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1 Introduction

Let G be a simple algebraic group defined over an algebraically closed field K , let H
be a closed positive-dimensional subgroup ofG, and let V be a nontrivial rational irre-
ducible KG-module. We say that (G, H, V ) is an irreducible triple if V is irreducible
as a K H -module. Triples of this form arise naturally in the investigation of maximal
subgroups of classical algebraic groups, and their study can be traced back to work of
Dynkin [7] in the 1950s, who considered the special case where H is connected and
K = C. In the 1980s, Seitz [17] and Testerman [20] extended the analysis to arbitrary
algebraically closed fields (still assuming H is connected), and more recent work of
Ghandour [10] has completed the classification of irreducible triples for exceptional
groups. Therefore, in this paper we focus on classical groups and their disconnected
subgroups.

In [8,9], Ford determines the irreducible triples (G, H, V ) where G is a classical
group, H is disconnected, H0 is simple and the composition factors of the restriction
V |H0 are p-restricted. Our main aim is to extend Ford’s analysis by removing the
restrictive conditions on the structure of H0 and the composition factors of V |H0 . The
cases for which V |H0 is irreducible are easily deduced from the work of Seitz [17], so
we focus on the situation where V |H is irreducible, but V |H0 is reducible. By Clifford
theory, the highest weights of the K H0-composition factors of V are H -conjugate and
this severely restricts the possibilities for V . Since the triples with H maximal have
recently been determined in [3,4], in this paper wewill adopt the following hypothesis:

Hypothesis 1.1 The group G is a simply connected cover of a simple classical alge-
braic group defined over an algebraically closed field K of characteristic p � 0, H
is a closed positive-dimensional subgroup of G, and V is a nontrivial p-restricted
irreducible tensor indecomposable rational KG-module such that the following con-
ditions hold:

H1. V �= W τ for any automorphism τ of G, where W is the natural module;
H2. HZ(G)/Z(G) is disconnected and non-maximal in G/Z(G).

Let G be a classical group as in Hypothesis 1.1, let n denote the rank of G and let
{λ1, . . . , λn} be a set of fundamental dominant weights for G (we adopt the standard
labelling given in Bourbaki [2]). We will write VG(λ) for the irreducible KG-module
with highest weight λ.

Remark 1.2 Condition H1 in Hypothesis 1.1 is equivalent to assuming V �= W,W ∗,
and also V �= VG(λ3), VG(λ4) if G = D4. This hypothesis is unavoidable. For exam-
ple, we cannot feasibly determine all the simple subgroups ofG that act irreducibly on
W or W ∗ (indeed, even the dimensions of the irreducible modules for simple groups
are not known, in general). In particular, H1 is a condition adopted in [3,17].

Suppose G is of type Bn or Dn , and let R(W ) = R be the radical of the corre-
sponding bilinear form on W (recall that either R = 0, or p = 2, dimW is odd and
dim R = 1). An orthogonal decomposition of W is a decomposition of the form

W = W1 + · · · + Wt ,
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where the Wi are pairwise orthogonal subspaces of W . Note that if W = W1 +
· · · + Wt is such a decomposition, then the Wi are non-degenerate spaces such that
Wi ∩ (

∑
j �=i W j ) ⊆ R for each i (in particular, if p �= 2 then W = W1 + · · · + Wt is

a direct sum). We say that a subgroup H of G normalizes such a decomposition if it
permutes the Wi .

Definition 1.3 Let G be a classical group of type Bn or Dn , as in Hypothesis 1.1. A
closed subgroup H of G is a decomposition subgroup if one of the following holds:

(a) H normalizes an orthogonal decomposition W = W1 + · · · + Wt ; or
(b) (G, p) = (Dn, 2), H stabilizes a 1-dimensional non-singular subspace U of W ,

and H normalizes an orthogonal decomposition of the natural module for the
stabilizer GU = Bn−1.

Similarly, if (G, p) = (Cn, 2) then H is a decomposition subgroup of G if it is the
image of a decomposition subgroup of the dual group G̃ = Bn with respect to a
bijective morphism ϕ : G̃ → G.

Theorem 1.4 Suppose G, H and V = VG(λ) satisfy the conditions in Hypothesis
1.1, and assume that V |H0 is reducible. Then V |H is irreducible only if one of the
following holds:

(a) (G, H, V ) is one of the cases in Table 1; or
(b) G is of type Bn or Dn (or type Cn if p = 2), V is a spin module and H is a

decomposition subgroup.

Moreover, if (a) holds then V |H is irreducible.

Remark 1.5 In case (i) of Table 1, Tn denotes a maximal torus of G. In all cases, H0

is the connected component of a maximal subgroup of G, with the exception of the
cases labelled (ii) and (iii), where H is contained in a subgroup D4 < G. Also note
that in cases (iii)–(vi),W |H0 is the tensor product of the natural modules of the simple
components of H0. In case (ii), H is the image of a subgroup C3

1 .X < C4 as in (iii),
under an isogeny ϕ : C4 → B4. In cases (v) and (vi), we record H and V up to
Aut(G)-conjugacy (so in case (vi) for example, if H̃ is the image of H under a graph
automorphism of G, then VG(λ8) is an irreducible K H̃ -module). Finally, let us note
that the situation in part (b) of Theorem 1.4 is very special and we refer the reader to
Sect. 7 for further details.

Table 1 The irreducible triples (G, H, V ) in Theorem 1.4

G H λ Conditions

(i) An Tn .X λk , 1 < k < n X < Symn+1 is �-transitive, � = min{k, n + 1 − k}
(ii) B4 B3

1 .X λ3 p = 2, X = Z3 or Sym3

(iii) C4 C3
1 .X λ3 p = 2, X = Z3 or Sym3

(iv) C4 C3
1 .Z3 λ2, λ3 p �= 2 (p �= 2, 3 if λ = λ3)

(v) D4 C3
1 .Z3 λ1 + λ4, λ3 + λ4 p = 2

(vi) D8 C4
1 .X λ7 p �= 3, X < Sym4 is transitive
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Remark 1.6 If V |H0 is irreducible, then (G, H0, V ) is one of the cases in [17, Table 1]
and

H0 � H � NG(H0) and CG(H0) � Z(G).

More precisely, we are either in the situation described in part (b) of Theorem 1.4,
or in terms of Seitz’s notation in [17, Table 1], one of the following holds (modulo
scalars):

(a) NG(H0) = H0;
(b) NG(H0) = H0.2 and (G, H0, V ) is one of the cases labelled I4, I5, I6 (with

n = 3 in the notation of [17, Table 1]), II1, S1, S7, MR1, MR4;
(c) NG(H0) = H0.Sym3 = D4.Sym3 and (G, H0, V ) is the case labelled S8.

Here we refer the reader to the proof of [3, Theorem 2.5.1] to see that NG(H0) = H0.2
in the case labelled S7, and that NG(H0) = H0.Sym3 in case S8.

Let us briefly describe our approach to the proof of Theorem 1.4. Suppose V |H0

is reducible. If H is a maximal subgroup of G then (G, H, V ) can be read off from
the main theorems of [3,4], so let us assume H < M < G with M maximal. Since
V |H is irreducible, it follows that V |M is also irreducible and we can consider the
possibilities for the irreducible triple (G, M, V ), which are determined in [17] (if M
is connected) and [3,4] (if M is disconnected). We can then proceed by studying the
possible embeddings of H in M .

Our next result is a combination of the main theorems in [3,4,17], together with
Theorem 1.4. Note that we assume n � 3 if G = Bn , n � 2 if G = Cn , and n � 4 if
G = Dn .

Corollary 1.7 LetG bea simply connected cover of a simple classical algebraic group
over an algebraically closed field K of characteristic p � 0. Let H be a positive-
dimensional closed subgroup of G, and let V = VG(λ) be a nontrivial p-restricted
irreducible tensor indecomposable rational KG-module such that V |H is irreducible.
Then one of the following holds:

(a) V = W τ for some automorphism τ of G, where W is the natural module;
(b) G is of type Bn or Dn (or type Cn if p = 2) and V is a spin module;
(c) (G, H, V ) is recorded in Table 2.

Remark 1.8 Let us make some comments on the cases in Table 2:

(i) In Table 2, we write X for Sym3 or Z3, Z for Z2 or 1, and Y denotes any k-
transitive subgroup of Symn+1.

(ii) For G of type An , the highest weight λ is recorded up to conjugacy by a graph
automorphism ofG (this is consistent with [17, Table 1]). For instance, in the first
rowof the table, we haveG = An , H = Tn .Y andλ = λk with 2 � k � (n+1)/2.
By applying a suitable graph automorphism, we see that VG(λk)|H is irreducible
for all 2 � k � n − 1.
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Table 2 Positive-dimensional irreducible subgroups of classical groups

G H λ λ|H0 κ Conditions

An Tn .Y λk − (n+1
k

)
2 � k � (n + 1)/2

A2m−1 Cm kλ1 kω1 1 m � 2, k � 2

A2m−1 Cm aλk + bλk+1 aωk + bωk+1 1 See Remark 1.8(v)(a)

A2m Bm λk ωk 1 2 � k < m, p �= 2

A2m Bm λm 2ωm 1 m � 2, p �= 2

A2m−1 Dm .Z λk ωk 1 2 � k < m − 1, p �= 2

A2m−1 Dm .Z λm−1 ωm−1 + ωm 1 m � 4, p �= 2

A2m−1 Dm .2 λm 2ωm 2 m � 2, p �= 2

Am(m+2) A2m .2 λ2 ω2 ⊗ 2ω1 2 m � 2, p �= 2

A(m2+m−2)/2 Am λ2 ω1 + ω3 1 m � 3, p �= 2

Am(m+3)/2 Am λ2 2ω1 + ω2 1 m � 2, p �= 2

A26 E6 λ2 ω3 1 p �= 2

A26 E6 λ3 ω4 1 p �= 2, 3

A26 E6 λ4 ω2 + ω5 1 p �= 2, 3

A15 D5 λ2 ω3 1 p �= 2

A15 D5 λ3 ω2 + ω4 1 p �= 2, 3

Bn Dn .Z
∑n−1

i=1 aiλi
∑n−2

i=1 aiωi +
an−1(ωn−1 + ωn)

1 n � 3, p = 2

Bn Dn .2
∑n

i=1 aiλi
∑n−1

i=1 aiωi +
(an−1 + 1)ωn

2 See Remark 1.8(v)(b)

B12 F4 2λ1 2ω4 1 p = 3

B6 C3 2λ1 2ω2 1 p = 3

B4 B3
1 .X λ3 ω1 ⊗ ω1 ⊗ 3ω1 3 p = 2

B3 G2 λ2 ω2 1 p = 2

B3 G2 λ1 + λ2 ω1 + ω2 1 p = 2

B3 G2 kλ1 kω1 1 k � 2, p �= 2

B3 G2 aλ2 + bλ3 bω1 + aω2 1 ab �= 0, 2a + b + 2 ≡ 0 (p)

B3 G2 aλ1 + bλ2 aω1 + bω2 1 a � 2, b � 1, a + b + 1 ≡ 0 (p)

B3 A2.Z 2λ1 2ω1 + 2ω2 1 p = 3

Cn Dn .Z
∑n−1

i=1 aiλi
∑n−2

i=1 aiωi +
an−1(ωn−1 + ωn)

1 n � 3, p = 2

C2m C2
m .2 λ2m−1 + aλ2m (a + 1)ωm ⊕

(ωm−1 + aωm )

2 See Remark 1.8(v)(c)

C28 E7 λ2 ω6 1 p �= 2

C28 E7 λ3 ω5 1 p �= 2, 3

C28 E7 λ4 ω4 1 p �= 2, 3

C28 E7 λ5 ω2 + ω3 1 p �= 2, 3, 5

C16 D6 λ2 ω4 1 p �= 2

C16 D6 λ3 ω3 + ω5 1 p �= 2, 3

C10 A5.Z λ2 ω2 + ω4 1 p �= 2
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Table 2 continued

G H λ λ|H0 κ Conditions

C10 A5.2 λ3 ω1 + 2ω4 2 p �= 2, 3

C7 C3 λ2 2ω2 1 p �= 2, 7

C7 C3 λ3 ω1 + 2ω2 1 p �= 2, 3

C4 C3
1 .X λ2 0 ⊗ 2ω1 ⊗ 2ω1 3 p �= 2

C4 C3
1 .X λ3 ω1 ⊗ ω1 ⊗ 3ω1 3 p �= 3

C3 G2 λ2 ω2 1 p = 2

C3 G2 λ1 + λ2 ω1 + ω2 1 p = 2

Dn Bn−1 kλn−i kωn−i 1 k � 2, i ∈ {0, 1}
Dn Bn−1 aλk + bλn−i aωk + bωn−i 1 See Remark 1.8(v)(d)

D2m (D2
m .2).2 λ1 + λn−i (ω1 + ωm ) ⊕ ωm−i 4 m � 3 odd, i ∈ {0, 1}, p = 2

D4 C3
1 .X λi + λ4 ω1 ⊗ ω1 ⊗ 3ω1 3 i ∈ {1, 3}, p = 2

(iii) In the fourth column, we describe the restriction of λ to a suitable maximal torus
of the derived subgroup [H0, H0] (this is denoted by λ|H0 ), in terms of highest
weights for the simple components. The one exception is the case (G, H) =
(An, Tn .Y ), where H0 = Tn is a maximal torus of G and thus [H0, H0] = 1.

(iv) In the fifth column, κ denotes the number of K H0-composition factors of V |H0 .
(v) In the final column, we record various conditions onG, H and λ that are necessary

and sufficient for the irreducibility of V |H . In a few cases, the conditions for
irreducibility are rather complicated and so we record them here (the example in
case (b) was discovered by Ford in [8]):

(a) (G, H, λ) = (A2m−1,Cm, aλk + bλk+1): 1 � k < m; a + b = p − 1; p �= 2;
a �= 0 if k = m − 1.

(b) (G, H, λ) = (Bn, Dn .2,
∑

i aiλi ): p �= 2; an = 1; if ai , a j �= 0, where
i < j < n and ak = 0 for all i < k < j , then ai + a j ≡ i − j (modp); if
i < n is maximal such that ai �= 0, then 2ai ≡ −2(n − i) − 1(modp).

(c) (G, H, λ) = (C2m,C2
m .2, λ2m−1 + aλ2m): 0 � a < p; (m, a) �= (1, 0);

2a + 3 ≡ 0(modp).
(d) (G, H, λ) = (Dn, Bn−1, aλk + bλn−i ): 1 � k � n − 2; i ∈ {0, 1}; ab �= 0;

a + b + n − k − 1 ≡ 0(modp).

Our final result concerns chains of irreducibly acting subgroups. Let G and V be
given as in Hypothesis 1.1 and write � = �(G, V ) for the length of the longest chain
of closed positive-dimensional subgroups

H� < H�−1 < · · · < H2 < H1 = G

such that V |H�
is irreducible. We call such a sequence of subgroups an irreducible

chain. If G is an orthogonal group (or a symplectic group with p = 2) and V is a spin
module, then �(G, V ) can be arbitrarily large, and it is easy to see that the same is true
if V = W or W ∗.
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Theorem 1.9 Suppose G and V satisfy the conditions in Hypothesis 1.1 and assume
V is not a spin module. Then either �(G, V ) � 5, or G is of type An and
λ ∈ {λ2, λ3, λn−2, λn−1}.

The upper bound in this theorem is best possible. In fact, if we exclude the excep-
tional cases then either �(G, V ) � 4, or G ∈ {B4,C4}, λ = λ3, p = 2 and

A3
1.Z3 < A3

1.Sym3 < D4 < D4.2 < G

is an irreducible chain of length 5 (see Theorem 8.1 for a more precise statement).
The exceptions with G = An are genuine in the strong sense that �(G, V ) can be
arbitrarily large. We refer the reader to Sect. 8 for further details.

2 Preliminaries

2.1 Notation and terminology

Most of our notation is fairly standard. As in Hypothesis 1.1, let G be a simply
connected cover of a simple classical algebraic group, which is defined over an alge-
braically closed field K of characteristic p � 0. Fix a Borel subgroup B = UT
of G, where T is a maximal torus of G and U is the unipotent radical of B. Let
�(G) = {α1, . . . , αn} be the corresponding base of the root system
(G) ofG, where
n denotes the rank of G. Let {λ1, . . . , λn} be the fundamental dominant weights for
T corresponding to �(G).

There is a bijection between the set of dominant weights of G and the set of
isomorphism classes of irreducible KG-modules; if λ is a dominant weight then we
use VG(λ) to denote the unique irreducible KG-modulewith highest weightλ.We also
recall that if p > 0 then a dominantweightλ = ∑

i aiλi is p-restricted if ai < p for all
i . By Steinberg’s tensor product theorem, every irreducible KG-module decomposes
in a unique way as a tensor product V0 ⊗V

σp
1 ⊗· · ·⊗V

σpr
r , where Vi is a p-restricted

irreducible KG-module, σpi : G → G is a standard Frobenius morphism (with

σpi = 1 if p = 0), and V
σpi

i (which we will also denote by V (pi )
i ) is the KG-module

obtained by preceding the action ofG on Vi by the endomorphism σpi . It is convenient
to say that every dominant weight is p-restricted if p = 0.

In addition, Lie(G) denotes the Lie algebra of G, and Uα = {xα(t)|t ∈ K } is the
root subgroup of G corresponding to a root α ∈ 
(G). If x ∈ G then tx : G → G is
the inner automorphism of G induced by conjugation by x , so tx (g) = xgx−1 for all
g ∈ G. We write Ti for an i-dimensional torus. If H is a closed positive-dimensional
subgroup of G and TH0 is a maximal torus of [H0, H0] contained in T , then we abuse
notation by writingμ|H0 to denote the restriction of a T -weightμ to the subtorus TH0 .
We define a partial order � on the set of weights for T , where μ � ν if and only if
μ = ν − ∑n

i=1 ciαi for some non-negative integers ci (in this situation, we say that μ
is under ν). Finally, we set N0 = N∪ {0}, we write Symn and Altn for the symmetric
and alternating groups of degree n, and we denote a cyclic group of order m by Zm

(or just m).
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Recall that a map ϕ : G1 → G2 of algebraic groups is a morphism if it is a
group homomorphism that is also a morphism of the underlying varieties. In partic-
ular, it is important to note that an injective morphism does not necessarily induce
an isomorphism G1 ∼= ϕ(G1) of algebraic groups. If G1 is a semisimple algebraic
group with root system , then we will say that G1 is of type  (and we will some-
times denote this by writing G1 = ). For example, SL2(K ) and PGL2(K ) are both
simple algebraic groups of type A1 = B1 = C1, and PSp4(K ) and SO5(K ) are
both of type B2 = C2. Finally, note that if H is a closed positive-dimensional
subgroup of an algebraic group G, and ϕ : H → G is the inclusion map, then
the differential dϕ : Lie(H) → Lie(G) is an injective Lie algebra homomorphism
(since ϕ : H → ϕ(H) is an isomorphism of algebraic groups).

2.2 Diagonal embeddings

Let G/Z be a central product, where G = G1 ×· · ·×Gt and Z � Z(G). A subgroup
H/Z of G/Z is a subdirect product if each of the projection maps πi : H → Gi

is surjective. In the context of algebraic groups, the related notion of a diagonally
embedded subgroup is defined as follows:

Definition 2.1 Let H be a closed subgroup of G = G1 × · · · × Gt where the Gi are
isomorphic simply connected simple algebraic groups. We say that H is diagonally
embedded in G if each projection πi : H → Gi is a bijective morphism. Note that we
do not require each projection map πi to induce an isomorphism H ∼= Gi of algebraic
groups.

The next lemma is a well known result of Steinberg (see [18, Theorem 30] and [19,
10.13]), which describes the bijective endomorphisms of a simple algebraic group.
Here tx and σq are defined as in Sect. 2.1, and we adopt Steinberg’s definition of a
graph automorphism of a simple algebraic groupG (see [18, Sect. 10]). In particular, a
graph automorphism is an isomorphism of algebraic groups unless (G, p) = (C2, 2),
(G2, 3) or (F4, 2).

Lemma 2.2 Let G be a simple algebraic group over an algebraically closed field of
characteristic p � 0. Let ϕ : G → G be a bijective morphism. Then ϕ = txσqγ k for
some x ∈ G, p-power q and integer k ∈ {0, 1}, where γ is a graph automorphism
of G. Moreover, if G is classical and (G, p) �= (C2, 2), then ϕ is an isomorphism of
algebraic groups if and only if σq = 1.

Lemma 2.3 Let ϕ : H → G be a surjective morphism of algebraic groups and let
dϕ : Lie(H) → Lie(G) be the corresponding differential map. Then dϕ(Lie(H)) is
a KG-submodule of Lie(G), and hence also an ideal of Lie(G).

Proof Let AdG : G → GL(Lie(G)) be the adjoint representation of G. We must
consider AdG(g)(dϕ(X)), for g ∈ G and X ∈ Lie(H). As above, let tg : G → G
denote conjugation by g. Then AdG(g)(dϕ(X)) = (dtg ◦ dϕ)(X) = d(tg ◦ ϕ)(X).
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Since ϕ is surjective, g = ϕ(h) for some h ∈ H , so we have

AdG(g)(dϕ(X)) = d(tϕ(h) ◦ ϕ)(X) = d(ϕ ◦ th)(X)

= dϕ ◦ AdH (h)(X) ∈ dϕ(Lie(H)).

Therefore, dϕ(Lie(H)) is AdG-invariant and hence a KG-submodule of Lie(G).
Finally, letV be a KG-modulewith corresponding representationρ : G → GL(V ),

and let S be a G-invariant subspace of V . Then S is invariant under the action of
dρ(Lie(G)). We conclude that dϕ(Lie(H)) is an ideal of Lie(G). ��

Recall that a morphism ϕ : H → G of algebraic groups is an isogeny if it is
surjective with finite kernel. If such a map exists, we say that H is isogenous to G
(this is not a symmetric relation).

Lemma 2.4 Let G be a simply connected simple classical algebraic group of rank m
over an algebraically closed field K of characteristic p � 0, let H be a connected
algebraic group and let ϕ : H → G be an isogeny. Then ϕ is a bijection. Moreover, if
dϕ �= 0 then either ϕ is an isomorphism of algebraic groups, or one of the following
holds:

(i) G and H are both of type Am, with p dividing m + 1;
(ii) G and H are both of type Bm, Cm or Dm, with p = 2;
(iii) (G, H) is of type (Bm,Cm) or (Cm, Bm), with p = 2.

Proof First we claim that H is also a simple group of rank m. Clearly, if N is a
proper nontrivial connected normal subgroup of H , then ϕ(N ) is a proper nontrivial
connected normal subgroup of G, which is not possible since G is simple. Therefore,
H is simple. If TH is a maximal torus of H , then ϕ(TH ) is a maximal torus of G (see
[1, Proposition 11.14], for example), and dim TH = dim ϕ(TH ). Therefore, H has
rank m. Now, by comparing dimensions, we deduce that G and H have the same root
system, unless (G, H) = (Bm,Cm) or (Cm, Bm). Note that if p �= 2 and G = Bm

then H is also of type Bm because an isogeny from Bm to Cm only exists when p = 2.
Similarly, if p �= 2 and G = Cm then H is of type Cm .

To see that ϕ is a bijection (of abstract groups), first observe that ker(ϕ) � Z(H)

since H is simple, so the claim is trivial if p = 2 and H = Bm or Cm . Now assume
p �= 2 if H = Bm or Cm . As above, G and H have the same root system. In
particular, if Hsc denotes the simply connected group with the same root system as H ,
then Hsc and G are isomorphic algebraic groups (this follows from the classification
of simple algebraic groups over K , using the fact that G is simply connected). Set
ψ = ϕ ◦ π , where π : Hsc → H is the natural isogeny. Then ψ : Hsc → G is an
isogeny with kernel L � Z(Hsc), so Hsc/L ∼= G as abstract groups. In particular,
Z(Hsc/L) ∼= Z(G) ∼= Z(Hsc), so L = 1 is the only possibility. Therefore ψ is
injective, and thus ϕ is also injective. We conclude that ϕ is a bijection.

To complete the proof, we may assume that dϕ �= 0 and (G, H, p) is not one of
the cases labelled (i)–(iii) in the statement of the lemma. As above, G and H are both
simple groups of the same type and rank. Since Lie(H) is simple (see [11, Table 1]),
it follows that dϕ is an isomorphism of Lie algebras and thus ϕ is an isomorphism of
algebraic groups. ��
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Lemma 2.5 Let J be a closed connected subdirect product of G1 × G2, where G1
and G2 are isomorphic simply connected simple classical algebraic groups. Then J is
diagonally embedded in G1 × G2, and either J = G1 × G2 or J ∼= G1 as algebraic
groups.

Proof Let πi : J → Gi be the i-th projection map and set L = ker(dπ1) ∩ ker(dπ2).
Note that L = 0 since J is a closed positive-dimensional subgroup of G1 × G2.
Without loss of generality, we will assume that dπ1 �= 0.

First assume ker(π1) is infinite. Since π2 is injective on ker(π1), we have
dim ker(π1) = dim π2(ker(π1)). Moreover, the surjectivity of π2 implies that
π2(ker(π1)) is an infinite normal subgroup of G2, so the simplicity of G2 implies
that π2(ker(π1)) = G2 and thus dim ker(π1) = dimG2. Therefore, dim J =
dimG1 + dimG2 and we conclude that J = G1 × G2.

For the remainder, we may assume that ker(π1) is finite, so π1 is an isogeny and
Lemma 2.4 implies that π1 is a bijection and either J ∼= G1, or (G1, J ) is one of the
cases labelled (i)–(iii). In particular, J is simple and ker(π2) is finite. By a further
application of Lemma 2.4, we see that π2 is also a bijection and thus J is diagonally
embedded. To complete the proof it remains to show that J ∼= G1 as algebraic groups.
Seeking a contradiction, let us assume that ker(dπi ) �= 0 for i = 1, 2, so im(dπi ) is
a proper non-zero ideal of Lie(Gi ) (see Lemma 2.3).

First assume p = 2 and (G1, J ) is of type (Bm, Bm), (Cm,Cm), (Bm,Cm) or
(Cm, Bm). For m � 2, the ideal structure of Lie(J ) is described in [6, Sect. 5].
Excluding the case where J = Cm is simply connected and m � 3 is odd, we observe
that Lie(J ) has an irreducible socle S (as a K J -module), which immediately implies
that L contains S. This is a contradiction, since L = 0. Now assume J = Cm is
simply connected and m � 3 is odd. If G1 = Cm then J ∼= G1 since G1 is simply
connected, so let us assume G1 = Bm . The socle of Lie(J ) is of the form Z ⊕ M ,
where Z = Z(Lie(J )) is 1-dimensional and M is a nontrivial irreducible module.
Without loss of generality, we may assume that M is not contained in ker(dπ1), which
implies that ker(dπ1) = Z . Therefore im(dπ1) is an ideal of Lie(G1) of codimension
1, but this is not compatible with the ideal structure described in [6]. Therefore, once
again we have reached a contradiction. Finally, if J = B1 = C1 is adjoint then Lie(J )

has an irreducible socle and we can repeat the argument given above.
Next suppose that G1 and J are both of type Am , where p divides m + 1. We may

assume that m � 2. Seeking a contradiction, suppose that J is not simply connected.
By inspecting [11, Table 1] we deduce that im(dπi ) = Z(Lie(Gi )) and ker(dπi ) is
the commutator subalgebra of Lie(J ) for i = 1, 2. But this implies that L �= 0, which
is a contradiction. To complete the proof, we may assume that G1 and J are both of
type Dm , with p = 2. If m is odd then we can repeat the previous argument, using
[11, Table 1], so let us assumem is even. If J is not simply connected then Lie(J ) has
an irreducible socle S (see [6, Sect. 5]), which must be contained in L . Once again,
this is a contradiction. ��

The next result is a natural generalization of Lemma 2.5.

Proposition 2.6 Let J be a closed connected subdirect product of G1 × · · · × Gt ,
where the Gi are isomorphic simply connected simple classical algebraic groups.
Then the following hold:
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(i) J is semisimple.
(ii) There exists a positive integer r � t such that J = J1 · · · Jr , where each Ji is

isomorphic to G1.
(iii) There exist integers 0 = t0 < t1 < t2 < · · · < tr = t such that Ji is diagonally

embedded in Gti−1+1 × · · · × Gti .

Proof We use induction on t , noting that the case t = 1 is trivial, and Lemma 2.5
handles the case t = 2. Let us assume t � 3, and letπi : J → Gi be the i-th projection
map. As in the proof of the previous lemma, we may assume that dπ1 �= 0.

If ker(πi ) is finite for any i , then dim J = dimG1 and thus ker(π1) is also finite.
Then by arguing as in the proof of Lemma 2.5, we deduce that J is diagonally embed-
ded in G1 × · · · × Gt and J ∼= G1. For the remainder, we may assume that ker(πi )

is infinite for all i . Since πi (Ru(J )) is a proper normal subgroup of πi (J ) = Gi for
each i , it follows that J is reductive. Similarly, by considering πi (Z(J )), we deduce
that Z(J ) is finite and thus J is semisimple. In particular, we may write

J = J1 · · · Jr ,

where each Ji is simple. Note that πi (J j ) is a connected normal subgroup of Gi for
all i, j , so πi (J j ) = 1 or Gi . Let σ be the projection map

σ : J → G2 × · · · × Gt .

We now consider two cases.

Case 1. ker(σ ) is infinite.
First assume ker(σ ) is infinite, so ker(σ )0 is a connected positive-dimensional

normal subgroup of J . By relabelling the Ji , if necessary, we may assume that

ker(σ )0 = J1 · · · Ja
for some a ∈ {1, . . . , r} (see [13, Theorem 27.5(c)], for example). Now π1(Ji ) = G1
for all 1 � i � a, so the injectivity of π1 on ker(σ )0, together with the simplicity of
G1, implies that a = 1 and J1 is of typeG1. In particular, r > 1 since we are assuming
that ker(π1) is infinite. Also note that πi (J2 · · · Jr ) = Gi for all i � 2.

We claim that π1(Ji ) = 1 for all 2 � i � r , so J2 · · · Jr � G2×· · ·×Gt is a subdi-
rect product and the result follows by induction. To justify the claim, let i ∈ {2, . . . , r}
and considerπ1|J1 Ji : J1 Ji → G1. Sinceπ1(J1) = G1, we haveπ1(J1 Ji ) = G1. Now
ker(π1|J1 Ji )0 is a connected normal subgroup of J1 Ji , so ker(π1|J1 Ji )0 = 1, J1, Ji or
J1 Ji . It is easy to see that ker(π1|J1 Ji )0 = Ji is the only possibility, so π1(Ji ) = 1 as
claimed.

Case 2. ker(σ ) is finite.
To complete the proof, we may assume that ker(σ ) is finite. Now J/ ker(σ ) is

connected and reductive, and it is isomorphic to a subdirect product ofG2×· · ·×Gt . By
induction, there exists s ∈ {1, . . . , t−1} such that J/ ker(σ ) = L1 · · · Ls and Li ∼= G1
for each i . But J = J1 · · · Jr and the Ji are simple, so r = s and dim Ji = dimG1 for
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all i (indeed, Ji is isogenous to G1), hence dim J = r dimG1. Note that r > 1 since
ker(π1) is infinite.

Sinceπ1 : J → G1 is surjective,we have dim ker(π1) = (r−1) dimG1.Moreover,
by relabelling the Ji if necessary, we may assume that ker(π1)

0 = J2 · · · Jr (see [13,
Theorem 27.5(c)]). Therefore, π1(J1) = G1 and J2 · · · Jr � G2 × · · · × Gt . By a
further relabelling, we may assume that there exists an integer b ∈ {1, . . . , t} such
that πi (J1) = Gi for 1 � i � b, and πi (J1) = 1 if b < i � t .

First we claim that b < t . Seeking a contradiction, suppose that b = t , so πi (J1) =
Gi for all i . Let j ∈ {2, . . . , r} and consider πi |J1 J j : J1 J j → Gi . By arguing as
above, we deduce that ker(πi |J1 J j )0 = J j , so πi (J j ) = 1 for all i . Therefore J j = 1
and thus r = 1, which is a contradiction.

Since b < t and J1 � G1×· · ·×Gb is a subdirect product, by induction we deduce
that J1 is diagonally embedded inG1×· · ·×Gb and J1 ∼= G1. If we fix i ∈ {1, . . . , b}
and j ∈ {2, . . . , r}, then ker(πi |J1 J j )0 = J j and thus J2 · · · Jr � ker(πi ). Therefore,
J2 · · · Jr � Gb+1×· · ·×Gt is a subdirect product (since πi (J ) = Gi and πi (J1) = 1
for all i > b) and the result follows by induction. ��

2.3 Irreducible triples

Define G, H and V as in Hypothesis 1.1. The next result records a basic observation
(see [4, Remark 2]).

Lemma 2.7 If V |H is irreducible, then H does not normalize a nontrivial connected
unipotent subgroup of G. In particular, H0 is reductive.

Suppose V |H is irreducible, but V |H0 is reducible. Then Clifford theory implies that

V |H0 = V1 ⊕ · · · ⊕ Vm, (1)

where m � 2 and the Vi are irreducible K H0-modules that are transitively permuted
under the induced action of H/H0.

Remark 2.8 Since the irreducibility of V |H implies that H0 is reductive, we have
H0 = J Z(H0) where J = [H0, H0] is the derived subgroup of H0. Now Z(H0)

acts as scalars on the Vi so that they are also irreducible upon restriction to J . In
particular, the irreducibility of V |H implies that the K J -composition factors of V |J
are transitively permuted under the induced action of H/H0.

If the Vi in (1) are isomorphic as K H0-modules, then V |H0 is said to be homoge-
neous. For example, V |H0 is homogeneous if NG(H0) = H0CG(H0). The following
result is [3, Proposition 2.6.2].

Proposition 2.9 If H is a cyclic extension of H0, then the irreducible K H0-modules
Vi in (1) are pairwise non-isomorphic. In particular, V |H0 is not homogeneous.

We will also need the following lemma.

Lemma 2.10 Let V1 and V2 be p-restricted irreducible KG-modules and set V =
V1 ⊗ V2. Then one of the following holds:
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(i) V is irreducible, G = Bn or Cn, p = 2 and V1 and V2 can be arranged so that
Vi = VG(μi ) and μ1 (respectively μ2) has support on the short (respectively,
long) roots;

(ii) V has non-isomorphic composition factors.

Proof By [17, (1.6)], V is irreducible if and only if G and V satisfy the conditions
in (i), so let us assume V is reducible. Write Vi = VG(μi ) and note that V has
a composition factor of highest weight μ = μ1 + μ2 occurring with multiplic-
ity 1. Then any other composition factor has highest weight ν �= μ and the result
follows. ��

3 Subgroup structure

3.1 A reduction theorem

Let G be a simple classical algebraic group with natural module W . Following [14,
Sect. 1], we introduce six natural, or geometric, collections of closed subgroups,
labelled Ci for 1 � i � 6, and we set C = ⋃

i Ci . These subgroups are defined in terms
of the underlying geometry ofW , and a rough description of the subgroups in each Ci
collection is given in Table 3 (note that the subgroups in the collection C5 are finite).
There are two types of subgroups in theC4 collection (indicatedby the two rows inTable
3); following [4], we write C4 = C4(i) ∪ C4(i i) accordingly. The following result is
[14, Theorem 1] (we use the term non-geometric for the subgroups arising in part (ii)).

Theorem 3.1 Let G be a simple classical algebraic group with natural module W,
and let H be a closed subgroup of G. Then one of the following holds:

(i) H is contained in a member of C;
(ii) modulo scalars, H is almost simple and E(H) (the unique quasisimple normal

subgroup of H) is irreducible on W. Further, if G = SL(W ) then E(H) does not
fix a non-degenerate form on W. In addition, if H is infinite then E(H) = H0 is
tensor indecomposable on W.

Table 3 The Ci collections

Rough description

C1 Stabilizers of subspaces of W

C2 Stabilizers of orthogonal decompositions W = ⊕
i Wi , dimWi = a

C3 Stabilizers of totally singular decompositions W = W1 ⊕ W2

C4 Stabilizers of tensor product decompositions W = W1 ⊗ W2

Stabilizers of tensor product decompositions W = ⊗
i Wi , dimWi = a

C5 Normalizers of symplectic-type r -groups, r �= p prime

C6 Classical subgroups
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3.2 Geometric subgroups of GO(W)

In our inductive proof of Theorem 1.4, we will need to consider the subgroup structure
of G = GO(W ), which is the full isometry group of a non-degenerate quadratic form
on W . Here dimW = 2n � 6 and thus G0 = SO(W ) is a simple group of type Dn .
The notion of a geometric subgroup extends naturally to G and we can define the
subgroup collections C1, . . . , C6 as above. It is straightforward to check that the proof
of the main theorem of [14] extends to this slightly more general situation (see [14,
Theorem 1′]), and thus Theorem 3.1 holds. In particular, any subgroup of G that is not
contained in a geometric subgroup is said to be non-geometric, and these subgroups
satisfy the conditions described in part (ii) of Theorem 3.1.

In the proofs of Propositions 5.10 and 5.19, we need information on the maximal
non-parabolic geometric subgroups of G. This is given in the following proposition.

Proposition 3.2 Let M be a positive-dimensional non-parabolic geometric subgroup
of G = GO(W ) = Dn .2, which is not contained in G0. Then the possibilities for M
are recorded in Table 4.

Proof Here M is a disconnected Ci -subgroup of G, where i ∈ {1, 2, 3, 4} (recall that
the subgroups in C5 are finite, and there are noC6-subgroups in orthogonal groups). The
structure of M is easily determined from its geometric description (see [4, Sect. 2.5],
for example), and it is straightforward to determine whether or not M is contained in
G0.

For example, if M ∈ C1 then M = GU is the stabilizer of a subspace U of W (the
natural KG-module), and one of the following holds (recall that M is non-parabolic,
so U is not totally singular):

(a) U is non-degenerate and dimU is even;
(b) U is non-degenerate, dimU is odd and p �= 2;
(c) U is non-singular, dimU = 1 and p = 2.

In (a) and (b), M = GO(U ) × GO(U⊥) is not contained in G0. Similarly, in (c),
M = Bn−1 × 2 (up to isomorphism) is not in G0. These are the cases labelled (i), (ii)
and (iii) in Table 4.

Table 4 The non-parabolic geometric subgroups M < Dn .2 with M �� Dn

M Collection Conditions

(i) Dl Dn−l .2
2 C1 1 � l < n/2

(ii) Bl Bn−l−1 × 22 C1 0 � l < n/2, p �= 2

(iii) Bn−1 × 2 C1 p = 2

(iv) (2t × Bt
l ).Symt C2 2n = (2l + 1)t , l � 1, t � 2 even, p �= 2

(v) (Dt
l .2

t ).Symt C2 n = lt , l � 1, t � 2

(vi) An−1T1.2 C3 n odd

(vii) BaDb.2 C4(i) n = (2a + 1)b, a � 1, b � 2, p �= 2
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Next suppose M is a C4(i) tensor product subgroup of type SO(W1) ⊗ SO(W2),
where W = W1 ⊗ W2, dimWi = ai , a1 �= a2 and p �= 2. Note that

M = GO(W1) ◦ GO(W2) = (SO(W1) ◦ SO(W2)).〈x1, x2〉

is a central product and the xi are certain involutions. More precisely, if a1 and a2 are
both even, then we may assume that x1 acts as a reflection on W1 and centralizes W2
(and vice versa for x2). Therefore, x1, x2 ∈ SO(W ) and thus M < G0. On the other
hand, if a1 is odd (so a2 is even) then we can choose x1 so that it acts as −1 on W1
and centralizes W2, and x2 is defined as above. Here x1 ∈ G0 but x2 /∈ G0, whence
M is not contained in G0. This is the case labelled (vii) in Table 4.

The other cases are similar. For instance, suppose M is a C3-subgroup. Geomet-
rically, M is the stabilizer of a decomposition W = U1 ⊕ U2, where U1 and U2 are
maximal totally singular subspaces of W , so dimU1 = n and M = GL(U1).2. Now
G0 contains an element interchanging U1 and U2 if and only if n is even, so M is
contained in G0 if and only if n is even, and this explains the parity condition on n
recorded in Table 4 (see case (vi)). ��
Proposition 3.3 Let M be one of the subgroups of G = Dn .2 listed in Table 4, and
assume n � 3 and p �= 2. Set V = VG0(λ), where one of the following holds:

(a) λ = λn−1 + λn;
(b) λ = λk , where 1 < k < n − 1.

Then V extends to a representation of G, and V |M is reducible.

Proof First observe that λ is fixed under the induced action of an involutory graph
automorphism ofG0 on the set of T -weights ofG (where T is a maximal torus ofG0),
so the representation V = VG0(λ) does indeed extend to a representation ofG = G0.2.
We will deal in turn with each of the relevant cases in Table 4 (note that case (iii) is not
applicable, since we are assuming that p �= 2). Seeking a contradiction, let us assume
that V |M is irreducible. By Clifford theory (see Sect. 2.3), the KM0-composition
factors of V are transitively permuted under the induced action of M/M0.

Case 1. M is a C1-subgroup of type Dl Dn−l .22.
Here 1 � l < n/2 and M0 = M1M2, where M1 = Dl and M2 = Dn−l . We

will inspect the proof of [4, Lemma 3.2.3]. By [17], V |M0 is reducible and thus
Clifford theory implies that there are either two or four KM0-composition factors
(since |M : M0| = 4).

First assume l = 1, so M = M0〈τ1, τ2〉 where τ1 is an involution inverting the
1-dimensional torus M1, and τ2 is an involutory graph automorphism of M2 = Dn−1.
We may assume that M2 = 〈U±α2 , . . . ,U±αn 〉. Note that M1 acts as scalars on the
KM0-composition factors of V , each of which is an irreducible KM2-module. If
there are exactly two KM0-composition factors of V then the argument in the proof
of [4, Lemma 3.2.3] goes through unchanged (the details are given in the proof of [4,
Lemma 3.2.2]), and the result follows immediately.

Similar reasoning applies if there are four composition factors. By Clifford theory,
if ν is the highest weight of a KM0-composition factor, then ν|M2 = λ|M2 or (τ2 ·λ)|M2
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(here ν|M2 denotes the restriction of ν to a suitable maximal torus of M2 contained
in T , and similarly for λ|M2 and (τ2 · λ)|M2 ). However, μ = λ − α1 − α2 − · · · −
αn−1 = −λ1 + 2λn affords the highest weight of a KM0-composition factor in case
(a), but clearly μ|M2 is not conjugate to λ|M2 . Case (b) is entirely similar, using
μ = λ − α1 − · · · − αk . Therefore, in both cases we have reached a contradiction.

Now assume l � 2. As noted in the proof of [4, Lemma 3.2.3], up to conjugacy we
have

M1 = 〈U±α1 , . . . ,U±αl−1 ,U±(αl−1+2(αl+···+αn−2)+αn−1+αn)〉
M2 = 〈U±αl+1 , . . . ,U±αn 〉

(2)

and M = M0〈τ1, τ2〉, where τ1 and τ2 act as involutory graph automorphisms on M1
and M2, respectively. Let {ω1,1, . . . , ω1,l} and {ω2,1, . . . , ω2,n−l} be the fundamental
dominant weights corresponding to the above bases of the root systems of M1 and M2,
respectively (here τ1 acts as a transposition on {ω1,1, . . . , ω1,l}, interchanging ω1,l−1
and ω1,l , and similarly τ2 acts on {ω2,1, . . . , ω2,n−l} by interchanging the weights
ω2,n−l−1 and ω2,n−l ). Note that if μ = ∑n

i=1 biλi is a weight for T then

μ|M0 =
l−1∑

i=1

biω1,i + (bl−1 + 2bl + · · · + 2bn−2 + bn−1 + bn)ω1,l

+
n−l∑

i=1

bl+iω2,i .

(3)

Consider case (a). Here μ = λ−αl −αl+1 −· · ·−αn−2 −αn−1 affords the highest
weight of a KM0-composition factor (see the proof of [4, Lemma 3.2.3]) and we
calculate that

μ|M0 = ω1,l−1 + ω1,l + 2ω2,n−l , λ|M0 = 2ω1,l + ω2,n−l−1 + ω2,n−l .

In particular, we observe that

μ|M0 /∈ {λ|M0 , (τ1 · λ)|M0 , (τ2 · λ)|M0 , (τ1τ2 · λ)|M0},

so μ|M0 is not M-conjugate to λ|M0 . This is a contradiction.
In case (b) we have λ = λk , where 1 < k < n − 1, and thus

λ|M0 =

⎧
⎪⎪⎨

⎪⎪⎩

ω1,k 1 < k < l − 1
ω1,l−1 + ω1,l k = l − 1
2ω1,l k = l
2ω1,l + ω2,k−l l < k < n − 1.
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Set

μ =
⎧
⎨

⎩

λ − αk − αk+1 − · · · − αl 1 < k < l
λ − αl k = l
λ − αl − αl+1 − · · · − αk l < k < n − 1.

Then μ affords the highest weight of a KM0-composition factor, and in each case
it is easy to check that μ|M0 is not M-conjugate to λ|M0 . For example, suppose
1 < k < l − 1. Then μ = λk−1 − λl + λl+1 and thus μ|M0 = ω1,k−1 + ω2,1,
which is not conjugate to λ|M0 = ω1,k . The other cases are similar.

Case 2. M is a C1-subgroup of type Bl Bn−l−1 × 22.
Here 0 � l < n/2 and M0 = M1M2, where M1 = Bl and M2 = Bn−l−1.

Let {β1, . . . , βl} and {γ1, . . . , γn−l−1} be bases of the root systems of M1 and M2,
respectively, and let {η1, . . . , ηl} and {ν1, . . . , νn−l−1} be the corresponding funda-
mental dominant weights. Then up to conjugacy, we may assume that the simple root
elements of M1 and M2 are as follows

xβi (t) =
{
xαi (t) 1 � i < l
xδ(t)xε(t) i = l

xγ j (t) =
{
xαl+ j (t) 1 � j < n − l − 1
xαn−1(t)xαn (t) j = n − l − 1

for all t ∈ K , where δ = αl +αl+1 +· · ·+αn−1 and ε = αl +αl+1 +· · ·+αn−2 +αn

(see [21, Claim 8], for example). Note that V |M0 is homogeneous.
First consider (a). In terms of the above notation, we calculate that λ|M0 = 2ηl +

2νn−l−1. By considering the restrictions αi |M0 , we see that λ − αn−1 and λ − αn both
restrict to the weight λ|M0 − γn−l−1. This weight has multiplicity 1 in the KM0-
composition factor of V afforded by λ. Moreover, one checks that λ is the only T -
weight μ in V such that λ|M0 − γn−l−1 � μ|M0 and λ|M0 − γn−l−1 �= μ|M0 , so there
must be a KM0-composition factor with highest weight λ|M0 −γn−l−1. However, this
contradicts the homogeneity of V |M0 .

Now consider (b). Suppose k � l, so l > 0 and λ|M2 is trivial. Now the weight
μ = λ − αk − · · · − αl affords the highest weight of a KM0-composition factor of
V , but μ|M2 is nontrivial and this contradicts the homogeneity of V |M0 . Now assume
k > l. Here λ|M0 = 2ηl + νk−l+1. However, the weight μ = λ−αl −αl+1 −· · ·−αk

affords the highest weight of a KM0-composition factor of V and

μ|M0 =
{

ηl−1 + νk−l+2 k < n − 2
ηl−1 + 2νn−l−1 k = n − 2

Once again, this contradicts the homogeneity of V |M0 .

Case 3. M is a C2-subgroup of type (2t × Bt
l ).Symt .

Here 2n = (2l + 1)t , l � 1 and t � 2 is even. Note that the conclusion to [4,
Lemma 4.2.1] still applies in this situation.
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First consider (a). If l = 1 then the argument in the third paragraph on [4, p. 48]
applies, and we reach a contradiction via [4, Lemma 4.2.1]. Next suppose (l, t) =
(2, 2), so n = 5. Here we argue as in the third to last paragraph on [4, p. 50]. (Alterna-
tively, in the notation of [4, Lemma 4.3.8], note that dim V = dim VD5(λ) = 210 and
λ|M0 = 2ω1,2 + 2ω2,2, so the KM0-composition factor afforded by λ has dimension
102 = 100, which does not divide dim V .) Finally, if l � 2 and (l, t) �= (2, 2) then we
can argue as in the third to last paragraph on [4, p. 52] (again, we get a contradiction
via [4, Lemma 4.2.1]). Case (b) is similar and we omit the details.

Case 4. M is a C2-subgroup of type (Dt
l .2

t ).Symt .
Here n = lt , l � 1 and t � 2. As in the previous case, note that the conclusion to

[4, Lemma 4.2.1] still applies.
If l = 1 then M = NG(T ) is the normalizer of a maximal torus and this case is

ruled out as in the first paragraph in the proof of [4, Lemma 4.3.8]. Now assume l � 2.
Consider case (a). If l � 3 then we can argue as on [4, p. 56] to rule out this case, and
as noted in the penultimate paragraph on [4, p. 57], the same argument also applies if
l = 2. Case (b) is very similar: if l � 3 then we argue as on [4, p. 55] (we repeatedly
apply [4, Lemma 4.2.1]), and for l = 2 we note that the argument on [4, p. 57] goes
through unchanged.

Case 5. M is a C3-subgroup of type An−1T1.2.
Here n � 3 is odd. Set L = (M0)′ = An−1 and note that V |L has exactly two

composition factors. We may assume that L = 〈U±α1 , . . . ,U±αn−1〉. As in the proof
of [4, Lemma 3.2.2], let Vj be the sum of the T -weight spaces (T a maximal torus of
G0 = Dn) in V = VG0(λ) of the form λ − ∑n−1

i=1 ciαi − jαn , j ∈ N0. Since Vj is
L-stable, every T -weight of V is of this form, with j = 0 or 1 (by [16, Theorem 1]
and saturation; see [12, Sect. 13.4]). In particular, w0λ = −(τ · λ) is of this form
(where w0 is the longest word in the Weyl group of G0, and τ is an involutory graph
automorphism of G0 that interchanges the weights λn−1 and λn). Therefore, if we
write λ = ∑n

i=1 aiλi then

2λ − (an−1 − an)(λn−1 − λn) =
n∑

i=1

ciαi

and cn ∈ {0, 1}. By expressing the λi in terms of the αi , we deduce that either λ = λ1,
or n = 3 and λ = λ2 or λ3. This immediately eliminates cases (a) and (b).

Case 6. M is a C4(i)-subgroup of type BaDb.2.
Here n = (2a + 1)b and M0 = M1M2 is semisimple, where M1 is of type Ba

and M2 is of type Db. Note that the embedding of M in G is via a tensor product
action on the natural KG-module W . Write M = M0〈σ 〉, where σ induces a graph
automorphism on M2 and centralizes M1.

Let�(M1) = {β1, . . . , βa} and�(M2) = {γ1, . . . , γb} be bases of the root systems

(M1) and 
(M2), respectively. Now W restricts to M1 as 2b copies of the natural
module forM1, and hence up to conjugacy,wemay assume thatM1 lies in the subgroup

〈U±αi |(2a + 1) j + 1 � i < (2a + 1)( j + 1), 0 � j < b〉,
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the derived subgroup of an A2a × · · · × A2a (b copies) Levi subgroup of G. The
projection of M1 into each of the factors of this group is the natural embedding of a
group of type Ba in A2a . We may assume that

α(2a+1) j+i |M0 = βi for all 0 � j < b, 1 � i � a

and

α(2a+1) j+a+i |M0 = βa−i+1 for all 0 � j < b, 1 � i � a,

where α|M0 denotes the restriction of α to a maximal torus TM0 < T of M0.
Let P be the parabolic subgroupofM0,which contains the oppositeBorel subgroup,

with Levi factorM1TM0 .Wemay assume that P is contained in the parabolic subgroup
of G, which contains the opposite Borel subgroup of G, whose Levi factor has derived
subgroup as given above. By comparing the flags of commutator subspaces of W
with respect to the two unipotent radicals, we are able to determine the restrictions of
sufficientlymany T -weights to TM0 in order to deduce the restrictions of the remaining
simple roots. We get

α(2a+1) j |M0 = γ j − β0, α(2a+1)b|M0 = γb − γb−1 − (β0 − β1),

where 1 � j < b and β0 = 2
∑a

i=1 βi .
By [17], V |M0 is reducible, so Clifford theory implies that V has precisely two

KM0-composition factors, with highest weights λ|M0 and (σ · λ)|M0 . In particular, if
we set TM1 = TM0 ∩M1, then every KM1-composition factor of V has highest weight
λ|M1 , whence every TM1 -weight of V is of the form

λ|M1 −
a∑

j=1

n jβ j , for some n j ∈ N0. (4)

However, in case (a) we find that the weight λ − αn restricts to λ|M1 + β0 − β1,
which contradicts (4). In (b), choose 1 � i < b such that |(2a + 1)i − k| is minimal,
and set μ = λ − ak − αk+1 − · · · − α(2a+1)i if k � (2a + 1)i , otherwise set μ =
λ − α(2a+1)i − α(2a+1)i+1 − · · · − αk . Then

μ|M1 = (λ − r − (γi − β0))|M1 = (λ − r + β0)|M1,

where either r = 0 or r is a positive root of M1. Once again, this contradicts (4).
This completes the proof of Proposition 3.3. ��

Proposition 3.4 Let M be one of the subgroups of G = Dn .2 listed in Table 4, and
assume p = 2. Set V = VG0(λ), where

λ =
n−2∑

i=1

aiλi + an−1(λn−1 + λn)
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is p-restricted. Assume that V is nontrivial and V �= W,W ∗. Then V extends to a
representation of G, and V |M is reducible.

Proof As before, λ is fixed by an involutory graph automorphism of G0, so V extends
to a representation of G = G0.2. Seeking a contradiction, let us assume that V |M is
irreducible. There are four cases to consider.

Case 1. M is a C1-subgroup of type Dl Dn−l .22.
Here M0 = M1M2, where M1 = Dl , M2 = Dn−l and 1 � l < n/2. First

assume l = 1. As in the proof of the previous proposition, we may assume that
M2 = 〈U±α2 , . . . ,U±αn 〉, and by arguing as in the proof of [4, Lemma 3.2.3] we
quickly reduce to the case where V |M0 has exactly four composition factors. Let k be
minimal such that ak �= 0. Then λ−α1−· · ·−αk affords the highest weight of a KM2-
composition factor of V , which is not conjugate (via a graph automorphism of M2) to
the composition factor afforded by λ. This contradiction eliminates the case l = 1.

Now assume l � 2. As before, M = M0〈γ1, γ2〉, where γ1 and γ2 act as involutory
graph automorphisms on M1 and M2, respectively, and we may assume that M1 and
M2 are as given in (2). Let {ω1,1, . . . , ω1,l} and {ω2,1, . . . , ω2,n−l} be the fundamental
dominant weights corresponding to the bases �(M1) and �(M2) in (2), respectively.
In view of (3), it is easy to see that λ|M0 = (γ2 · λ)|M0 and

(γ1 · λ)|M0 = (γ1γ2 · λ)|M0

= λ|M0 + (2(al + · · · + an−2) + an−1 + an) (ω1,l−1 − ω1,l).

Now, by arguing as in the proof of [4, Lemma 3.2.3] we quickly reduce to the case λ =
an−1(λn−1+λn). By inspecting (2), we see thatμ = λ−αl −αl+1−· · ·−αn−2−αn−1
affords the highest weight of a KM0-composition factor, but this is not conjugate to
λ|M0 since μ|M0 = λ|M0 + ω1,l−1 − ω1,l − ω2,n−l−1 + ω2,n−l .

Case 2. M is a C2-subgroup of type Bn−1 × 2.
Write M = M0 ×〈z〉. By [17], V |M0 is reducible and thus V |M0 = V1⊕V2, where

V1 and V2 are irreducible KM0-modules. Since z is central, it follows that V |M0 is
homogeneous, but this is ruled out by Proposition 2.9.

Case 3. M is a C2-subgroup of type (Dt
l .2

t ).Symt .
Here n = lt , where l � 1 and t � 2. The case l = 1 can be ruled out by arguing as

in the first paragraph in the proof of [4, Lemma 4.3.8]. If l � 3 then by arguing as in
the proof of [4, Lemma 4.3.8] (see [4, p. 55]) we reduce to the case λ = λn−1+λn , and
this possibility is ruled out by the argument in the penultimate paragraph on [4, p. 56].
Finally, if l = 2 thenwe quickly get down to the cases λ ∈ {λ1+λn−1+λn, λn−1+λn}.
The case λ = λn−1 + λn is ruled out as in loc. cit., and the other case is eliminated by
arguing as in the final paragraph in the proof of [4, Lemma 4.3.8].

Case 4. M is a C3-subgroup of type An−1T1.2.
Here n � 3 is odd and the argument given in the analysis of Case 5 in the proof of

Proposition 3.3 can be applied.
This completes the proof of Proposition 3.4. ��
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4 Geometric subgroups: the connected case

SupposeG, H and V = VG(λ) satisfy the conditions in Hypothesis 1.1. In this section
and the next, we will establish Theorem 1.4 when H is contained in a geometric
maximal subgroup M of G, excluding the special situation described in part (b) of
Theorem 1.4. Assume V |H is irreducible, so H0 is reductive by Lemma 2.7. Our
first task is to determine the possibilities for the irreducible triple (G, M, V ). If M is
connected then we can read off the relevant cases by applying [17, Theorem 1]; the
cases that arise are recorded in Table 5. Similarly, if M is disconnected, we can appeal
to the main theorem of [4], which yields the list of cases given in Table 6 (in the first
line of the table, T denotes a maximal torus of G).

Remark 4.1 It is worth noting that the cases listed in [17, Table 1] are recorded in
terms of the image of the underlying representation ϕ : G → GL(V ), so Seitz’s
table gives (ϕ(G), ϕ(M), V ), rather than (G, M, V ). For instance, at the level of
subgroups, the cases labelled S3 and S4 in [17, Table 1] correspond to irreducible
triples with (G, M) = (C3,G2) or (B3,G2), but only the former possibility is listed
in [17, Table 1] because in both cases the image ϕ(G) is of type C3. We also observe
that there are certain maximal rank configurations arising in [17, Theorem 4.1] which
are not listed [17, Table 1]. For example, referring to the case labelled MR1 in [17,
Table 1] (so p = 3), Theorem 4.1 of [17] implies that the short (respectively, long)
root A2 in G2 acts irreducibly on any p-restricted G2-module whose highest weight
has support on the short (respectively, long) roots, but only the former is listed in the
table. In addition, we also note that the highest weights in [17, Table 1] are only given
up to conjugacy by a graph automorphism, and we adopt the same convention in Table
5. Note that if the graph automorphism introduces a Frobenius twist on the module,
then we will list the irreducible action on the corresponding p-restricted module.

Remark 4.2 As noted in Remark 1.2, if W denotes the natural KG-module then any
irreducible triple (G, M, V ) with V = W τ (for some τ ∈ Aut(G)) is also excluded
in [17, Table 1]. In particular, Seitz does not list the cases (G, M) = (D4, A2) (with
p �= 3) and (B2, A1) (p �= 2, 3), with V a spin module for G. For example, the
spin module for B2 is 4-dimensional, and it corresponds to the natural symplectic
representation of C2.

Remark 4.3 The triples of the form (G, M, V ), where (G, p) = (Bn, 2) and M is a
disconnected geometric maximal subgroup, are not stated explicitly in [4], but they are
easily determined from the relevant list of cases in [4, Table 1] for the corresponding
dual group of type Cn . The only possibilities are M = Bt

l .Symt (a C2-subgroup) with
λ = λn , or M = Dn .2 and λ = λn or

∑
i<n aiλi . Note that G acts reducibly onW , so

there are no triples involving non-geometric subgroups.

Remark 4.4 Let us make a few comments on the cases in Tables 5 and 6:

(a) In case (ii) in Table 5 we have G = An and M = Cm , where n = 2m − 1 and
m � 2. Moreover, λ = aλk + bλk+1, where 1 � k < m, a + b = p − 1 > 1 and
a �= 0 if k = m − 1. In particular, p �= 2.
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Table 5 M is a connected geometric subgroup

G M Collection λ Conditions

(i) An Cm C6 kλ1, k � 2 n = 2m − 1, m � 2, p �= 2

(ii) Cm C6 See Remark 4.4(a) n = 2m − 1, m � 2

(iii) Bm C6 λk , 1 < k < m n = 2m, m � 3, p �= 2

(iv) Bm C6 λm n = 2m, m � 2, p �= 2

(v) Dn Bm C1 kλn−1, kλn , k � 2 n = m + 1, m � 3, p �= 2

(vi) Bm C1 See Remark 4.4(c) n = m + 1, m � 3, p �= 2

Table 6 M is a disconnected geometric subgroup

G M Collection λ Conditions

(i) An NG (T ) C2 λk , 1 < k < n

(ii) A2m .2 C4(i i) λ2, λn−1 n = m(m + 2), p �= 2, m � 2

(iii) Dm .2 C6 λk , 1 < k < n n = 2m − 1, p �= 2

(iv) Bn Dn .2 C1 See Remark 4.4(e)

(v) Dn .2 C1
∑n−1

i=1 aiλi p = 2

(vi) Cn C2
m .2 C2 See Remark 4.4(f) n = 2m

(vii) Dn .2 C6
∑n−1

i=1 aiλi p = 2

(viii) Dn (D2
m .2).2 C2 λ1 + λn−1, λ1 + λn n = 2m, m � 3 odd, p = 2

(ix) B4 B2
1 .2 C4(i i) λ4 p �= 3

(x) C4 C3
1 .Sym3 C4(i i) λ2, λ3 p �= 2 (p �= 2, 3 if λ = λ3)

(xi) D4 C3
1 .Sym3 C4(i i) λ1 + λ4, λ3 + λ4 p = 2

(xii) D8 C4
1 .Sym4 C4(i i) λ7 p �= 3

(xiii) C2
2 .2 C4(i i) λ7 p �= 5

(b) Note that H is a decomposition subgroup in case (v) of Table 5, sowemay assume
that k � 2 (if k = 1 then V is a spin module).

(c) In case (vi) in Table 5 we have G = Dn , M = Bm (with n = m + 1 � 4, p �= 2)
and λ = bλk + aλn−1, where 1 � k < n − 1, ab �= 0 and a + b + n − 1 − k ≡
0(modp).

(d) In Table 5, following [17, Table 1], for G of type An we record the highest weight
λ up to conjugacy by a graph automorphism.

(e) Consider case (iv) in Table 6, where G = Bn and M = Dn .2 is a C1-subgroup.
Here p �= 2 and the conditions on the highest weight λ = ∑n

i=1 aiλi are given in
part (b) of Remark 1.8(v). Since H is a decomposition subgroup, we may assume
that ai �= 0 for some i < n.

(f) In case (vi) in Table 6 we have G = Cn and M = C2
m .2 is a C2-subgroup, where

n = 2m. Moreover, λ = λn−1 + aλn , where 0 � a < p and 2a + 3 ≡ 0(modp).
In particular, p �= 2.
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(g) In cases (xi), (xii) and (xiii) we record M and V up to Aut(G)-conjugacy. For
instance, in case (xi), if M̃ denotes the image of M under an appropriate triality
graph automorphism of G then (G, M̃, VG(λ1 + λ3)) is an irreducible triple.

The main result of this section is the following.

Theorem 4.5 Let G, H and V begiven as inHypothesis1.1, and assume H < M < G
where M is a connected geometric maximal subgroup of G. Then V |H is reducible.

Proof Write V = VG(λ). The possibilities for (G, M, V ) are given in Table 5; in each
caseM is a simple group of rankm. Let {η1, . . . , ηm} be a set of fundamental dominant
weights for M . Seeking a contradiction, let us assume that V |H is irreducible.

First consider case (i) in Table 5 (this is the case labelled I1 in [17, Table 1]). Here
G = An and M = Cm is a C6-subgroup of G, where n = 2m − 1, m � 2 and p �= 2
(this is the natural embedding Sp(W ) < SL(W )). Note that λ = kλ1, k � 2 and
V |M = VM (kη1) (see [17, Table 1]). Let J be a maximal subgroup of M containing
H , so

H � J < M < G.

We consider the irreducible triple (M, J, VM (kη1)). If V |J 0 is irreducible then the
triple (M, J 0, VM (kη1)) has to be in [17, Table 1], but it is easy to check that there are
no compatible examples. Therefore J is disconnected and V |J 0 is reducible. In this
situation, (M, J, VM (kη1)) must be one of the triples arising in the main theorems of
[3,4], but once again we find that there are no such triples. We conclude that V |H is
reducible in case (i).

The other cases in Table 5 are very similar, although some extra care is required in
case (vi). Here G = Dn , M = Bn−1 is a C1-subgroup (we can view M as the stabilizer
inG of a 1-dimensional non-degenerate subspace ofW ), andλ = bλk+aλn−1 satisfies
the following conditions:

1 � k < n − 1, a, b �= 0, a + b + n − 1 − k ≡ 0(modp) (5)

(see case IV′
1 in [17, Table 1]). We note that V |M = VM (bηk + aηn−1). As before,

let J be a maximal subgroup of M containing H , and consider the irreducible triple
(M, J, VM (bηk + aηn−1)).

If V |J 0 is irreducible then by inspecting [17, Table 1] we see that the only possibility
is the case labelled III′1, where M = B3 (so n = 4), J = G2, k = 2 and a + 2b+ 2 ≡
0(modp). By (5), we also have a + b + 1 ≡ 0(modp), so p divides b + 1, and thus
p divides a, which is a contradiction since the highest weight λ = bλk + aλn−1
is p-restricted. Therefore J is disconnected and V |J 0 is reducible. We are now in a
position to apply the main theorems in [3,4]. We deduce that the only possibility is
the configuration found by Ford, with J = Dn−1.2 (see the case labelled U2 in [8,
Table II]; also see Remark 4.4(e)). Since the highest weight of V |M is bηk + aηn−1,
we must have a = 1 and 2a ≡ −2(n − 1 − k) − 1(modp). But it is easy to see that
this congruence condition is incompatible with the congruence condition in (5). ��
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Table 7 The irreducible triples (G, H, V ) in Theorem 5.1

G H λ Conditions

An T .X λk , 1 < k < n X < Symn+1 is �-transitive, � = min{k, n + 1 − k}
B4 B3

1 .X λ3 p = 2, X = Z3 or Sym3

C4 C3
1 .X λ3 p = 2, X = Z3 or Sym3

C4 C3
1 .Z3 λ2, λ3 p �= 2 (p �= 2, 3 if λ = λ3)

D4 C3
1 .Z3 λ1 + λ4, λ3 + λ4 p = 2

D8 C4
1 .X λ7 p �= 3, X < Sym4 is transitive

5 Geometric subgroups: the disconnected case

Themain result of this section is the following, which completes the proof of Theorem
1.4 when H is contained in a maximal geometric subgroup of G.

Theorem 5.1 Let G, H and V = VG(λ) be given as in the statement of Theorem
1.4, and assume that H < M < G where M is a disconnected geometric maximal
subgroup of G. Then V |H is irreducible if and only if (G, H, V ) is one of the cases
recorded in Table 7.

Remark 5.2 Suppose that H < M < G, where (G, M, V ) is the case labelled (vii) in
Table 6, so G = Cn , M = Dn .2 and p = 2. In Proposition 5.19 we deduce that V |H
is irreducible if and only if (n, p) = (4, 2), λ = λ3 and H = C3

1 .X with X = Z3 or
Sym3, and so this establishes Theorem 5.1 in this situation. The result for case (vii)
will be obtained from the result for (v) via an isogeny. That is, V |H is irreducible if
and only if (n, p) = (4, 2), λ = λ3 and H = B3

1 .Z3 or B3
1 .Sym3. Therefore, for the

remainder of this section we will exclude case (v) in Table 6 from our analysis.

Webeginwith a couple of preliminary lemmas.Ourfirst resultwill play an important
role in the analysis of cases (vii), (x), (xi) and (xii) in Table 6.

Lemma 5.3 Let G be a simple classical algebraic group with natural module W, and
let H be a closed positive-dimensional subgroup of G such that W |H0 is reducible.
Then there exists a geometric maximal subgroup M of G such that

(i) H � M, and
(ii) M does not normalize any decomposition of the form W = W1⊗· · ·⊗Wt , where

t � 3 and the Wi are equidimensional.

Proof This follows from the proof of [14, Theorem 1′]. In particular, we refer the
reader to the proofs of Lemmas 3.1, 3.2 and 3.3 in [14]. ��

We will also need the following lemma when dealing with cases (ii) and (viii) in
Table 6.

Lemma 5.4 Let G = An or Dn, and set μ2 = γ · μ1, where μ1 = ∑
i aiλi is a T -

weight of G and γ is an involutory graph automorphism of G. If we write μ2 − μ1 =∑
i ciαi , then each ci is non-negative if and only if μ1 = μ2.
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Proof First assume G = An . We may assume that γ interchanges the fundamental
dominantweightsλi andλn+1−i (1 � i � n/2), soμ2 = ∑

i an+1−iλi . Set� = �n/2�.
Since

λi = 1

n + 1

⎛

⎝
i−1∑

j=1

j (n + 1 − i)α j +
n∑

j=i

i(n + 1 − j)α j

⎞

⎠

(see [12, Table 1], for example) it follows that

μ2 − μ1 = 1

n + 1

n∑

i=1

(an+1−i − ai )

⎛

⎝
i−1∑

j=1

j (n + 1 − i)α j +
n∑

j=i

i(n + 1 − j)α j

⎞

⎠

= 1

n + 1

⎡

⎣
n∑

j=1

(n + 1 − j)α j

j∑

i=1

i(an+1−i − ai )

+
n−1∑

j=1

jα j

n∑

i= j+1

(n + 1 − i)(an+1−i − ai )

⎤

⎦ ;

so for 1 � j � � we have

c j = 1

n + 1
(n + 1 − 2 j)

j−1∑

i=1

i(an+1−i − ai )+ 1

n + 1
j

�∑

i= j

(n+1 − 2i)(an+1−i − ai )

and if � + 1 � j � n then

c j = 1

n + 1
(n + 1 − 2 j)

n− j∑

i=1

i(an+1−i − ai ) + 1

n + 1
(n + 1 − j)

×
�∑

i=n+1− j

(n + 1 − 2i)(ai − an+1−i ).

We deduce that c j + cn+1− j = 0 for all 1 � j � �. In addition, if n is odd then
c�+1 = 0. The result follows.

The case G = Dn is very similar. Here we may assume that γ interchanges λn−1
and λn , so μ2 − μ1 = (an − an−1)(λn−1 − λn) and the desired result follows. ��

For the remainder of this section, we will assume that (G, H, V ) is given as in
the statement of Theorem 1.4, so the conditions in Hypothesis 1.1 are satisfied. We
will deal with each of the cases in Table 6 in turn, excluding case (v) as explained in
Remark 5.2.
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5.1 Proof of Theorem 5.1, part I

In this section, we will establish Theorem 5.1 in the case where H < M < G and
(G, M, V ) is one of the cases labelled (i), (ii), (iii), (iv), (vi), (viii), (ix) or (xiii) in
Table 6. The remaining cases, labelled (vii), (x), (xi) and (xii), will be handled in
Sect. 5.2.

Proposition 5.5 Suppose H < M < G and (G, M, V ) is the case labelled (i) in
Table 6, so G = An, M = NG(T ) = T .Symn+1 is the normalizer of a maximal torus
T of G, and V = VG(λk) with 1 < k < n. Then V |H is irreducible if and only if
H = T .X and X < Symn+1 is �-transitive, where � = min{k, n + 1 − k}.
Proof Here V = VG(λk) = �k(W ) is the k-th exterior power of the natural KG-
module W , and by duality we may assume that 1 < k � (n + 1)/2. Let W(G) =
NG(T )/T = Symn+1 be the Weyl group of G.

Set S = H0 and note that S � T is a subtorus. Let �S(W ) and �S(V ) be the set
of S-weights of W and V , respectively, so

W |S =
⊕

μ∈�S(W )

Wμ, V |S =
⊕

μ∈�S(V )

Vμ

where Wμ is the μ-weight space of W , and similarly Vμ is the μ-weight space of
V . There is a natural action of NG(S) on �S(W ) and �S(V ) given by (x · μ)(s) =
μ(xsx−1). In particular, NG(S) permutes the S-weight spaces on W and V .

First assume S = T . Here the S-weight spaces onW and V are 1-dimensional, and
V |H is irreducible if and only if H/T � W(G) acts transitively on �S(V ). This is
equivalent to the condition that H/T is a k-transitive subgroup ofW(G) = Symn+1.
Indeed, we note that the S-weight vectors on V are of the form wi1 ∧ · · · ∧wik , where
the i j are distinct and {w1, . . . , wn+1} is a basis of W consisting of S-weight vectors.
This gives the desired result when S = T , so for the remainder let us assume that S is
a proper subtorus of T .

Seeking a contradiction, suppose V |H is irreducible. Now H � NG(S) (since
S = H0) and thus V |NG (S) is irreducible. In particular, NG(S) acts irreducibly on
W (otherwise NG(S) lies in a parabolic subgroup of G, which would imply V |H
is reducible), so NG(S) must transitively permute the set of S-weight spaces on W .
Therefore, these S-weight spaces are equidimensional, whence NG(S) � J < G,
where J is a C2-subgroup of G. More precisely, J is the normalizer in G of the
direct sum decomposition

⊕
μ∈�S(W ) Wμ. If we now consider the irreducible triple

(G, J, V ) then the main theorem of [4] implies that the S-weight spaces on W are
1-dimensional, so S is a regular torus. In particular,

S � CG(S) = T � NG(S) � NG(T ) = M

and we define

W(S) := NG(S)/CG(S) = NG(S)/T � NG(T )/T = W(G).
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As noted above, W(S) permutes the S-weight spaces Vμ, and the irreducibility of
V |NG (S) implies that this action is transitive. In particular, the S-weight spaces on V
are equidimensional. In fact, we claim that they are 1-dimensional. To see this, let d
denote the dimension of S and fix a basis {w1, . . . , wn+1} of W comprising S-weight
vectors. Then there exist integers ci, j , 1 � i � d, 1 � j � n + 1 such that

(s1, . . . , sd) · w j =
(
s
c1, j
1 s

c2, j
2 . . . s

cd, j
d

)
w j

for all (s1, . . . , sd) ∈ (K ∗)d ∼= S and all 1 � j � n + 1. Without loss of generality,
we may assume that the w j are ordered so that the d-tuples

(c1,1, . . . , c1,d), . . . , (cn+1,1, . . . , cn+1,d) (6)

are in lexicographic order. (Note that these d-tuples are distinct since the S-weight
spaces on W are 1-dimensional.) Then w1 ∧ · · · ∧ wk ∈ V is an S-weight vector of
weight

s
∑k

i=1 c1,i
1 s

∑k
i=1 c2,i

2 · · · s
∑k

i=1 cd,i
d .

In view of the lexicographic ordering of the tuples in (6), it follows that this S-weight
has multiplicity 1, and this justifies the claim.

As previously observed, the irreducibility of V |NG (S) now implies that W(S) �
Symn+1 is k-transitive, so to complete the proof of the proposition, it suffices to show
that W(S) is not 2-transitive.

To see this, first let c be the codimension of S in T and let X (T ) ∼= Z
n and

X (S) ∼= Z
n−c be the corresponding character groups. The sublattice S⊥ is defined by

S⊥ = {γ ∈ X (T ) | γ |S = 1} ∼= Z
c

and we set

X (T )R = X (T ) ⊗Z R, S⊥
R

= S⊥ ⊗Z R.

Now W(G) acts faithfully on X (T )R, and W(S) = NG(S)/T stabilizes the c-
dimensional subspace S⊥

R
. Let P be the pointwise stabilizer of S⊥

R
in W(G). By

[15, Corollary A.29], P is a parabolic subgroup ofW(G) = Symn+1, so it is a direct
product of smaller degree symmetric groups. In particular, P is intransitive. Finally,
we observe that W(S) normalizes P (since it stabilizes S⊥

R
), so the intransitivity of

P implies thatW(S) is either intransitive, or transitive and imprimitive. In particular,
W(S) is not 2-transitive. ��

Proposition 5.6 Suppose H < M < G and (G, M, V ) is the case labelled (iv) in
Table 6. Then V |H is reducible.

123



T. C. Burness et al.

Proof Here G = Bn and M = Dn .2, where n � 3 and p �= 2. We have

H < M = Dn .2 < G = Bn

and V = VG(λ), where the highest weight λ = ∑
i aiλi satisfies the conditions

recorded in Remark 4.4(e). This is the case labelledU2 in [8, Table II]. In particular, we
note that an = 1 and V |M0 has exactly two composition factors, say V |M0 = V1 ⊕V2,
where Vi has highest weight μi , and

μ1 =
n−2∑

i=1

aiηi + an−1ηn−1 + (an−1 + 1)ηn,

μ2 =
n−2∑

i=1

aiηi + (an−1 + 1)ηn−1 + an−1ηn .

(with respect to fundamental dominant weights {η1, . . . , ηn} for M0 = Dn). As noted
in Remark 4.4(e), we may assume that ai �= 0 for some i < n.

Seeking a contradiction, let us assume that V |H is irreducible, so H �� M0 since
V |M0 is reducible. Set H1 = H ∩ M0 and let J be a maximal subgroup of M0 that
contains H1. Then H = H1.2 and the irreducibility of V |H implies that V1|H1 and
V2|H1 are irreducible, so V1|J and V2|J are also irreducible.

We can now consider the irreducible triple (M0, J, V1), which must be one of
the cases recorded in [3,4,17]. Given the conditions on λ (in particular, the fact that
an = 1 and ai �= 0 for some i < n), it is easy to see that there are no compatible
examples in [3,4]. The only possible example in [17, Table1] is the case labelled
IV′

1, with J = Bn−1, a = 1 and b �= 0. However, we claim that the conditions
in this configuration are incompatible with those that are given in Remark 4.4(e).
Indeed, we have an−1 = 0 and there is a unique k < n − 1 with ak �= 0. In case
IV′

1 we have ak + n − k ≡ 0(modp) and the conditions in Remark 4.4(e) yield
2ak ≡ −2(n − k) − 1(modp). If both conditions hold, then p divides ak + n − k and
1 + 2ak + 2(n − k), so p divides 1 + ak + n − k. Clearly, this is impossible. ��
Proposition 5.7 Suppose H < M < G and (G, M, V ) is the case labelled (vi) in
Table 6. Then V |H is reducible.

Proof Here G = Cn , M = C2
m .2 is a C2-subgroup and λ = λn−1 + aλn , where

n = 2m, 0 � a < p and 2a + 3 ≡ 0(modp). In particular, note that p �= 2
and a < p − 1. Seeking a contradiction, let us assume that V |H is irreducible. Set
M0 = C2

m = M1M2 (a direct product of two simply connected groups of type Cm)
and let {ωi,1, . . . , ωi,m} be fundamental dominant weights for Mi .

As recorded in [4, Table 4.2], we have V |M0 = V1 ⊕ V2 where

V1 = VM1((a + 1)ω1,m) ⊗ VM2(ω2,m−1 + aω2,m)

V2 = VM1(ω1,m−1 + aω1,m) ⊗ VM2((a + 1)ω2,m).
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Set H1 = H ∩ M0 and note that H0
1 = H0 and H = H1.2. In particular, since V |H

is irreducible it follows that V |H1 has exactly two composition factors, namely

V |H1 = V1|H1 ⊕ V2|H1 .

Note that H0 is a proper subgroup ofM0 since we are assuming that H is disconnected
and non-maximal. Let πi : H1 → Mi be the i-th projection map and note that
ker(dπ1) ∩ ker(dπ2) = 0 since H1 is a closed positive-dimensional subgroup of M0.

Claim. π1(H1) and π2(H1) are infinite.
Seeking a contradiction, suppose that π1(H1) is finite, in which case π2(H1) is

infinite since H is positive-dimensional. The finiteness of π1(H1) implies that dπ1 =
0, so ker(dπ2) = 0 since ker(dπ1)∩ ker(dπ2) = 0. Also note that ker(π1) is a closed
subgroup of finite index in H1, so H0

1 � ker(π1) and thus π2|H0 : H0 → M2 is
injective.

Next we claim that π2 is surjective. Suppose otherwise. Then there exists a positive-
dimensional maximal subgroup J2 of M2 such that π2(H1) � J2 < M2. The
irreducibility of V1|H1 and V2|H1 implies that π2(H1) acts irreducibly on the KM2-
modules with highest weights ω2,m−1 + aω2,m and (a + 1)ω2,m , so we can consider
the irreducible triples

(M2, J2, VM2(ω2,m−1 + aω2,m)), (M2, J2, VM2((a + 1)ω2,m)).

By inspecting [17, Table 1] we see that there are no compatible examples with J2
connected. Similarly, by applying the main theorems in [3,4], there are no examples
with J2 disconnected. This is a contradiction, hence π2 is surjective.

It follows that π2(H0
1 ) = M2, so π2|H0 : H0 → M2 is a bijective morphism.

Moreover, ker(d(π2|H0)) = 0 since ker(dπ2) = 0, so d(π2|H0) is an isomorphism of
Lie algebras and thus π2|H0 is an isomorphism of algebraic groups. In particular, H0

is a simply connected group of type Cm . By Lemma 2.2 we may write π2|H0 = tx
for some x ∈ H0, where tx is an inner automorphism (conjugation by x). In addition,
note that H � NG(H0) = H0CG(H0) and thus V |H0 is homogeneous.

Let {η1, . . . , ηm} be a set of fundamental dominant weights for H0. Then V |H0

has composition factors isomorphic to VH0(ηm−1 +aηm) and VH0((a+1)ηm), which
contradicts the fact that V |H0 is homogeneous. We conclude that π1(H1) is infinite,
and similarly π2(H1) is also infinite.

Claim. π1 and π2 are surjective.
Seeking a contradiction, suppose π1 is not surjective. Since π1(H1) is infinite, there

exists a positive-dimensional maximal subgroup J1 of M1 such that π1(H1) � J1 <

M1 and we can consider the irreducible triples

(M1, J1, VM1((a + 1)ω1,m)), (M1, J1, VM1(ω1,m−1 + aω1,m)).

As before, we find that there are no compatible examples, which is a contradiction and
thus π1 is surjective. An entirely similar argument shows that π2 is also surjective.
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By the previous claim, it follows that πi (H0) = Mi for i = 1, 2, so H0 is a
subdirect product of the direct product M0 = M1M2. By applying Lemma 2.5, noting
that H0 < M0, we deduce that H0 ∼= M1 is diagonally embedded in M1M2, so we
may write

H0 = {(τ1(x), τ2(x))|x ∈ Sp2m(K )},

where τi : Sp2m(K ) → Mi is a bijective morphism. By appealing to Lemma 2.2, we
may write τi = txi σqi for some xi ∈ H0 and p-power qi (where σqi is a standard field
automorphism), and once again we note that V |H0 is homogeneous. Note that at least
one qi is equal to 1 (since H0 is a closed subgroup M0); without loss of generality we
will assume q2 = 1.

Let {η1, . . . , ηm} be a set of fundamental dominant weights for H0. Then

V1|H0 = VH0((a + 1)ηm)(q1) ⊗ VH0(ηm−1 + aηm)

and

V2|H0 = VH0(ηm−1 + aηm)(q1) ⊗ VH0((a + 1)ηm),

so V |H0 has composition factors with highest weights

ηm−1 + ((a + 1)q1 + a)ηm, q1ηm−1 + (aq1 + a + 1)ηm .

Since V |H0 is homogeneous, these highest weights must be equal and thus q1 = 1.
Now p < a − 1 so the modules VH0((a + 1)ηm) and VH0(ηm−1 + aηm) are p-
restricted and thus Lemma 2.10 implies that V |H0 is not homogeneous. This is a
contradiction. ��
Proposition 5.8 Suppose H < M < G and (G, M, V ) is the case labelled (viii) in
Table 6. Then V |H is reducible.

Proof Here G = Dn and M = (D2
m .2).2 is a C2-subgroup, where n = 2m, m � 3 is

odd and p = 2. Moreover, V = VG(λ) where λ = λ1 + λn−1 or λ1 + λn (see Table
6); without loss of generality, we will fix λ = λ1 + λn−1. Seeking a contradiction, let
us assume that V |H is irreducible.

Write M0 = D2
m = M1M2 and let {ωi,1, . . . , ωi,m} be fundamental dominant

weights for Mi . Then [4, Table 4.2] indicates that V |M0 = V1 ⊕ V2 ⊕ V3 ⊕ V4, where

V1 = VM1(ω1,1 + ω1,m) ⊗ VM2(ω2,m−1)

V2 = VM1(ω1,1 + ω1,m−1) ⊗ VM2(ω2,m)

V3 = VM1(ω1,m−1) ⊗ VM2(ω2,1 + ω2,m)

V4 = VM1(ω1,m) ⊗ VM2(ω2,1 + ω2,m−1)

Set H1 = H ∩ M0 and note that H0
1 = H0 and |H : H1| = 4. Indeed, H/H1 is

isomorphic to a subgroup of M/M0 and thus |H : H1| � 4, but V |H1 has at least
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four composition factors and thus the irreducibility of V |H implies that |H : H1| = 4.
Therefore, V |H1 has exactly four composition factors, namely

V |H1 = V1|H1 ⊕ V2|H1 ⊕ V3|H1 ⊕ V4|H1 .

In order to proceed as in the proof of the previous proposition, we need to slightly
modify our set-up. Indeed, G is the simply connected group of type Dn , so M0 =
M1M2 is a central product of spin groups of type Dm . Since the KM0-moduleW lifts
to a representation ρ : L → GL(W ), where L = L1L2 is the direct product of two
simply connected groups of type Dm , we have M0 = L/Y where Y = ker(ρ). In
particular, there exist subgroups R � R1 � L such that H1 = R1/Y and H0 = R/Y .
Note that H1/H0 ∼= R1/R and R0 = R0

1 . Let πi : R1 → Li be the i-th projection
map and note that ker(dπ1)∩ ker(dπ2) = 0 since R1 is a closed positive-dimensional
subgroup of L .

The KM0-module Vi lifts to a representation ρi : L → GL(Vi ), so we can consider
Vi |R1 . The irreducibility of Vi |H1 implies that Vi |R1 is also irreducible, whence π1(R1)

is irreducible on each of the K L1-modules

VL1(ω1,1 + ω1,m), VL1(ω1,1 + ω1,m−1), VL1(ω1,m−1), VL1(ω1,m), (7)

and similarly π2(R1) is irreducible on the K L2-modules

VL2(ω2,m−1), VL2(ω2,m), VL2(ω2,1 + ω2,m), VL2(ω2,1 + ω2,m−1). (8)

Claim. π1(R1) and π2(R1) are infinite.
We proceed as in the proof of Proposition 5.7. Suppose π1(R1) is finite. Then

π2(R1) is infinite, ker(dπ2) = 0 and R0
1 � ker(π1), so π2|R0 : R0 → L2 is injective.

Suppose π2 is not surjective. Then there exists a positive-dimensional maximal
subgroup J2 of L2 such that π2(R1) � J2 < L2, and we can consider the irreducible
triples (L2, J2,U ) for the four K L2-modulesU in (8). By applying the main theorems
of [3,4,17] we find that there are no compatible examples (note that in the case labelled
IV′

1 in [17, Table 1], we require the parameters to be a = b = k = 1, hence the given
congruence condition implies that m is even, which is false). This is a contradiction,
hence π2 is surjective.

It follows that π2(R0
1) = L2 and π2|R0 : R0 → L2 is a bijective morphism.

Furthermore, ker(d(π2|R0)) = 0 so d(π2|R0) is an isomorphism and thus π2|R0 is an
isomorphism of algebraic groups. In particular, R0 is simply connected of type Dm . By
Lemma2.2,wemaywriteπ2|R0 = txγ k for some x ∈ R0 and integer k ∈ {0, 1}, where
γ is an involutory graph automorphism (note that m �= 4, so a triality automorphism
does not arise here). Now H � NG(H0) induces algebraic group automorphisms
of H0 that permute the K R0-composition factors of V , so V |R0 has the following
homogeneity property:

Either V |R0 is homogeneous, or the homogeneous components of V |R0 are
conjugate under an involutory graph automorphism of R0.

(9)
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Let {η1, . . . , ηm} be fundamental dominant weights for R0. Then V |R0 has compo-
sition factors isomorphic to VR0(ηm−1), VR0(ηm), VR0(η1+ηm) and VR0(η1+ηm−1),
but this is incompatible with (9). Therefore π1(R1) is infinite, and similarly π2(R1) is
also infinite.

Claim. π1 and π2 are surjective.
Suppose π1 is not surjective. Then there exists a positive-dimensional maximal

subgroup J1 of L1 such that π1(R1) � J1 < L1 and we can consider the irreducible
triples (L1, J1,U ) for the four K L1-modules U in (7). We have already noted that
there are no compatible examples and thus π1 is surjective. Similarly, π2 is surjective.

We have πi (R0) = Li for i = 1, 2, so R0 is a subdirect product of L = L1L2 and
thus Lemma 2.5 implies that either R0 = L , or R0 ∼= L1 is diagonally embedded in
L1L2. If R0 = L then H0 = M0 and the irreducibility of V |H implies that H = M ,
which is false. Therefore R0 is diagonally embedded, so

R0 = {(τ1(x), τ2(x))|x ∈ Spin2m(K )}

and τi : Spin2m(K ) → Li is a bijective morphism. In particular, we may write
τi = txi σqi γ

ki for some xi ∈ R0, p-power qi and ki ∈ {0, 1} (see Lemma 2.2). Again,
we observe that (9) holds. Since R0 is a closed subgroup of L , it follows that at least
one qi is equal to 1. We may assume q2 = 1.

Let {η1, . . . , ηm} be a set of fundamental dominant weights for R0. By considering
the restriction of V to R0, we deduce that Vi |R0 has a composition factor with highest
weight μi as follows:

(k1, k2) μ1 μ2 μ3 μ4

(0, 0) q1η1 + ηm−1 + q1ηm q1η1 + q1ηm−1 + ηm η1 + q1ηm−1 + ηm η1 + ηm−1 + q1ηm
(1, 0) q1η1 + (q1 + 1)ηm−1 q1η1 + (q1 + 1)ηm η1 + (q1 + 1)ηm η1 + (q1 + 1)ηm−1

(0, 1) q1η1 + (q1 + 1)ηm q1η1 + (q1 + 1)ηm−1 η1 + (q1 + 1)ηm−1 η1 + (q1 + 1)ηm
(1, 1) q1η1 + q1ηm−1 + ηm q1η1 + ηm−1 + q1ηm η1 + ηm−1 + q1ηm η1 + q1ηm−1 + ηm

In view of (9), we deduce that q1 = 1 in all four cases. By applying Lemma 2.10 it
follows that V |R0 is not homogeneous. More precisely, μ1 affords the highest weight
of a composition factor of V1|R0 and if ν is the highest weight of any other composition
factor of V1|R0 , then ν �= μ1 and ν � μ1. However, in view of Lemma 5.4, this is
incompatible with (9). ��
Proposition 5.9 Suppose H < M < G and (G, M, V ) is the case labelled (ii) in
Table 6. Then V |H is reducible.

Proof Here G = An and M = A2
m .2 is a C4(i i)-subgroup, where n = m(m + 2),

p �= 2 and m � 2. Moreover, V = VG(λ) and λ = λ2 or λn−1. By duality, we may
assume that V = VG(λ2) = �2(W ). Seeking a contradiction, let us assume that V |H
is irreducible.
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Write M0 = A2
m = M1M2 and note that this is a central product. Let {ωi,1, . . . ,

ωi,m} be fundamental dominant weights for Mi . As recorded in [4, Table 6.2], we have
V |M0 = V1 ⊕ V2, where

V1 = VM1(ω1,2) ⊗ VM2(2ω2,1), V2 = VM1(2ω1,1) ⊗ VM2(ω2,2).

Set H1 = H ∩ M0 and note that H0
1 = H0 and H = H1.2. Since V |H is irreducible

it follows that V |H1 has exactly two composition factors, namely

V |H1 = V1|H1 ⊕ V2|H1 .

Note that H0 < M0 since H is disconnected and non-maximal.
As in the proof of Proposition 5.8, we need to modify this initial set-up in order to

proceed as we did in the proof of Proposition 5.7. Since W is a KM0-module, it lifts
to a representation ρ : L → GL(W ), where L = L1L2 is the direct product of two
simply connected groups Am = SLm+1(K ). Then M0 = L/Y , where Y = ker(ρ),
and so there exist subgroups R � R1 � L such that H1 = R1/Y and H0 = R/Y .
Note that H1/H0 ∼= R1/R is finite, so R0 = R0

1. Let πi : R1 → Li be the i-th
projection map and observe that ker(dπ1) ∩ ker(dπ2) = 0.

Since the KM0-module Vi lifts to a representation ρi : L → GL(Vi ), we can
consider the restriction of Vi to R1. The irreducibility of V1|H1 and V2|H1 implies
that V1|R1 and V2|R1 are also irreducible, whence π1(R1) is irreducible on the K L1-
modules VL1(ω1,2) and VL1(2ω1,1), and π2(R1) acts irreducibly on VL2(2ω2,1) and
VL2(ω2,2).

Claim. π1(R1) and π2(R1) are infinite.
We proceed as in the proof of Proposition 5.7; the details are very similar. Suppose

that π1(R1) is finite, so ker(dπ2) = 0. Then π2(R1) has to be infinite since H (and
thus H1, and also R1) is infinite. Since ker(π1) � R1 has finite index, it follows that
R0
1 � ker(π1) and thus π2|R0 : R0 → L2 is injective.
Suppose π2 is not surjective. Then there exists a positive-dimensional maximal

subgroup J2 of L2 such that π2(R1) � J2 < L2. As noted above, π2(R1) acts
irreducibly on VL2(2ω2,1) and VL2(ω2,2), so we may consider the irreducible triples
(L2, J2, VL2(2ω2,1)) and (L2, J2, VL2(ω2,2)). In the usualway, by inspecting [3,4,17],
we deduce that there are no compatible examples, whence π2 is surjective.

Therefore π2(R0
1) = L2 and thus π2|R0 : R0 → L2 is a bijective morphism.

Moreover, ker(d(π2|R0)) = 0 so d(π2|R0) is an isomorphism and thus π2|R0 is an
isomorphism of algebraic groups. By Lemma 2.2, we canwriteπ2|R0 = txγ k for some
x ∈ R0 and integer k ∈ {0, 1}, where γ is a graph automorphism. Note that (9) holds.

Let {η1, . . . , ηm} be a set of fundamental dominant weights for R0. Then V |R0 has
composition factors isomorphic to VR0(2η1) and VR0(η2) if k = 0, and VR0(2ηm) and
VR0(ηm−1) if k = 1. But the corresponding highest weights are incompatible with (9),
so we have reached a contradiction. We conclude that π1(R1) is infinite, and similarly
π2(R1) is also infinite.
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Claim. π1 and π2 are surjective.
Suppose π1 is not surjective. Then there exists a positive-dimensional maximal

subgroup J1 of L1 such that π1(R1) � J1 < L1 and we can consider the irreducible
triples (L1, J1, VL1(2ω1,1)) and (L1, J1, VL1(ω1,2)). As above, there are no compat-
ible examples and thus π1 is surjective. An entirely similar argument shows that π2 is
also surjective.

Now πi (R0) = Li for i = 1, 2, so R0 is a subdirect product of L = L1L2 and
thus Lemma 2.5 implies that R0 ∼= L1 is diagonally embedded in L1L2 (note that
H0 < M0, so R0 < L). Therefore

R0 = {(τ1(x), τ2(x))|x ∈ SLm+1(K )},

where τi : SLm+1(K ) → Li is a bijective morphism. As before, we may write
τi = txi σqi γ

ki for some xi ∈ R0, p-power qi and ki ∈ {0, 1}. Note that (9) holds. As
before, we may assume that q2 = 1.

Let {η1, . . . , ηm} be a set of fundamental dominant weights for R0. Now V |R0 =
V1|R0 ⊕ V2|R0 and we calculate that V |R0 has composition factors with the following
highest weights μ1 and μ2:

(k1, k2) μ1 μ2

(0, 0) 2η1 + q1η2 2q1η1 + η2
(1, 0) 2η1 + q1ηm−1 η2 + 2q1ηm
(0, 1) q1η2 + 2ηm 2q1η1 + ηm−1
(1, 1) q1ηm−1 + 2ηm ηm−1 + 2q1ηm

In all four cases, (9) implies that q1 = 1.
Now V |R0 is non-homogeneous by Lemma 2.10. More precisely, V1|R0 has a com-

position factor of highest weight μ1 as in the table (with q1 = 1), occurring with
multiplicity 1. If ν denotes the highest weight of any other composition factor of
V1|R0 , then ν �= μ1 and ν � μ1 (so μ1 − ν = ∑

i ciαi for some ci ∈ N0). Therefore,
Lemma 5.4 implies that V |R0 does not satisfy the homogeneity condition in (9) and
this final contradiction completes the proof of the proposition. ��
Proposition 5.10 Suppose H < M < G and (G, M, V ) is the case labelled (iii) in
Table 6. Then V |H is reducible.

Proof Here G = An , V = VG(λk) with 1 < k < n, and M = Dm .2 is a C6-subgroup
with n = 2m − 1, m � 2 and p �= 2. Let {η1, . . . , ηm} be a set of fundamental
dominant weights for M0 = Dm . There are three separate cases to deal with here,
depending on the value of k (by duality, we may assume that 2 � k � m):

(a) k = m: V |M0 = V1 ⊕ V2 is reducible, where V1 and V2 have highest weights
2ηm−1 and 2ηm , respectively (see [4, Table 3.2]).

(b) k = m − 1: V |M0 is irreducible, with highest weight ηm−1 + ηm (see case I5 in
[17, Table 1]). Note that m � 3.
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(c) 2 � k < m − 1: V |M0 is irreducible, with highest weight ηk (see case I4 in [17,
Table 1]). Note that m � 4.

Seeking a contradiction, let us assume that V |H is irreducible.
First assume that (a) holds. Note that H �� M0 since V |M0 is reducible. To begin

with, let us assume m = 2. Here G = A3 and H0 < M0 = A1A1, so

H0 ∈ {T2, A1, A1T1}

(recall that H0 is reductive; see Lemma 2.7). Also note that V = �2(W ), where W
is the natural KG-module. We claim that H0 = A1. To see this, suppose S � H0

is a central torus. Then H � NG(S) and thus the set of fixed points of S on V is
H -invariant. But S lies in a maximal torus of M0, which has nontrivial fixed points
on V , so this contradicts the irreducibility of V |H . This justifies the claim. Therefore

H � NG(H0) = H0CG(H0)

and thus V |H0 is homogeneous.
By considering the possible embeddings of H0 in M0, it follows that W |H0 is the

two-fold tensor productU ⊗U , whereU is the natural K H0-module. Hence,W |H0 =
W1 ⊕ W2, where W1 = VH0(2ω) and W2 = VH0(0ω) is the trivial irreducible K H0-
module (hereω is the fundamental dominant weight for H0). Since dimW1 �= dimW2
we deduce that W |NG (H0) is reducible and thus NG(H0) lies in a parabolic subgroup
of G. This contradicts the irreducibility of V |H .

Nowassumem � 3. Set H1 = H∩M0 and note that H = H1.2, soV |H1 has exactly
two composition factors, namely V1|H1 and V2|H1 . Note that H1 < M0 since we are
assuming that H is disconnected and non-maximal. Let J be a maximal subgroup of
M0 that contains H1, so we have

H1 = H ∩ M0 � J < M0 = Dm .

We consider the irreducible triples (M0, J, V1) and (M0, J, V2), where V1 =
VM0(2ηm−1) and V2 = VM0(2ηm). By inspecting [17, Table 1], and using the main
theorems of [3,4], we deduce that J = Bm−1 is the only possibility and

V1|J = V2|J = VBm−1(2ξm−1)

(where {ξ1, . . . , ξm−1} are fundamental dominant weights for Bm−1); see case IV1 in
[17, Table 1]. Note that if H1 = J = Bm−1 then the two K H0-composition factors of
V |H0 (namely V1|H0 and V2|H0 ) are isomorphic, but this is ruled out by Proposition
2.9. Therefore H1 is a proper subgroup of J , so let L be a maximal subgroup of J that
contains H1, in which case

H1 = H ∩ M0 � L < J = Bm−1 < M0 = Dm .
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We now consider the irreducible triple (J, L , VBm−1(2ξm−1)). In the usual way, by
inspecting [3,4,17], we deduce that there are no compatible configurations and this
completes the analysis of case (a).

Next consider case (b). First assume H � M0. Since we are assuming H is discon-
nected and non-maximal, it follows that H � J < M0 for some maximal subgroup
J of M0, and we may consider the irreducible triple (M0, J, VM0(ηm−1 + ηm)). By
inspecting [3,4,17], it is easy to check that there are no compatible examples. In the
same way, we deduce that H �� M0 in case (c).

Finally, let us consider cases (b) and (c), with H �� M0. Let J be a maximal
subgroup of M = Dm .2 such that

H � J < M = Dm .2 = GO(W ).

Note that J is disconnected, and J is either geometric or non-geometric (as described
in Sect. 3.2). Given the highest weight of V |M0 , we can rule out the latter possibility by
applying [3, Theorem 3], so we may assume J is geometric. (Note that we can appeal
to [3, Theorem 3] since V |M0 is irreducible.) The possibilities for J are determined
in Proposition 3.2 and they are listed in Table 4. We now apply Proposition 3.3,
which implies that V |J is reducible. This final contradiction completes the proof of
the proposition. ��
Proposition 5.11 Suppose H < M < G and (G, M, V ) is one of the cases labelled
(ix) or (xiii) in Table 6. Then V |H is reducible.

Proof First consider the case labelled (xiii). Here G = D8, M = C2
2 .2 is a C4(i i)-

subgroup, p �= 5 and V = VG(λ7). Seeking a contradiction, let us assume that V |H
is irreducible. We proceed as in the proof of Proposition 5.8.

Write M0 = M1M2, which is a central product of two simply connected groups
of type C2, and let {ω1,1, ω1,2} and {ω2,1, ω2,2} be fundamental dominant weights for
M1 and M2, respectively. As recorded in [4, Table 6.2], we have V |M0 = V1 ⊕ V2,
where

V1 = VM1(ω1,1) ⊗ VM2(ω2,1 + ω2,2), V2 = VM1(ω1,1 + ω1,2) ⊗ VM2(ω2,1).

Set H1 = H ∩ M0, so H = H1.2 and H0
1 = H0. Since V |H is irreducible it follows

that V |H1 has exactly two composition factors, namely V1|H1 and V2|H1 .
The KM0-module W lifts to a representation ρ : L → GL(W ), where L = L1L2

is a direct product of two simply connected groups of type C2, so M0 = L/Y where
Y = ker(ρ). Since H0 � H1 � M0, there exist subgroups R � R1 � L such
that H1 = R1/Y and H0 = R/Y . Note that R0 = R0

1 . Let πi : R1 → Li be the
i-th projection map and observe that ker(dπ1) ∩ ker(dπ2) = 0. Since the KM0-
module Vi lifts to a representation ρi : L → GL(Vi ), we can consider Vi |R1 . The
irreducibility of Vi |H1 implies that Vi |R1 is also irreducible, so we deduce that π1(R1)

acts irreducibly on the K L1-modules VL1(ω1,1) and VL1(ω1,1 + ω1,2), and similarly,
π2(R1) is irreducible on VL2(ω2,1) and VL2(ω2,1 + ω2,2).
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Claim. π1(R1) and π2(R1) are infinite.
We proceed as in the previous cases. Suppose π1(R1) is finite. Then π2(R1) is

infinite, ker(dπ2) = 0 and R0
1 � ker(π1), so π2|R0 : R0 → L2 is injective.

Supposeπ2 is not surjective. Then there exists a positive-dimensional maximal sub-
group J2 of L2 such thatπ2(R1) � J2 < L2, andwe can consider the irreducible triples
(L2, J2, VL2(ω2,1)) and (L2, J2, VL2(ω2,1 + ω2,2)). By inspecting [3,4,17] we find
that there are no compatible examples, which is a contradiction and thus π2 is surjec-
tive. Thereforeπ2(R0

1) = L2 and thusπ2|R0 : R0 → L2 is a bijectivemorphism. Since
ker(d(π2|R0)) = 0 we deduce that π2|R0 is an isomorphism of algebraic groups, so by
Lemma 2.2 we can write π2|R0 = tx for some x ∈ R0. If {η1, η2} is a set of fundamen-
tal dominant weights for R0, then V |R0 has composition factors isomorphic to VR0(η1)

and VR0(η1 + η2), but V |R0 is homogeneous since NG(H0) = H0CG(H0), so this is
a contradiction. We conclude that π1(R1) is infinite, and similarly π2(R1) is infinite.

Claim. π1 and π2 are surjective.
Suppose π1 is not surjective. Then there exists a positive-dimensional maximal

subgroup J1 of L1 such that π1(R1) � J1 < L1, and we can consider the irreducible
triples (L1, J1, VL1(ω1,1)) and (L1, J1, VL1(ω1,1 + ω1,2)). As noted above, there are
no compatible examples, so π1 must be surjective and an entirely similar argument
shows that π2 is also surjective.

We have πi (R0) = Li for i = 1, 2, so R0 is a subdirect product of L = L1L2 and
thus Lemma 2.5 implies that either R0 = L , or R0 ∼= L1 is simply connected and
diagonally embedded in L . If R0 = L then H0 = M0 and thus H = M (since H is
disconnected), which is false. Therefore, R0 ∼= L1 is diagonally embedded and thus

R0 = {(τ1(x), τ2(x))|x ∈ Sp4(K )}

where each τi : Sp4(K ) → Li is a bijective morphism. By Lemma 2.2 we may write
τi = txiσqi γ

ki for some xi ∈ R0, p-power qi and ki ∈ {0, 1}, where γ is a graph
automorphism of C2 if p = 2, otherwise γ = 1. We may assume that q2 = 1. Since
NG(H0) = H0CG(H0), it follows that V |R0 is homogeneous.

As above, let {η1, η2} be a set of fundamental dominant weights for R0. First
assume that p �= 2, so (k1, k2) = (0, 0). Then V |R0 has composition factors with
highest weights (q1 + 1)η1 +η2 and (q1 + 1)η1 +q1η2, and the homogeneity of V |R0

implies that q1 = 1. But Lemma 2.10 implies that V |R0 is non-homogeneous, so we
have reached a contradiction.

Now assume p = 2. Here V |R0 has composition factors with highest weights μ1
and μ2 as follows:

(k1, k2) μ1 μ2

(0, 0) (q1 + 1)η1 + η2 (q1 + 1)η1 + q1η2
(1, 0) η1 + 2(q1 + 1)η2 (q1 + 1)η1 + q1η2
(0, 1) (q1 + 1)η1 + η2 q1η1 + 2(q1 + 1)η2
(1, 1) η1 + 2(q1 + 1)η2 q1η1 + 2(q1 + 1)η2

Since V |R0 is homogeneous, we deduce that k1 = k2 and q1 = 1.
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If (k1, k2) = (0, 0) then V1|R0 = VR0(η1) ⊗ VR0(η1 + η2) and thus Lemma 2.10
contradicts the homogeneity of V |R0 . Similarly, if (k1, k2) = (1, 1) then

V1|R0 = VR0(2η2) ⊗ VR0(η1 + 2η2) ∼= VR0(η2)
(2) ⊗ VR0(η1) ⊗ VR0(η2)

(2)

∼= (VR0(η2) ⊗ VR0(η2))
(2) ⊗ VR0(η1)

Now VR0(η2) ⊗ VR0(η2) has composition factors with highest weights 2η2 and 2η1,
whence V1|R0 has composition factors with highest weights η1 + 4η2 and 5η1. This
final contradiction completes the analysis of case (xiii) in Table 6.

The case labelled (ix) is similar (and easier). Here G = B4, V = VG(λ4) and M =
B2
1 .2 is a C4(i i)-subgroup, where p �= 2, 3. The connected component M0 = M1M2

is a central product of two simply connected groups of type B1, and we note that

V |M0 = V1 ⊕ V2 = (VM1(ω1) ⊗ VM2(3ω2)) ⊕ (VM1(3ω1) ⊗ VM2(ω2))

(see [4, Table 6.2]), where ω1 and ω2 are fundamental dominant weights for M1 and
M2, respectively. We leave the remaining details to the reader. ��

5.2 Proof of Theorem 5.1, part II

In order to complete the proof of Theorem 5.1, it remains to deal with the cases labelled
(vii), (x), (xi) and (xii) in Table 6.

Remark 5.12 Suppose that V |H is irreducible, where H < M < G and (G, M, V )

is one of the cases (x), (xi) or (xii). Here M is the normalizer of a tensor product
decomposition W = W1 ⊗ · · · ⊗ Wt of the natural KG-module, with t = 3 or 4.
Therefore, by combining Lemma 5.3 with our earlier work in Sects. 4 and 5.1, we
deduce thatW |H0 is irreducible. Indeed, ifW |H0 is reducible then Lemma 5.3 implies
that we may replace M by some other geometric maximal subgroup of G that does
not normalize such a decomposition, in which case our earlier work implies that V |H
is reducible.

In order to deal with cases (x) and (xi), we first establish some preliminary reduc-
tions.

Lemma 5.13 Let G = C4 and let H < G be a closed positive-dimensional subgroup
that is contained in a C4(i i)-subgroup M = C3

1 .Sym3 of G. Set V = VG(λ), where
λ = λ2 and p �= 2, or λ = λ3 and p �= 3. If V |H is irreducible, then H0 is a subdirect
product of M0 = C3

1 .

Proof Here M0 = C3
1 = M1M2M3 is a central product of three simply connected

groups of type C1. Let ωi be the fundamental dominant weight for Mi , and note that

V |M0 = V1 ⊕ V2 ⊕ V3, (10)
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where

V1 = VM1(2ω1) ⊗ VM2(2ω2) ⊗ VM3(0ω3)

V2 = VM1(2ω1) ⊗ VM2(0ω2) ⊗ VM3(2ω3)

V3 = VM1(0ω1) ⊗ VM2(2ω2) ⊗ VM3(2ω3)

(11)

if λ = λ2, and

V1 = VM1(ω1) ⊗ VM2(ω2) ⊗ VM3(3ω3)

V2 = VM1(ω1) ⊗ VM2(3ω2) ⊗ VM3(ω3)

V3 = VM1(3ω1) ⊗ VM2(ω2) ⊗ VM3(ω3)

(12)

if λ = λ3 (see [4, Table 6.2]). As noted in Remark 5.12, the irreducibility of V |H
implies that W |H0 is irreducible, where W denotes the natural KG-module.

As a KM0-module, W lifts to a representation ρ : L → GL(W ), where L =
L1L2L3 is the direct product of three simply connected groups of type C1. Then
M0 = L/Y , where Y = ker(ρ), and there exists a subgroup R of L such that H0 =
R/Y .

We need to show that R0 is a subdirect product of L . Note that the irreducibility of
W |H0 implies that W |R0 is also irreducible. Set J = [R0, R0] and recall that H0 is
reductive (see Lemma 2.7), so R0 is reductive and thus

J ∈ {C3
1 ,C

2
1 ,C1, 1}.

If J = C3
1 then we are done, so assume otherwise. If J = 1 then R0 is a torus,

contradicting the irreducibility of W |R0 . Finally, suppose J = C2
1 or C1. Since R0

is the product of J and a central torus, the irreducibility of W |R0 implies that W |J
is irreducible. This immediately implies that the projection maps πi : J → Li are
surjective, so R0 is a subdirect product of L as required. ��
Lemma 5.14 Suppose H < M < G and (G, M, V ) is the case labelled (x) in Table
6, where V = VG(λ2) and p �= 2. If V |H is irreducible, then H0 = M0.

Proof As in the previous lemma, G = C4 and M0 = C3
1 = M1M2M3 is a central

product of simply connected groups of type C1. Define L = L1L2L3, Y and R as
above, so Y � Z(L), M0 = L/Y and H0 = R/Y . Note that V |M0 = V1 ⊕ V2 ⊕ V3,
where the Vi are given in (11). Also recall that the irreducibility of V |H implies that
W |H0 is also irreducible (see Remark 5.12).

By Lemma 5.13, R is a subdirect product of L1L2L3, so Proposition 2.6 implies
that R0 is isomorphic to a commuting product of simple groups of type C1. If R0 is
of type C3

1 then H0 = M0 and we are done, so let us assume that R0 is of type C1 or
C2
1 .
Suppose R0 is of type C1. Let η1 be the fundamental dominant weight for R0. By

Proposition 2.6, R0 ∼= L1 is simply connected and diagonally embedded in L , so we
may write

R0 = {(τ1(x), τ2(x), τ3(x))|x ∈ Sp2(K )}
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where τi : Sp2(K ) → Li is a bijective morphism. By Lemma 2.2, τi = txiσqi
for some xi ∈ R0 and p-power qi , and we may assume that q3 = 1 (since R0 is
a closed subgroup of L). Then V |R0 has composition factors with highest weights
(2q1 + 2q2)η1, (2q1 + 2)η1 and (2q2 + 2)η1. Since V |R0 is homogeneous (note
that NG(H0) = H0CG(H0)), it follows that q1 = q2 = 1. But now Lemma 2.10
contradicts the homogeneity of V |R0 .

Finally, let us assume that R0 = R1R2 is of type C2
1 . Let {η1, η2} be fundamental

dominant weights for R0. Once again, Proposition 2.6 implies that R1 and R2 are
simply connected groups of type C1, and without loss of generality we may assume
that

R1 = {(τ1(x), 1, 1)|x ∈ Sp2(K )}, R2 = {(1, τ2(x), τ3(x))|x ∈ Sp2(K )}

where τi : Sp2(K ) → Li is a bijectivemorphism.As before, wemaywrite τi = txiσqi ,
so V |R0 has composition factors with highest weights

2q1η1 + 2q2η2, 2q1η1 + 2q3η2, 2(q2 + q3)η2. (13)

Since R0 is a closed subgroup of L , at least one qi is equal to 1. By considering
NG(H0), it follows that V |R0 is either homogeneous, or the homogeneous components
of V |R0 are conjugate under an involutory automorphism of R0 interchanging R1 and
R2. However, this observation is incompatible with the weights recorded in (13). This
is a contradiction. ��

The next lemma gives an analogous reduction for V = VG(λ3) in case (x) in Table
6. Note that we include the additional case p = 2, whichwill be needed in Propositions
5.17 and 5.19.

Lemma 5.15 Suppose H < M < G with G = C4, M = C3
1 .Sym3 and p �= 3. Set

V = VG(λ3) and assume that V |H is irreducible. Then H0 = M0.

Proof This is entirely similar to the proof of Lemma 5.14, and we omit the details. In
particular, we note that there are no additional difficulties when p = 2. ��

We are now in a position to settle cases (x) and (xi).

Proposition 5.16 Suppose H < M < G and (G, M, V ) is the case labelled (x) in
Table 6, so G = C4, M = C3

1 .Sym3 and V = VG(λ), where λ = λ2 or λ3. Then V |H
is irreducible if and only if H = C3

1 .Z3.

Proof If V |H is irreducible, then Lemmas 5.14 and 5.15 imply that H0 = M0. There-
fore, H transitively permutes the Vi in (10), so H/H0 � Sym3 is transitive. Since
H < M , we conclude that H = C3

1 .Z3 is the only possibility. ��
Proposition 5.17 Suppose H < M < G and (G, M, V ) is the case labelled (xi)
in Table 6, so G = D4, M = C3

1 .Sym3, p = 2 and V = VG(λ), where λ ∈
{λ1 + λ4, λ3 + λ4}. Then V |H is irreducible if and only if H = C3

1 .Z3.
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Proof Write M0 = C3
1 = M1M2M3 and let ωi be the fundamental dominant weight

for Mi . Note that

H < M = C3
1 .Sym3 < G = D4 < N = C4.

Suppose that V |H is irreducible.
First consider the case λ = λ3 + λ4. Here V |M0 = V1 ⊕ V2 ⊕ V3 and (12) holds

(see [4, Table 6.2]). Let {ξ1, ξ2, ξ3, ξ4} be fundamental dominant weights for N . Since
V is the restriction of the K N -module VN (ξ3) to G (see the case labelled MR4 in
[17, Table 1]), Lemma 5.15 implies that H0 = M0 and thus H = C3

1 .Z3 is the only
possibility. An entirely similar argument applies if λ = λ1 + λ4, and once again we
deduce that H = C3

1 .Z3. ��
To complete the proof of Theorem 5.1 it remains to consider cases (vii) and (xii)

in Table 6. First we establish an important reduction for case (vii).

Lemma 5.18 Suppose H < M < G and (G, M, V ) is the case labelled (vii) in Table
6, so G = Cn, M = Dn .2, p = 2 and λ = ∑n−1

i=1 aiλi . If V |H is irreducible, then
n = 4, λ = λ3 and H < M0.

Proof Here M = Dn .2 is a C6-subgroup of G, where G = Cn , n � 2 and p = 2.
Set V = VG(λ) and let {η1, . . . , ηn} be a set of fundamental dominant weights for
M0 = Dn . We have λ = ∑n−1

i=1 aiλi and V |M0 is irreducible with highest weight

μ =
n−2∑

i=1

aiηi + an−1(ηn−1 + ηn)

(see case MR4 in [17, Table 1]).
Note that n � 3 since we are assuming that λ is nontrivial, p-restricted and V �= W .

Suppose that V |H is irreducible.
First assume H �� M0. As in the proof of Proposition 5.10, let J be a maximal

subgroup of M = Dn .2 = GO(W ) containing H . Then J is disconnected, (M, J, V )

is an irreducible triple, and V |M0 = VM0(μ). By applying [3, Theorem 3], we deduce
that J is a geometric subgroup of M , so the possibilities for J are listed in Table 4. By
applying Proposition 3.4, we conclude that V |J is reducible, which is a contradiction.

Now suppose H � M0. Let J be amaximal subgroup ofM0 containing H (note that
H < M0 since we are assuming H is disconnected). Then V |J is irreducible and we
can consider the possibilities for the irreducible triple (M0, J, V |M0). By inspecting
[3,4,17], given the highest weight of V |M0 , we quickly deduce that n = 4 is the
only possibility (note that if n = 3 then the highest weight of V |M0 has at least two
non-zero coefficients and it is easy to check that there are no compatible examples),
J = C3

1 .Sym3 is a C4(i i)-subgroup of M0 = D4 and V |M0 = VM0(η3 + η4), so
λ = λ3. ��
Proposition 5.19 Suppose H < M < G and (G, M, V ) is the case labelled (vii) in
Table 6, so G = Cn, M = Dn .2, p = 2 and λ = ∑n−1

i=1 aiλi . Then V |H is irreducible
if and only if n = 4, λ = λ3 and H = C3

1 .Z3 or C3
1 .Sym3.
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Proof Suppose that V |H is irreducible. By the proof of the previous lemma, n = 4,
λ = λ3 and

H � J = C3
1 .Sym3 < M0 = D4 < G = C4.

In addition, if {η1, . . . , η4} are fundamental dominant weights for M0 = D4, then
V |M0 = VM0(η3 + η4). Therefore, we have now reduced the problem to the case
numbered (xi) in Table 6, which was handled in Proposition 5.17. In particular, we
conclude that H = C3

1 .Z3 or C3
1 .Sym3, as required. ��

Remark 5.20 As noted in Remark 5.2, Proposition 5.19 implies that V |H is irreducible
in case (v) if and only if G = B4, p = 2, λ = λ3 and H = B3

1 .Z3 or B3
1 .Sym3.

To complete the proof of Theorem 5.1, it remains to deal with the case labelled (xii)
in Table 6.

Proposition 5.21 Suppose H < M < G and (G, M, V ) is the case labelled (xii) in
Table 6, so G = D8, M = C4

1 .Sym4, p �= 3 and V = VG(λ), where λ = λ7. Then
V |H is irreducible if and only if H = C4

1 .X, where X < Sym4 is transitive.

Proof Write M0 = C4
1 = M1M2M3M4, which is a central product of simply con-

nected groups of typeC1, and letωi be the fundamental dominant weight for Mi . Then
[4, Table 6.2] indicates that V |M0 = V1 ⊕ V2 ⊕ V3 ⊕ V4, where

V1 = VM1(ω1) ⊗ VM2(ω2) ⊗ VM3(ω3) ⊗ VM4(3ω4)

V2 = VM1(ω1) ⊗ VM2(ω2) ⊗ VM3(3ω3) ⊗ VM4(ω4)

V3 = VM1(ω1) ⊗ VM2(3ω2) ⊗ VM3(ω3) ⊗ VM4(ω4)

V4 = VM1(3ω1) ⊗ VM2(ω2) ⊗ VM3(ω3) ⊗ VM4(ω4)

(14)

Assume that V |H is irreducible, soW |H0 is also irreducible (see Remark 5.12), where
W is the natural KG-module.

SinceW is a KM0-module, it lifts to a representation ρ : L → GL(W ), where L =
L1L2L3L4 is the direct product of simply connected groups of type C1. Then M0 =
L/Y , where Y = ker(ρ), and there exists a subgroup R of L such that H0 = R/Y .

Claim. H0 is a subdirect product of M0.
We need to show that R0 is a subdirect product of L . To do this, we proceed as

in the proof of Lemma 5.13; the argument is very similar (using the irreducibility of
W |H0 ) and we omit the details.

Claim. H0 = M0.
Since R0 is a subdirect product of L , Proposition 2.6 implies that R0 is isomorphic

to a commuting product of simply connected groups of type C1. If R0 is of type C4
1

then H0 = M0, so we may assume that R0 is of type C1,C2
1 or C3

1 .
Suppose R0 is of type C1. Let η be the fundamental dominant weight for R0. By

Proposition 2.6, we may write

R0 = {(τ1(x), τ2(x), τ3(x), τ4(x))|x ∈ Sp2(K )},
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where τi : Sp2(K ) → Li is a bijective morphism. As before, Lemma 2.2 implies that
τi = txi σqi for some xi ∈ R0 and p-power qi , and we may assume that q4 = 1. Then
V |R0 has composition factors with highest weights

(q1 + q2 + q3 + 3)η, (q1 + q2 + 3q3 + 1)η,

(q1 + 3q2 + q3 + 1)η, (3q1 + q2 + q3 + 1)η.

Since NG(H0) = H0CG(H0), it follows that V |R0 is homogeneous, so qi = 1 for all
i . But Lemma 2.10 implies that V |R0 is non-homogeneous, so we have reached a con-
tradiction. Note that if p = 2 then one of the tensor factors in Vi |R0 is non-restricted,
but we can still argue as in the proof of Lemma 2.10 by considering the tensor product
of the restricted factors.

Next suppose R0 = R1R2, where each Ri ∼= C1 is simply connected. Let {η1, η2}
be fundamental dominant weights for R0. In view of Proposition 2.6, we may assume
that either

R1 = {(τ1(x), 1, 1, 1)|x ∈ Sp2(K )},
R2 = {(1, τ2(x), τ3(x), τ4(x))|x ∈ Sp2(K )} (15)

or

R1 = {(τ ′
1(x), τ

′
2(x), 1, 1)|x ∈ Sp2(K )},

R2 = {(1, 1, τ ′
3(x), τ

′
4(x))|x ∈ Sp2(K )} (16)

where τi , τ
′
i are bijectivemorphisms fromSp2(K ) to Li . Note thatV |R0 is either homo-

geneous, or the homogeneous components of V |R0 are conjugate under an involutory
automorphism of R0 that interchanges R1 and R2.

First assume (15) holds. As above, we may write τi = txi σqi , so V |R0 has composi-
tion factors with highest weights q1η1 + (q2 +q3 +3q4)η2, q1η1 + (q2 +3q3 +q4)η2,
q1η1+(3q2+q3+q4)η2 and 3q1η1+(q2+q3+q4)η2, and at least one qi is equal to 1.
But this contradicts the above homogeneity properties of V |R0 . Similarly, suppose (16)
holds andwrite τ ′

i = tx ′
i
σq ′

i
, where at least one q ′

i is equal to 1. Then V |R0 has composi-
tion factorswith highestweights (q ′

1+q ′
2)η1+(q ′

3+3q ′
4)η2, (q

′
1+q ′

2)η1+(3q ′
3+q ′

4)η2,
(q ′

1 + 3q ′
2)η1 + (q ′

3 + q ′
4)η2 and (3q ′

1 + q ′
2)η1 + (q ′

3 + 3q ′
4)η2, and we deduce that

q ′
i = 1 for all i . Then V |R0 has composition factors with highest weights 2η1 + 4η2
and 2η1 + 2η2, but once again this is incompatible with the observed homogeneity
properties of V |R0 .

Finally, let us assume R0 = R1R2R3 is of type C3
1 . Let {η1, η2, η3} be fundamental

dominant weights for R0. In view of Proposition 2.6, we may assume that

R1 = {(τ1(x), τ2(x), 1, 1)|x ∈ Sp2(K )}
R2 = {(1, 1, τ3(x), 1)|x ∈ Sp2(K )}
R3 = {(1, 1, 1, τ4(x))|x ∈ Sp2(K )}
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where τi = txi σqi as above. Note that V |R0 is either homogeneous, or any two
homogeneous components of V |R0 are conjugate via an automorphism of R0 of
order 2 or 3, induced by a suitable permutation of the three factors of R0. How-
ever, V |R0 has composition factors with highest weights (q1 + q2)η1 + q3η2 + 3q4η3,
(q1+q2)η1+3q3η2+q4η3, (q1+3q2)η1+q3η2+q4η3 and (3q1+q2)η1+q3η2+q4η3,
so V |R0 does not have the stated homogeneity property. This is a contradiction.

We have now reduced to the case H0 = M0 = C4
1 . From the above description of

V |M0 it is clear that V |H is irreducible if and only if H = C4
1 .X , where X < Sym4

is transitive. The result follows. ��
This completes the proof of Theorem 5.1.

6 Non-geometric subgroups

In order to complete the proof of Theorem 1.4, it remains to determine the irreducible
triples (G, H, V ) satisfying Hypothesis 1.1, where V |H0 is reducible and H is not
contained in a geometric subgroup of G. Here the latter condition implies that H is
one of the non-geometric subgroups that arise in part (ii) of Theorem 3.1 in Sect. 3. In
particular, W |H0 is irreducible and tensor indecomposable, so we can apply the main
theorem of [3]. (Note that if (G, p) = (Cn, 2) and H fixes a non-degenerate quadratic
form on W , then H is contained in a geometric C6-subgroup Dn .2 < Cn , which is a
situation we dealt with in Proposition 5.19.)

Theorem 6.1 Let G, H and V = VG(λ) be given as in Hypothesis 1.1, and assume
that H is not contained in a geometric subgroup of G. Then V |H is reducible.

Proof By [3, Theorem 1], the only possibility is the case (G, H, λ) = (C10, A5.2, λ3)
with p �= 2, 3. However, we claim that H is a maximal subgroup, so this example
does not satisfy the conditions in Hypothesis 1.1. To see this, let {η1, . . . , η5} be a
set of fundamental dominant weights for H0 and note that W = VH0(η3) (where W
is the natural KG-module). Suppose H is non-maximal, say H < M < G with M
maximal. Then M is non-geometric, so M0 is a simple group that acts irreducibly on
W and thus (M0, H0,W ) is an irreducible triple. By inspecting [17, Table 1], we see
that there are no compatible examples. This is a contradiction, so H is maximal as
claimed. ��

In view of Theorems 4.5, 5.1 and 6.1, the proof of Theorem 1.4 is complete.

7 Spin modules

In this section, we briefly consider the special case arising in part (b) of Theorem 1.4,
where G is a simply connected group of type Bn or Dn (or type Cn if p = 2), V is a
spin module and H is a decomposition subgroup of G, as defined in the introduction.
Recall that H normalizes an orthogonal decomposition

W = W1 + · · · + Wt
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of the natural KG-module W , where the Wi are pairwise orthogonal subspaces.
Our goal here is simply to highlight the difference between this very specific sit-

uation and the general case we have studied in Sects. 4, 5 and 6. We will do this
by establishing a preliminary result (see Proposition 7.4); a detailed analysis of spin
modules and decomposition subgroups will be given in a forthcoming paper.

Let G be a simply connected simple algebraic group of type Bn or Dn over an
algebraically closed field K of characteristic p. For convenience, we will assume
that p �= 2. Let W be the natural KG-module. As before, fix a set of simple roots
{α1, . . . , αn} and fundamental dominant weights {λ1, . . . , λn} for G. We will assume
that n � 3 if G = Bn and n � 5 if G = Dn (note that the spin modules for D4 are
excluded in Hypothesis 1.1; see Remark 1.2). We may write G = G/Z = SO(W ),
where Z � Z(G). Similarly, for a subgroup J of G we set J = J Z/Z � G.

Let V be a spin module for G. In terms of highest weights, either V = VG(λn), or
G = Dn and V = VG(λn−1) (in the latter case, note that VG(λn−1) = VG(λn)

τ , where
τ is a graph automorphism of G). The next result is well known (see [4, Lemma 2.3.2]
for a proof).

Lemma 7.1 dim VBn (λn) = 2n and dim VDn (λn−1) = dim VDn (λn) = 2n−1.

Let W = W1 ⊥ W2 be an orthogonal decomposition, where W1 and W2 are
non-degenerate subspaces with dimWi � 3. Let H be the stabilizer in G of this
decomposition, so H = H0.2 and H0 is a central product of two simply connected
orthogonal groups. More precisely,

H = GW1 ∩ GW2 = (GO(W1) × GO(W2)) ∩ G = H
0
.2

and H
0 = SO(W1) × SO(W2) is semisimple.

Proposition 7.2 Let V be a spin module for G and let H be the stabilizer in G of
an orthogonal decomposition W = W1 ⊥ W2 as above. Then V |H is irreducible.
Moreover, each K H0-composition factor of V is a tensor product of spin modules for
both orthogonal factors of H0.

Proof If G = Bn then H/Z(G) is a disconnected subgroup in the collection C1
of geometric maximal subgroups of G, and the result follows immediately from [4,
Proposition 3.1.1]. Now assume G = Dn . If W1 is odd-dimensional, then H/Z(G) is
connected andSeitz’smain theorem [17,Theorem1] implies thatV |H0 is an irreducible
tensor product of appropriate spin modules (see the cases labelled IV1 (with k = 1)
and IV2 in [17, Table 1]). Finally, suppose W1 is even-dimensional. If dimW1 �= n,
then H/Z(G) is a disconnected C1-subgroup and [4, Proposition 3.1.1] applies. If
dimW1 = n is even then H is properly contained in a C2-subgroup of G (namely, the
full normalizer in G of the orthogonal decomposition); the proof of [4, Lemma 3.2.3]
goes through unchanged, and the result follows. ��

Now consider an orthogonal decomposition of the form

W = W1 ⊥ · · · ⊥ Wt , (17)
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where t � 2 and each Wi is a non-degenerate subspace with dimWi � 3. Let H be
the stabilizer in G of this decomposition, so

H =
t⋂

i=1

GWi = (GO(W1) × · · · × GO(Wt )) ∩ G = H
0
.2t−1

If t = 2 then V |H is irreducible by Proposition 7.2, so let us assume t � 3. We claim
that V |H is still irreducible. To see this, we first handle the special case where the Wi

are equidimensional.

Lemma 7.3 If dimWi = d � 3 for all i , then V |H is irreducible.

Proof If d = 2l + 1 is odd, then H = 2t−1 × Bt
l and H.Symt is a C2-subgroup of

G. Here the proof of [4, Lemma 4.3.2] goes through unchanged (the symmetric group
Symt in the C2-subgroup plays no role in the argument) and we deduce that V |H is
irreducible.

Now assume d = 2l is even, so H = Dt
l .2

t−1 and we may write H0 = X1 · · · Xt ,
where each Xi = Dl is simply connected. Here the elementary abelian 2-group 2t−1

is generated by involutions z1, . . . , zt−1, where zi acts as a graph automorphism on
Xi and Xi+1, and centralizes the remaining factors of H0. Now V1 ⊗ · · · ⊗ Vt is a
composition factor of V |H0 , where each Vi is a spin module for Xi . By repeatedly
applying the zi ∈ H to conjugate this composition factor, we deduce that V |H0 has at
least 2t−1 distinct, H -conjugate K H0-composition factors. Since

2t−1 · dim(V1 ⊗ · · · ⊗ Vt ) = 2t−1 · 2t (l−1) = 2tl−1 = dim V

(see Lemma 7.1) we conclude that V |H is irreducible. ��
We can now establish our main result for spin modules and decomposition sub-

groups.

Proposition 7.4 Let H be the stabilizer in G of the decomposition in (17), and assume
dimWi � 3 for each i . Then V |H is irreducible.

Proof Let d1, . . . , ds be the distinct dimensions of the summands in (17), and let ai
be the number of summands of dimension di . If s > 1 then we may assume that
di < di+1 for all 1 � i < s. We may re-order and re-label the subspaces in (17) so
that

W = (W1,1 ⊥ · · · ⊥ W1,a1) ⊥ · · · ⊥ (Ws,1 ⊥ · · · ⊥ Ws,as ), (18)

where dimWi, j = di for all i, j . Then

H = (GO(W1,1) × · · · × GO(W1,a1) × · · · × GO(Ws,1) × · · · × GO(Ws,as )) ∩ G.

We proceed by induction on s.
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The base case s = 1 was handled in Lemma 7.3, so let us assume s > 1. Set

U1 = (W1,1 ⊥ · · · ⊥ W1,a1) ⊥ · · · ⊥ (Ws−1,1 ⊥ · · · ⊥ Ws−1,as−1)

and

U2 = Ws,1 ⊥ · · · ⊥ Ws,as ,

so W = U1 ⊥ U2 and H � M , where

M = (GO(U1) × GO(U2)) ∩ G = M
0
.2.

Write M0 = M1M2, where M1 and M2 are simply connected orthogonal groups
with natural modules U1 and U2, respectively. Let H1 = H ∩ M0 and note that
H = H1.2 �� M0.

Here M0 = M1M2 is a central product. The KM0-module W lifts to a represen-
tation ρ : L → GL(W ), where L = L1 × L2 is the direct product of two simply
connected orthogonal groups with Li ∼= Mi , so M0 = L/Y where Y = ker(ρ). In
particular, there exist subgroups R � R1 � L such that H1 = R1/Y and H0 = R/Y .
Note that H1/H0 ∼= R1/R and R0 = R0

1 (since H0 = H0
1 ). Let πi : R1 → Li be the

i-th projection map and note that R1 = π1(R1) × π2(R1). There are several cases to
consider.

First assume U1 and U2 are odd-dimensional. Here [17, Table 1] indicates that
V |M0 = V1 ⊗ V2 is irreducible, where Vi is the spin module for Mi . The KM0-
module V lifts to a representation ϕ : L → GL(V ), so we can consider V |R1 . By
induction, Vi |πi (R1) is irreducible for i = 1, 2, so V |R1 is irreducible and thus V |H1 is
also irreducible. The result follows.

Next suppose dimU1 is even and dimU2 is odd, so [4, Proposition 3.1.1] implies
that V |M0 has exactly two composition factors, namely

V |M0 = (V1 ⊗ V2) ⊕ (V ′
1 ⊗ V2),

where V1 and V ′
1 are the two spin modules for M1, and V2 is the spin module for

M2. Here the KM0-modules V1 ⊗ V2 and V ′
1 ⊗ V2 lift to representations ϕ : L →

GL(V1 ⊗ V2) and ϕ′ : L → GL(V ′
1 ⊗ V2), so we can consider (V1 ⊗ V2)|R1 and

(V ′
1⊗V2)|R1 . By induction, V2|π2(R1) is irreducible, and π1(R1) acts irreducibly on V1

and V ′
1. Therefore, V |R1 has precisely two composition factors, which are interchanged

by an element in R1.2 that acts as a graph automorphism on L1 and centralizes L2.
Therefore, V |H is irreducible. An entirely similar argument applies if dimU1 is odd
and dimU2 is even.

Finally, suppose U1 and U2 are both even-dimensional. Here

V |M0 = (V1 ⊗ V2) ⊕ (
V ′
1 ⊗ V ′

2

)

where Vi and V ′
i are the two spin modules for Mi , and the inductive hypothesis implies

that πi (R1) acts irreducibly on Vi and V ′
i , for i = 1, 2. As before, it follows that V |R1
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has exactly two composition factors, which are interchanged by an element in R1.2
that acts simultaneously as a graph automorphism on both L1 and L2. Therefore, the
two K H1-composition factors of V are H -conjugate, and thus V |H is irreducible. ��

In view of the previous proposition, we can easily construct chains of positive-
dimensional closed subgroups

Hk < Hk−1 < · · · < H1 < G

such that V |Hi is irreducible for all i . For instance, take any sequence of successive
refinements of a fixed orthogonal decomposition of W such that each refinement is
also an orthogonal decomposition that only contains subspaces of dimension at least
three. Then the stabilizers in G of these decompositions form a chain of subgroups
with the desired irreducibility property. In particular, such a chain can be arbitrarily
long. This is in stark contrast to the general situation, where the length of an irreducible
chain is at most five (see Theorem 1.9, which will be proved in the next section).

8 Irreducible chains

In this final section we prove Theorem 1.9. Recall that if G is a simple algebraic
group and V = VG(λ) is a nontrivial p-restricted irreducible KG-module, then we
write � = �(G, V ) for the length of the longest chain of closed positive-dimensional
subgroups

H� < H�−1 < · · · < H2 < H1 = G

such that V |H�
is irreducible.

As noted in the previous section, ifG is an orthogonal group (or a symplectic group
with p = 2) and V is a spin module, then �(G, V ) can be arbitrarily large (one can
simply take an appropriate chain of decomposition subgroups, for example). Similarly,
if V = W orW ∗ (whereW is the natural KG-module) then �(G, V ) is unbounded. For
instance, if G = Sp2n(K ) then set Hi = Sp2(K ) � Xi , where Xi � Symn is transitive.
The transitivity of Xi implies that W |Hi is irreducible, and it is easy to see that if n is
sufficiently large then we can find arbitrarily long chains of transitive subgroups

Xi < Xi−1 < · · · < X1 = Symn .

In fact, if we choose n appropriately, then we may assume that each Xi is 3-transitive
(see Remark 8.2 below).

Now let us assume that V �= W,W ∗, and also assume that V is not a spin module.
In this situation, it is natural to ask whether or not �(G, V ) is bounded above by
an absolute constant. Our main theorem is the following, which immediately yields
Theorem 1.9. (Note that in Table 8, T is a maximal torus of G and Mn is the simple
Mathieu group of degree n).
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Table 8 The irreducible chains in Theorem 8.1

G V �(G, V ) Conditions Chain

B4 λ3 5 p = 2 B3
1 .Z3 < B3

1 .Sym3 < D4 < D4.2 < B4

C4 λ3 5 p = 2 C3
1 .Z3 < C3

1 .Sym3 < D4 < D4.2 < C4

An λ4, λn−3 4 n ∈ {10, 11, 22, 23} T .Mn+1 < T .Altn+1 < T .Symn+1 < An

A23 λ5, λ19 4 T .M24 < T .Alt24 < T .Sym24 < A23
B3 2λ1 4 p = 3 A2 < A2.2 < G2 < B3

Theorem 8.1 Let G be a simply connected cover of a simple classical algebraic group
with natural module W. Let V = VG(λ) be a p-restricted irreducible KG-module,
where V �= W,W ∗ and V is not a spin module. Then either

(i) �(G, V ) � 5; or
(ii) G = An and λ ∈ {λ2, λ3, λn−2, λn−1}.
More precisely, excluding the cases in (ii), we have �(G, V ) � 3, unless (G, V ) is one
of the cases listed in Table 8.

Remark 8.2 The cases in part (ii) of Theorem 8.1 are genuine exceptions; for suitable
values of n, �(G, V ) can be arbitrarily large. By duality, we only need to consider the
cases λ = λ2 and λ3. Recall that if H = Tn .X < G, then VG(λ3)|H is irreducible
if and only if X � Symn+1 is 3-transitive (and similarly, X has to be 2-transitive
if λ = λ2); see Proposition 5.5. Suppose n = q = 2e for some positive integer
e � 2. The finite simple group PSL2(q) has a faithful 3-transitive action on the
projective line Fq ∪{∞}, which extends to a faithful action of its automorphism group
P�L2(q) = PSL2(q).Ze. Therefore, PSL2(q).d � P�L2(q) is a 3-transitive subgroup
of Symn+1 for every divisor d of e. In particular, by choosing e appropriately we can
construct arbitrarily long chains of 3-transitive subgroups of Symn+1, and each of the
corresponding subgroups Tn .X < G acts irreducibly on VG(λ2) and VG(λ3).

Proof of Theorem 8.1 The proof is a combination of the main theorems in [3,4,17],
together with Theorem 1.4. To illustrate the general approach, we will consider the
case G = An . Set V = VG(λ). In order to prove the theorem, we may assume that

λ /∈ {λ1, λ2, λ3, λn−2, λn−1, λn} (19)

and �(G, V ) � 4, so there is an irreducible chain H4 < H3 < H2 < H1 = G.
Consider the irreducible triple (G, H4, V ). First assume that H4 is disconnected

and V |H0
4
is reducible. Then (G, H4, V ) must be one of the irreducible triples arising

in Theorem 1.4, so H4 = T .X4 and λ = λk , where X4 < Symn+1 is s-transitive
and s = max{k, n + 1 − k} � 4. Moreover, H3 = T .X3 and H2 = T .X2, where
X3 < X2 � Symn+1 are also s-transitive groups of degree n + 1.

Using the classification of finite simple groups, it can be shown that Symn+1 and
the alternating group Altn+1 (for n � 5) are the only 4-transitive groups of degree
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n + 1, unless n ∈ {10, 11, 22, 23} in which case the Mathieu group Mn+1 is also
4-transitive (see [5, Theorem 4.11], for example). Similarly, if t � 5 then Symn+1 and
Altn+1 (for n � t + 1) are the only t-transitive groups of degree n+ 1, with the single
exception ofM24 when t = 5 and n = 23. Since s � 4, it follows that either s = 4 and
n ∈ {10, 11, 22, 23}, or s = 5 and n = 23. In each case, X4 = Mn+1, X3 = Altn+1,
X2 = Symn+1 and no proper positive-dimensional subgroup of H4 acts irreducibly
on V . These special cases are recorded in Table 8.

To complete the proof of Theorem 8.1 forG = An , wemay assume that (G, H4, V )

is an irreducible triple with H4 connected. The possibilities are recorded in [17,
Table 1], and in view of (19) we see that the relevant cases therein are labelled

I1, I
′
1, I2, I3, I4, I5, I12. (20)

Consider the irreducible triple (G, H3, V ). If H3 is connected, then (G, H3, V ) also
corresponds to one of the cases in (20), but it is routine to check that this collection
of cases does not contain a pair of triples (G, H4, V ) and (G, H3, V ) with H4 < H3.
Finally, suppose that H3 is disconnected. The connectivity of H4 implies that H4 �
H0
3 , so V |H0

3
is irreducible and we have an irreducible chain

H4 � H0
3 < H3 < H2 < H1 = G.

By the argument above, we have H4 = H0
3 and thus H4 < H3 � NG(H4). It is now

easy to see that (G, H4, V ) must correspond to the case I4 or I5 in [17, Table 1], so
n is odd, H4 = D(n+1)/2 and H3 = D(n+1)/2.2. But D(n+1)/2.2 < An is a maximal
subgroup, so we have reached a contradiction.

This completes the proof of Theorem 8.1 for G = An . The other cases are similar,
and we leave it to the reader to check the details. ��

This completes the proof of Theorem 1.9.
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