude and
stability of the periodic orbit arising from the Hopf bifur-
cation. Section 5 shows that a bistable region exists near the
stability boundaries, where two stable solutions, stationary
cutting and large-amplitude chatter coexist. Here, an ana-
lytical estimate is given for the size of the bistable region,
which is also determined numerically in Sec. 6 using DDE-
BIFTOOL [9,10]. The main results are summarized in Sec. 7.

2 Mechanical Model
The single-degree-of-freedom model of turning opera-

tions shown in Fig. 1 is investigated. The differential equa-
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Fig. 1. Single-degree-of-freedom model of turning operations with
distributed cutting force

tion governing the tool motion assumes the form

mẍ(t)+ cẋ(t)+ kx(t) = Fx(t) , (1)

where m, c, and k are the modal mass, damping, and stiff-
ness parameters, respectively, and Fx(t) is the x-directional
cutting-force component acting on the tool.

2.1 Cutting-Force Models
We follow the model of [7], where the linear stability

of cutting processes with distributed cutting force was ana-
lyzed. We model the cutting force Fx(t) as the resultant of
a force system Px(t,s) distributed along the rake face of the
tool on the chip-tool contact region of size l (cf. Fig. 1). We
use the local coordinate s ∈ [−l,0] to describe the cutting-
force distribution, and assume that Px(t,s) can be decom-
posed into a time-dependent magnitude FT

x (t,s) and a time-
independent weight function W (s):

Fx(t) =
∫ 0

−l
Px(t,s)ds =

∫ 0

−l
FT

x (t,s)W (s)ds . (2)

This assumption was verified experimentally for stable sta-
tionary cutting using a split-tool [11,12] and using a sapphire
tool [13]. We also assume that this decomposition is valid in
the case of small perturbations around the stationary cutting.

Furthermore, we assume that the chip slips along the
rake face of the tool with the constant cutting speed v, which
can be expressed in terms of the workpiece diameter D
and the angular velocity Ω of the workpiece: v = ΩD/2.
Hence we introduce the local temporal coordinate θ = s/v,
θ ∈ [−σ,0], and rewrite Eqn. (2) in the form

Fx(t) =
∫ 0

−σ

FT
x (t,vθ)w(θ)dθ , (3)

where σ = l/v is the time it takes for a given particle of the
chip to travel the distance l, and the weight function w(θ) =
vW (vθ) characterizing the shape of force distribution along
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Fig. 2. Force characteristics of two different cutting-force models:
Taylor force (panel a) and Tobias force (panel b)

the rake face is normalized so that

∫ 0

−σ

w(θ)dθ = 1 . (4)

The magnitude FT
x (t,vθ) of the cutting-force distribu-

tion is related to the uncut chip thickness h(t,θ) by the
cutting-force characteristics. The two most widely accepted
characteristics are the power law (or Taylor force) [14] and
the cubic characteristic (or Tobias force) [15], but other func-
tions are also used, see [16] and the references therein. The
Taylor force can be given in the form

FTaylor
x (t,vθ) =

{
Kaphq(t,θ) if h(t,θ)≥ 0 ,
0 if h(t,θ)< 0 , (5)

where K is the measured cutting coefficient, q = 3/4 is the
cutting exponent, ap is the chip width. The Tobias force ex-
pression reads

FTobias
x (t,vθ)

=

{
ap
(
ρ1h(t,θ)+ρ2h2(t,θ)+ρ3h3(t,θ)

)
if h(t,θ)≥ 0 ,

0 if h(t,θ)< 0 ,
(6)

where the following constants were identified in the exper-
iments reported in [15] for a milling tool of 4 teeth: ρ1 =
2.44384× 1010 N/m2, ρ2 = −2.165664× 1014 N/m3, and
ρ3 = 8.15076×1017 N/m4.

The two force characteristics can be seen in Fig. 2.
Both functions are nonlinear and monotonously increasing
for positive chip thickness h(t,θ) > 0, and are zero for neg-
ative chip thickness h(t,θ) < 0, that is, when the tool loses
contact with the workpiece during large-amplitude chatter.
In this work however, we exclude the latter case and assume
h(t,θ)> 0 during the entire machining operation. There are
two fundamental differences between the cutting-force mod-
els: the Taylor force has infinitely large derivative (vertical
tangent) at zero, which makes the mathematical treatment
difficult near the loss of contact, and the cubic force char-
acteristic possesses an inflection point, which plays an im-
portant role in the nonlinear dynamics of high-performance
metal cutting [17].
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Fig. 3. Distribution of the shear stress along the rake face of the tool

2.2 Instantaneous Chip Thickness
According to the theory of regenerative machine tool vi-

brations, the instantaneous chip thickness h(t,θ) can be given
as a function of the tool position at the actual and the previ-
ous cut:

h(t,θ) = h0 + x(t− τ+θ)− x(t +θ) , θ ∈ [−σ,0] , (7)

where h0 is the prescribed (mean) chip thickness, and τ is the
regenerative delay, which now equals the rotational period:
τ = 2π/Ω. Note that the argument of the tool position is
shifted by θ to account for the short time the chip needs to
slip along the rake face from the tip to the position s.

2.3 Cutting-Force Distribution
The shape w(θ) of the cutting-force distribution can be

determined from the literature on normal and shear stress dis-
tributions along the chip-tool interface, see [18–20] and the
references therein. In our model we use the x-directional
component of the cutting force, which, in case of zero rake
angle, is the resultant of the shear stress. According to
[6, 11, 12, 21, 22], the shear stress T has a plateau near the
tool tip and then decays to zero at the end of contact, see
Fig. 3 (a). Whereas in [13, 23] it was shown that the shear
stress T increases from a small value at the tip to a maxi-
mum Tmax, and then decays, cf. Fig. 3 (b).

Since the majority of the literature describes the shear
stress using the plateau-and-decay distribution, we investi-
gate the distribution of Fig. 3 (a), where chip-tool interface
consists of a sticking region with constant shear stress and a
sliding region with decaying stresses. Accordingly, we ap-
proximate the shape of force distribution by

w(θ) =


1
σ

1− e−α+1

2− (α+1)e−α+1 if θ ∈ [−ασ,0] ,

1
σ

1− eθ/σ+1

2− (α+1)e−α+1 if θ ∈ [−σ,−ασ) ,

(8)

where α = ls/l is the sticking length to contact length ratio.
According to the experiments reported in [11,12,21,24], α=
0.3..0.6. Note that w(θ) in Eqn. (8) satisfies condition (4).



2.4 Third-Order Form of the Equation of Motion
Equation (1) can be divided by m and written as

ẍ(t)+2ζωnẋ(t)+ω
2
nx(t) =

1
m

Fx(t) , (9)

where ωn =
√

k/m is the natural angular frequency of the
undamped system and ζ = c/(2

√
km) is the damping ra-

tio. Note that Eqn. (9) is nonlinear in x through Fx(t). The
chatter-free stationary cutting is associated with the equilib-
rium x(t)≡ x0 =F0/(mω2

n), where F0 =Kaphq
0 for the Taylor

and F0 = ap
(
ρ1h0 +ρ2h2

0 +ρ3h3
0
)

for the Tobias force ex-
pression.

In order to investigate machine tool chatter, we shift
our coordinate to the equilibrium and use the perturbation
ξ(t) = x(t)−x0. The instantaneous chip thickness expressed
in terms of ξ(t) reads

h(t,θ) = h0 +ξ(t− τ+θ)−ξ(t +θ) , θ ∈ [−σ,0] , (10)

whereas the equation of motion becomes

ξ̈(t)+2ζωnξ̇(t)+ω
2
nξ(t) =

1
m

∫ 0

−σ

∆FT
x (t,vθ)w(θ)dθ . (11)

Here ∆FT
x (t,vθ) = FT

x (t,vθ)−F0 denotes the variation of the
cutting-force magnitude, which can be approximated by the
third-order polynomial

∆FT
x (t,vθ)≈ k1 (ξ(t− τ+θ)−ξ(t +θ))

+ k2 (ξ(t− τ+θ)−ξ(t +θ))2

+ k3 (ξ(t− τ+θ)−ξ(t +θ))3 , θ ∈ [−σ,0] .
(12)

In the case of the Taylor force, we get this polynomial by the
Taylor expansion of Eqn. (5) up to third order with respect to
h(t,θ) around h0. The corresponding coefficients are

k1 =
3
4

Kaph−1/4
0 , k2 =−

1
8h0

k1 , k3 =
5

96h2
0

k1 . (13)

For the Tobias force, substitution of Eqn. (10) into Eqn. (6)
yields the cubic polynomial form (12) without approxima-
tion. Here the coefficients are

k1 =ap
(
ρ1 +2ρ2h0 +3ρ3h2

0
)
,

k2 =ap (ρ2 +3ρ3h0) ,

k3 =apρ3 . (14)

Note that the third order form is required for the subsequent
bifurcation analysis.

Based on Eqns. (11)-(12), the tool motion is governed
by an autonomous nonlinear differential equation with dis-
tributed delay. The kernel w(θ) of the distributed delay term
originates in the shape of force distribution along the tool’s
rake face. The distributed delay is of length σ, and is super-
imposed on the regenerative point delay τ. In this study, the
ratio of the two delays is assumed to be constant:

σ = ετ . (15)

Note that the ratio ε = l/(Dπ) and hence is equivalent to the
ratio of the contact length l and the perimeter Dπ of the work-
piece, since σ = l/v, v = ΩD/2 and τ = 2π/Ω. Therefore,
ε can also be determined during stress distribution measure-
ments along the rake face. According to [11, 12], the ra-
tio ε typically ranges between 0.0005 and 0.05. Since the
point delay τ is called the regenerative delay, we refer to the
additional σ-long distributed delay as the short regenerative
delay, while its influence on the dynamics of the process is
called the short regenerative effect.

We now write Eqns. (11)-(12) in dimensionless form.
We introduce the dimensionless time t̃ = ωnt, and replace
temporal derivatives by dimensionless ones indicated by
prime according to the rule �̇= d�/dt = ωnd�/dt̃ = ωn�′.
In a similar manner, we introduce the dimensionless delays
τ̃ = ωnτ and σ̃ = ωnσ, as well as the dimensionless local
temporal coordinate θ̃ = ωnθ, θ̃ ∈ [−σ̃,0]. We also rescale
w(θ) as w̃(θ̃) =w(ωnθ)/ωn and ξ(t) as ξ̃(t) = ξ(t)/h0. After
dropping the tilde the governing equation reads

ξ
′′(t)+2ζξ

′(t)+ξ(t)

= p
∫ 0

−σ

[
(ξ(t− τ+θ)−ξ(t +θ))

+η2 (ξ(t− τ+θ)−ξ(t +θ))2

+η3 (ξ(t− τ+θ)−ξ(t +θ))3
]

w(θ)dθ , (16)

where p = k1/(mω2
n) is the dimensionless chip width being

proportional to the actual chip width ap. The dimensionless
cutting-force coefficients η2 and η3 are expressed in the form

η2 =
k2

k1
h0 =


−1

8
Taylor force ,

ρ2h0 +3ρ3h2
0

ρ1 +2ρ2h0 +3ρ3h2
0

Tobias force ,
(17)

η3 =
k3

k1
h2

0 =


5

96
Taylor force ,

ρ3h2
0

ρ1 +2ρ2h0 +3ρ3h2
0

Tobias force .
(18)

Note that the coefficients η2 and η3 are functions of the mean
chip thickness h0 only in the case of the Tobias force. They
are constant for the Taylor force. The subsequent sections
discuss the stability and bifurcation analysis of Eqn. (16).



3 Linear Stability Analysis
Linearizing Eqn. (16) around the trivial solution ξ(t)≡ 0

yields

ξ
′′(t)+2ζξ

′(t)+ξ(t)

= p
∫ 0

−σ

[ξ(t− τ+θ)−ξ(t +θ)]w(θ)dθ . (19)

The stability of Eqn. (19) was analyzed in [7]. It was shown
that a Hopf bifurcation occurs at the stability boundaries,
which gives rise to oscillations at a well-defined dimension-
less angular frequency ω. Note that a fold bifurcation cannot
happen in this system. In [7] the D-subdivision method was
used to derive the linear stability boundaries, which are pa-
rameterized by

ψ = ωτ . (20)

Note that parameter ψ has physical meaning: it represents
the phase shift between the waves on the machined surface
cut momentarily and those cut one revolution ago. The sta-
bility boundaries can be given in the form

ω(ψ) =−ζ
R0(ψ)

S0(ψ)
+

√
ζ2 R2

0(ψ)

S2
0(ψ)

+1 ,

pst(ψ) =−
2ζω(ψ)

S0(ψ)
,

Ω(ψ) =
2π

τ(ψ)
=

2πω(ψ)

ψ
, (21)

where R0(ψ) and S0(ψ) are the following integral terms:

R0(ψ) =
∫ 0

−σ

[cos(ωθ)− cos(ω(θ− τ))]w(θ)dθ =
ω2(ψ)−1

pst(ψ)
,

S0(ψ) =
∫ 0

−σ

[sin(ωθ)− sin(ω(θ− τ))]w(θ)dθ =−2ζω(ψ)

pst(ψ)
.

(22)

The D-curves in Eqn. (21) can be depicted on the plane of
the dimensionless angular velocity Ω and dimensionless chip
width p, resulting in so-called stability lobe diagrams or sta-
bility charts. For Ω = 0 and p = 0 no cutting takes place,
hence these lines are always part of the stable region. The
linear stability charts will be presented later in Fig. 4 together
with the global stability boundaries.

From this point on we investigate the Hopf bifurcation
and consider the system at the stability boundary (21). For
the sake of simplicity, we omit the argument ψ. We use the
dimensionless chip width p as a bifurcation parameter and
denote its value at the linear stability boundary by pst. First
we prove that there is indeed a Hopf bifurcation at the stabil-
ity boundaries. For this step, we analyze the eigenvalues (or

characteristic exponents) of Eqn. (19), which are the roots of
the characteristic function

D(λ) = λ
2 +2ζλ+1+ p

∫ 0

−σ

[
eλθ− eλ(θ−τ)

]
w(θ)dθ . (23)

The system is asymptotically stable if all the infinitely
many eigenvalues lie in the negative half of the complex
plane, whereas at the stability boundaries two eigenvalues
λ = ±iω lie on the imaginary axis. According to [25, 26], a
necessary condition for a Hopf bifurcation is that the criti-
cal eigenvalues of the system cross the imaginary axis with
nonzero speed as the bifurcation parameter p is increased.
Hence the real part of the critical characteristic exponents
must change with p, which implies that the following deriva-
tive must be nonzero

γ = Re
[

dλ

dp

∣∣∣∣
λ=iω

]
= Re

[
−
(

∂D
∂λ

)−1
∂D
∂p

∣∣∣∣∣
λ=iω

]

=−R0q1 +S0q2

q2
1 +q2

2
=− 4πζ(ω2 +1)ω

pstΩ2(q2
1 +q2

2)

dΩ

dψ
, (24)

where

q1 = pst
ψ

ω

dS0

dψ
+2ζ , q2 =−pst

ψ

ω

dR0

dψ
+2ω . (25)

Consequently, a Hopf bifurcation exists when γ 6= 0 ⇔
dΩ/dψ 6= 0. This condition was checked numerically for
each case study of this paper and it was found that γ > 0
along the stability lobes for pst > 0. According to the Hopf
bifurcation theorem, this implies that a periodic orbit exists
in the vicinity of the equilibrium of the nonlinear system. In
order to determine the stability and amplitude of this peri-
odic orbit, we reduce the critical infinite-dimensional system
to a finite dimensional center manifold and carry out normal
form calculations in the following section.

4 Center Manifold Reduction
The subsequent analysis is based on the theory of func-

tional differential equations summarized in [27] and follows
the steps of [17,28], where the orthogonal cutting model was
considered with a concentrated cutting force. Note that the
concentrated cutting-force model is a special case of the dis-
tributed one with Dirac delta kernel function. As the first step
of the analysis, we write Eqn. (16) in the first-order form

y′(t)=Ly(t)+R
∫ 0

−σ

[y(t− τ+θ)−y(t +θ)]w(θ)dθ+g(yt) ,

(26)
where y(t) is the vector of state variables, L and R are the
linear and the retarded coefficient matrix, and g(yt) contains



all nonlinear terms. These quantities are defined as

y(t) =
[

ξ(t)
ξ′(t)

]
, L =

[
0 1
−1 −2ζ

]
, R =

[
0 0
p 0

]
, g(yt) =

[
0

g2(yt)

]
,

g2(yt) = p
∫ 0

−σ

[
η2 (y1(t− τ+θ)− y1(t +θ))2

+η3 (y1(t− τ+θ)− y1(t +θ))3
]

w(θ)dθ , (27)

where y1(t) = ξ(t) is the first component of y(t).
As the phase space of delay-differential equations is

infinite-dimensional [27, 29], we represent the state of the
tool by yt defined in the Hilbert space H of continuously dif-
ferentiable vector valued functions: yt ∈ H : [−σ− τ,0]→
R2, yt(ϑ) = y(t +ϑ). Accordingly, we characterize the evo-
lution of the system in H by formulating the operator differ-
ential equation corresponding to Eqn. (26):

y′t(ϑ) = Ayt +F (yt) , (28)

where A ,F : H → H are the linear and the nonlinear oper-
ators, respectively,

Au =

uo(ϑ) if ϑ ∈ [−σ− τ,0) ,

Lu(0)+R
∫ 0

−σ

[u(θ− τ)−u(θ)]w(θ)dθ if ϑ = 0 ,

(29)

F (u) =
{

0 if ϑ ∈ [−σ− τ,0) ,
g(u) if ϑ = 0 . (30)

Here, the notation �o = d�/dϑ is used for the derivative
with respect to ϑ.

At the stability boundaries all eigenvalues have nega-
tive real parts except the critical pair λ = ±iω, thus a two-
dimensional critical subsystem embedded in the infinite-
dimensional phase space (the so-called center manifold) at-
tracts exponentially all the solutions of the differential equa-
tion. From a stability point of view, it is enough to study
the flow on the center manifold. Therefore, we separate
the center subspace from the stable one using the decom-
position theorem of [27] (see Eqns. (3.10)-(3.11) in Chap-
ter 7). By decomposing H with respect to the critical eigen-
values λ = ±iω, we can obtain a form similar to the Jordan
canonical form of ordinary differential equations (see later
Eqn. (44)). This way a two-dimensional ordinary differential
equation can be analyzed separately instead of an infinite-
dimensional delayed system.

Since the center manifold is tangent to the plane spanned
by the real and imaginary parts of the critical eigenfunctions
(infinite-dimensional eigenvectors) of A , we first calculate
these eigenvectors, and then continue with the decomposi-
tion theorem of [27]. The critical eigenvectors s1,2(ϑ) are
defined by

As1,2(ϑ) =±iωs1,2(ϑ) . (31)

Substituting A from Eqn. (29), writing s1,2(ϑ) = sR(ϑ)±
isI(ϑ), and decomposing Eqn. (31) into real and imaginary
parts yields the boundary value problem

so(ϑ) = B4×4s(ϑ) , ϑ ∈ [−σ− τ,0) , (32)

L4×4s(0)+R4×4

∫ 0

−σ

[s(θ− τ)− s(θ)]w(θ)dθ = B4×4s(0) ,

(33)

where

s(ϑ) =
[

sR(ϑ)
sI(ϑ)

]
, B4×4 =

[
0 −ωI

ωI 0

]
,

L4×4 =

[
L 0
0 L

]
, R4×4 =

[
R 0
0 R

]∣∣∣∣
p=pst

(34)

with I and 0 denoting the 2× 2 identity and zero matri-
ces, respectively. The solution of Eqn. (32) has the form
s(ϑ) = eB4×4ϑc. The constant c = [c11 c12 c21 c22]

T can be
determined from Eqn. (33). With the arbitrary choice c11 = 1
and c21 = 0, we get

sR(ϑ) =

[
cos(ωϑ)
−ωsin(ωϑ)

]
, sI(ϑ) =

[
sin(ωϑ)

ωcos(ωϑ)

]
. (35)

The decomposition theorem of [27] also uses the so-
called left eigenvectors, which are the eigenvectors of the
operator AH being formally adjoint to A relative to a cer-
tain bilinear form. The formal adjoint AH : H H→H H must
satisfy

(v,Au) = (AHv,u) , (36)

where u ∈ H : [−σ− τ,0]→ R2 and v ∈ H H : [0,σ+ τ]→
R2, H H is the adjoint space. The operation ( , ) : H H×
H → R indicates the bilinear form. The definition of the
formal adjoint and the bilinear form can be found in [27]
(see Eqns. (3.1) and (3.3) in Chapter 7), and here they read

AHv =


−vo(ϑ) if ϑ ∈ (0,σ+ τ] ,

LHv(0)+RH
∫ 0

−σ

[v(τ−θ)−v(−θ)]w(θ)dθ

if ϑ = 0 ,
(37)

(u,v) =uH(0)v(0)+
∫ 0

−σ

∫ 0

−θ

uH(ϑ)(Rw(θ))v(ϑ+θ)dϑdθ

−
∫ −τ

−σ−τ

∫ 0

−θ

uH(ϑ)(Rw(τ+θ))v(ϑ+θ)dϑdθ , (38)

where the superscript H refers to conjugate transpose.
As the eigenvalues of AH are complex conjugates to

those of A , the left eigenvectors n1,2(ϕ) satisfy

AHn1,2(ϕ) =∓iωn1,2(ϕ) . (39)



We determine n1,2(ϕ) = nR(ϕ)± inI(ϕ) the same way as we
computed s1,2(ϕ). This time, however, we cannot choose
the coefficients of nR,I(ϕ) arbitrarily as we did for sR,I(ϑ) by
taking c11 = 1 and c21 = 0, because, in order to apply the de-
composition theorem of [27], the following orthonormality
condition must be satisfied

(nR,sR) = 1 , (nR,sI) = 0 . (40)

Finally, we get the left eigenfunctions in the form

nR(ϕ) =
2

q2
1+q2

2

[
(2ζq1 +ωq2)cos(ωϕ)+(ωq1−2ζq2)sin(ωϕ)

q1 cos(ωϕ)−q2 sin(ωϕ)

]
,

nI(ϕ) =
2

q2
1+q2

2

[
(−ωq1+2ζq2)cos(ωϕ)+(2ζq1+ωq2)sin(ωϕ)

q2 cos(ωϕ)+q1 sin(ωϕ)

]
.

(41)

According to [27], we decompose the solution space as

yt(ϑ) = z1(t)sR(ϑ)+ z2(t)sI(ϑ)+ytn(t)(ϑ) , (42)

where z1(t) and z2(t) are local coordinates on the center man-
ifold introduced to describe the behavior of the critical sub-
system, whereas ytn(t) accounts for the remaining infinite-
dimensional subsystem with coordinates perpendicular to the
center manifold. The decomposition theorem gives the for-
mula of the different components:

z1(t) =(nR,yt) ,

z2(t) =(nI,yt) ,

ytn(t)(ϑ) =yt(ϑ)− z1(t)sR(ϑ)− z2(t)sI(ϑ) . (43)

Differentiating these expressions with respect to time and us-
ing Eqns. (28), (42) and (31), the following differential equa-
tion can be obtained

 z′1
z′2
y′tn

=

 0 ω O
−ω 0 O
o o A

 z1
z2
ytn


+

 nR2(0)F2(0)
nI2(0)F2(0)

−nR2(0)F2(0)sR−nI2(0)F2(0)sI +F

 , (44)

where o : R→ H and O : H → R are zero operators, and
subscript 2 indicates the second component of vectors.

Note that the two-dimensional critical subsystem is de-
coupled linearly in Eqn. (44), but there is still a coupling
through the nonlinear term F2(0). In order to fully decouple
the critical subsystem and to obtain it in a third-order normal
form, F2(0) should be expressed in terms of z1 and z2 up to

third order, which requires a second-order approximation of
the center manifold itself:

ytn(ϑ) =
1
2
[
h1(ϑ)z2

1 +2h2(ϑ)z1z2 +h3(ϑ)z2
2
]
. (45)

The coefficients h1(ϑ), h2(ϑ), and h3(ϑ) can be calcu-
lated as follows. First we differentiate Eqn. (45) with re-
spect to time and substitute the rows of Eqn. (42) to ex-
press the temporal derivatives. Then, we consider the case
ϑ ∈ [−σ− τ,0) and substitute the definitions (29) and (30)
of A and F accordingly. We also substitute the derivative
of Eqn. (45) with respect to ϑ. Thereafter, we use a second-
order approximation of F2(0) as

F2(0)≈ F1z2
1 +F2z1z2 +F3z2

2 . (46)

Finally, we collect the coefficients of the second order terms
of z1 and z2 and consider a polynomial balance. This way we
end up with the differential equation

ho(ϑ) = C6×6h(ϑ)+pcos(ωϑ)+qsin(ωϑ) , (47)

where

h(ϑ) =

h1(ϑ)
h2(ϑ)
h3(ϑ)

 , C6×6 =

 0 −2ωI 0
ωI 0 −ωI
0 2ωI 0

 ,

p =
2

q2
1+q2

2


2q1F1

2q2ωF1
q1F2

q2ωF2
2q1F3

2q2ωF3

 , q =
2

q2
1+q2

2


2q2F1
−2q1ωF1

q2F2
−q1ωF2
2q2F3
−2q1ωF3

 . (48)

The solution of Eqn. (47) is of the form

h(ϑ) = Mcos(ωϑ)+Nsin(ωϑ)+ eC6×6ϑK . (49)

Matrices M and N can be obtained by substituting the trial
solution (49) back into Eqn. (47) and considering a harmonic
balance. In order to calculate K, we return to Eqn. (45), dif-
ferentiate it with respect to time, and substitute the rows of
Eqn. (42) as before. This time, however, we consider ϑ = 0,
and substitute the definitions (29)-(30) of A and F accord-
ingly. Using the second-order approximation (46), a polyno-
mial balance of the second-order terms of z1 and z2 yields the
boundary condition

P6×6h(0)+R6×6

∫ 0

−σ

[h(θ− τ)−h(θ)]w(θ)dθ = p+ r ,

(50)



where

R6×6 =

R 0 0
0 R 0
0 0 R

 , L6×6 =

L 0 0
0 L 0
0 0 L

 ,
P6×6 = L6×6−C6×6 , r =−

[
0 2F1 0 F2 0 2F3

]T
. (51)

After substituting the trial solution (49) into the bound-
ary condition (50) we can find K. Then, the coefficients
h1(ϑ), h2(ϑ), and h3(ϑ) can be given according to Eqn. (49),
whence the second order approximation (45) of the center
manifold is obtained.

Using Eqns. (42) and (45), we can obtain a third-order
approximation of the nonlinear terms in the first two rows of
Eqn. (44), whence we get the critical subsystem in the third-
order normal form

[
z′1
z′2

]
=

[
0 ω

−ω 0

][
z1
z2

]
+

 ∑
j+k=2,3

a jkz j
1zk

2

∑
j+k=2,3

b jkz j
1zk

2

 . (52)

Thereafter, the bifurcation analysis and the calculation of pe-
riodic orbits can be performed on the two-dimensional sys-
tem (52) instead of the infinite-dimensional one (28).

5 Estimation of the Bistable Region
We can determine the criticality of the Hopf bifurcation,

that is, the stability of periodic orbits, based on the sign of
the Poincaré-Lyapunov constant (PLC) given by [25]:

∆ =
1

8ω
[(a20 +a02)(−a11 +b20−b02)

+(b20 +b02)(b11 +a20−a02)]

+
1
8
(3a30 +a12 +b21 +3b03) , (53)

which gives

∆ =
(1− cosψ)pstγ

2
(3η3−δη

2
2) , (54)

δ =1− S0q1−R0q2

−R0q1−S0q2

[
2pst

(
4ζωR02 +(4ω

2−1)S02
)

+p2
st(R

2
02 +S2

02)− (4ω
2−1)2− (4ζω)2]

× 1

[pstR02− (4ω2−1)]2 +[pstS02 +4ζω]2
, (55)

where R02(ψ) = R0(2ψ) and S02(ψ) = S0(2ψ).
The bifurcation is subcritical when the PLC is positive

and supercritical when it is negative. It was shown in [17]
that the Hopf bifurcation is subcritical for the special case of
concentrated cutting force with Dirac delta kernel. Here, we

determined the PLC numerically for several case studies by
plotting ∆(ψ). We encountered no supercritical case, which
indicates that the subcritical nature of machining processes
is preserved for realistic cutting-force distributions.

The subcritical Hopf bifurcation gives rise to an unstable
periodic orbit around the linearly stable equilibrium, hence
the equilibrium has a finite domain of attraction. Once a per-
turbation (e.g. material inhomogeneity, external excitation)
moves the system out of this domain, the resulting vibrations
do not settle down, but grow in amplitude until the tool leaves
the workpiece material resulting in chatter. Outside the cut
the tool undergoes a damped free oscillation, which limits
the chatter amplitude, and the tool gets back to the workpiece
again. Hence the large-amplitude chatter with loss of contact
is stable in the dynamical sense [7]. Therefore, for certain set
of parameters, stationary cutting and large-amplitude chatter
coexist. This parameter domain is referred to as the region
of bistability or unsafe zone.

In the bistable region, the amplitude of the arising peri-
odic orbit can be approximated [26] by

r(ψ; p)≈

√
− γ(ψ)

∆(ψ)
(p− pst(ψ)) . (56)

It is important to emphasize the difference between the actual
bifurcation parameter value p and the stability limit pst(ψ).
The corresponding approximate periodic orbit and tool posi-
tion become

yt(ϑ)≈ r(ψ; p) [cos(ωt)sR(ϑ)− sin(ωt)sI(ϑ)] , (57)
ξ(t) = y1(t) = yt1(0)≈ r(ψ; p)cos(ωt) . (58)

The unstable limit cycle exists only if the tool does not
lose contact with the workpiece during chatter. Once the am-
plitude of the periodic orbit gets so large that loss of contact
occurs, the unstable periodic orbit vanishes as Eqn. (16) is no
longer valid. Consequently, the region of bistability is lim-
ited by the so-called switching line where the tool just loses
contact with the workpiece, that is, where the chip thickness
h(t,θ) drops to zero. The dimensionless form of Eqn. (10)
yields the switching condition

1+ξ(t− τ+θ)−ξ(t +θ) = 0 . (59)

Substituting the periodic solution (58), the switching condi-
tion can be written in the form

1 = r(ψ; p)
√

(1− cosψ)2 + sin2
ψcos(ω(t +θ)+φ) , (60)

where φ is a phase shift. If there exists any pair of t and
θ such that the switching condition is fulfilled, then loss of
contact happens and the periodic orbit disappears. In order to
find the smallest amplitude for which h(t,θ) = 0 occurs, we



write cos(ω(t +θ)+φ) = 1. Substituting the approximate
amplitude (56) and rearranging Eqn. (60) for p, we get the
boundary of the bistable region in the form

pbist(ψ) =−
1
2

∆(ψ)

γ(ψ)

1
1− cosψ

+ pst(ψ) . (61)

Therefore, the system is linearly but not globally stable (un-
safe) for pbist(ψ) ≤ p < pst(ψ), and it is globally stable
for 0 ≤ p < pbist(ψ). The stability boundaries pst(ψ) and
pbist(ψ) are shown in Fig. 4 together with their numerically
computed counterparts.

6 Numerical Analysis
It is important to highlight that formulas (56)-(58) are

approximations, thus Eqn. (61) serves only as an estima-
tion of the size of the bistable region. In order to verify
the accuracy of these results, we analyze the stability of sys-
tem (16) numerically using the continuation software DDE-
BIFTOOL [9, 10].

As a first step, we rescale Eqn. (16) by introducing the
scaled time T such that t = T τ. This step is necessary to
avoid a badly-scaled system for small Ω, when τ→∞. Using
T , Eqn. (16) can be written in the form

ξ
′′(T )+2ζτξ

′(T )+ τ
2
ξ(T )

= pτ
2
∫ 0

−ε

[
(ξ(T −1+η)−ξ(T +η))

+η2 (ξ(T −1+η)−ξ(T +η))2

+η3 (ξ(T −1+η)−ξ(T +η))3
]

τw(τη)dη , (62)

where η = θ/τ, and prime now denotes the derivative with
respect to T . Note that in Eqn. (62) the delay is limited to a
finite value even when τ→ ∞.

To use DDE-BIFTOOL, we approximate the distributed
delay term by a sum of f point delays as follows:

ξ
′′(T )+2ζτξ

′(T )+ τ
2
ξ(T )

≈ pτ
2

f

∑
k=1

[
(ξ(T −1−ηk)−ξ(T −ηk))

+η2 (ξ(T −1−ηk)−ξ(T −ηk))
2

+η3 (ξ(T −1−ηk)−ξ(T −ηk))
3
]

wk , (63)

where

ηk =

(
k− 1

2

)
ε

f
, wk =

∫ −(k−1)ε/ f

−kε/ f
τw(τη)dη , (64)

k = 1, . . . , f . Note that the term τw(τη) is independent of
τ, therefore it is enough to calculate wk (and also ηk) once,

their values do not change during the numerical continua-
tion. For the numerical calculations we used f = 20, which
provided the linear stability boundaries with accuracy within
linewidth.

We implemented Eqn. (63) in DDE-BIFTOOL, and used
numerical continuation to determine the stability boundaries
where the Hopf bifurcation occurs. In each point of the
boundaries, we computed the amplitude of the arising peri-
odic orbit by fixing Ω and varying p. We also determined the
corresponding periodic orbit itself, and checked the switch-
ing condition (59) in a form scaled to T . Using Newton’s
method, we iterated the value of the bifurcation parameter
p until the switching condition was fulfilled. This way, we
determined the corresponding bistable limit for each point of
the Hopf stability boundaries. The analytical and numerical
results are summarized in the next section.

7 Results and Discussion
Fig. 4 shows a series of stability charts with the linearly

and globally stable parameter regions assuming ζ = 0.02,
ε = 0.05, and α = 0.4. Four cases are considered: the
Taylor force model and the Tobias force expression with
h0 = 75, 110, 180 µm. The linear stability boundariy at
p = pst(ψ), where the Hopf bifurcation occurs, is indicated
by solid line. The boundary p = pbist(ψ) of the bistable re-
gion according to the analytical estimation (61) is shown by
a dashed line, whereas its numerically computed counterpart
is denoted by dash-dot line. Note that in the top left chart
of the figure the dashed and dash-dot lines overlap, whereas
in the bottom left chart the dashed boundary flips to the half
plane p < 0.

It is known that the minima of the linear stability lobes
lie on a line p = constant for concentrated cutting force, see
e.g. [30]. However, as shown in Fig. 4, it is not the case for
the distributed cutting-force model, where the stability lobes
shift upwards in case of low spindle speeds. Furthermore, the
size of the bistable region grows when the linearly stable re-
gion also does. Therefore, we express the size of the bistable
region relative to the size of the linearly stable region:

∆p(ψ) =
pst(ψ)− pbist(ψ)

pst(ψ)
=

3
4

η3−
1
4

δ(ψ)η2
2 . (65)

Investigating the parameter ranges ζ = 0.001..0.2 and ε =
0.001..0.2, we found that the magnitude of |δ(ψ)| is around
10−5..10−2 irrespective of the kernel shape given by α =
0..1. Thus the term δ(ψ)η2

2 is negligible compared to 3η3,
and we end up with a very simple analytical estimate for the
size of the bistable region:

∆pest =
3
4

η3 =
3ρ3h2

0

4ρ1 +8ρ2h0 +12ρ3h2
0
. (66)

Note that after omitting δ(ψ), we get the same size for the
bistable region irrespective of both the spindle speed Ω and
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Fig. 4. Stability charts of the nonlinear turning model with cutting-force distribution (8) showing the linear stability boundaries (solid line),
and the analytically estimated (dashed line) and numerically determined (dash-dot line) boundary of the bistable region

the shape w(θ) of the cutting-force distribution. Conse-
quently, the same estimation works for concentrated cutting-
force models as well, which was also shown in [17].

In the case of the Taylor force (η3 = 5/96), the formula
gives ∆pest = 0.039. It is in good agreement with [17, 28],
where the size of the bistable region was shown to be 4% at
the notches of the lobes for concentrated cutting force. In
the case of the Tobias force, the size of the bistable region
depends on the mean chip thickness h0 as shown in Fig. 5.
Here, the analytical estimate (66) is indicated by dashed line.
We can see that ∆pest peaks at a critical mean chip thick-
ness hcr, and tends to 25% for large h0. According to [17],
the critical mean chip thickness is hcr = −ρ1/ρ2 = 113 µm.
Around hcr the size of the bistable region exceeds 100%,
which shows that here the analytical estimation loses accu-
racy, since formula (56) for the amplitude of periodic orbits
is valid only in the vicinity of the linear stability boundaries.
Therefore, we computed the size of the bistable region nu-
merically by DDE-BIFTOOL for several mean chip thickness
values h0, see the dots in Fig. 5. In the numerical analysis, we
still found that the size of the bistable region relative to the
size of the linearly stable region is approximately constant
along the stability lobes for a fixed h0. The dots of Fig. 5 in-
dicate the average size along the second lobe as function of
the mean chip thickness h0. It can be seen that the location
hcr of the peak remains the same, and the limit value for large
h0 is about 20%. We can also conclude that the analytical es-
timation (66) gives good approximation only for small mean
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Fig. 5. Ratio of the size of the bistable region and the linearly stable
region assuming Tobias force (dashed line: analytical estimate, dots:
numerical results)

chip thickness values (h0 . 60 µm).
Finally, we explain the difference between the analytical

and numerical results by Fig. 6. Here, the amplitude of peri-
odic orbits is presented in the vicinity of the parameter points
A (Ω = 0.2025, p = 0.0795), B (Ω = 0.2171, p = 0.0286),
and C (Ω = 0.2343, p = 0.0558) in the top right panel of
Fig. 4. The analytical estimate (56) is indicated by dashed
line, its numerical counterpart is denoted by dash-dot line.
We can see that near the linear stability boundaries at A, B,
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Fig. 6. Bifurcation diagram showing the amplitude of periodic orbits
in the vicinity of the parameter points A, B, and C in Fig. 4 (dashed
line: analytical estimate, dash-dot line: numerical result)

and C the analytical and numerical bifurcation curves over-
lap. However, further away from A, B, and C, the curves de-
viate as the amplitude cannot be approximated accurately by
the square-root function (56). The smallest amplitude where
the switching condition is fulfilled is shown by a horizontal
line. The points where the bifurcation curves cross the hori-
zontal lines are indicated by α, β, γ, and a, b, c in the analyti-
cal and numerical case, respectively. The difference between
the analytical estimation and the numerical results becomes
large if these points lie far from the linear stability bound-
aries, that is, when the bistable region is large. Note that
beyond these points the bifurcation curves are not depicted,
since they are not valid as loss of contact occurs between the
tool and the workpiece.

8 Conclusions
We can conclude that the cutting-force distribution

along the tool’s rake face has an important effect on the
stability of the machining process: it increases the linearly
stable region at small spindle speeds. Therefore, this so-
called short regenerative effect allows chatter-free operation
for larger depth of cut, by which the material removal rate
of low-speed cutting processes can be improved. Mathemat-
ically, the short regenerative effect is represented by a dis-
tributed delay term in the governing equations of the system,
where a short distributed delay is superimposed on the regen-
erative delay. The added delay accounts for the seemingly
unimportant fact that the chip needs a certain amount of time
to slip along the tool’s rake face. Both analytical estimations
and numerical results show that such a small effect makes
qualitative changes in the dynamic behavior of the system.

Moreover, through the analytical and numerical bifur-
cation analysis of the governing delay-differential equation
with distributed delay, we have shown that orthogonal cut-
ting processes are subcritical for realistic cutting-force dis-

tributions even at small cutting speeds where the distributed
nature of the cutting force is relevant. Accordingly, there
exists a bistable region near the linear stability boundaries,
where stable stationary cutting and large-amplitude chatter
coexist. If the cutting-force characteristic has no inflection
(Taylor force), then the bistable region is thin, it occupies
only 4% of the linearly stable region. However, the bistable
region is significantly larger for cutting-force characteristics
with an inflection point (Tobias force). Nevertheless, as the
boundary of the bistable region follows the linear stability
boundary, it is still reasonable to operate the system in one
of the peaks of the linear stability lobe diagrams. Besides, in
the case of inflected cutting-force characteristic, the size of
the bistable region depends on the mean chip thickness, and
peaks for a critical feed per revolution. Therefore, this feed
per revolution range should be avoided in order to decrease
the possibility of large-amplitude vibrations within the lin-
early stable parameter region.
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