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Abstract Let G be a simple algebraic group over an algebraically closed field K of
characteristic p > 0, let H be a proper closed subgroup of G and let V be a nontrivial
irreducible K G-module, which is p-restricted, tensor indecomposable and rational.
Assume that the restriction of V to H is irreducible. In this paper, we study the triples
(G, H, V) of this form when G is a classical group and H is positive-dimensional.
Combined with earlier work of Dynkin, Seitz, Testerman and others, our main theorem
reduces the problem of classifying the triples (G, H, V) to the case where G is an
orthogonal group, V is a spin module and H normalizes an orthogonal decomposition
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1 Introduction

Let G be a simple algebraic group defined over an algebraically closed field K, let H
be a closed positive-dimensional subgroup of G, and let V be a nontrivial rational irre-
ducible K G-module. We say that (G, H, V) is an irreducible triple if V is irreducible
as a K H-module. Triples of this form arise naturally in the investigation of maximal
subgroups of classical algebraic groups, and their study can be traced back to work of
Dynkin [7] in the 1950s, who considered the special case where H is connected and
K = C.Inthe 1980s, Seitz [17] and Testerman [20] extended the analysis to arbitrary
algebraically closed fields (still assuming H is connected), and more recent work of
Ghandour [10] has completed the classification of irreducible triples for exceptional
groups. Therefore, in this paper we focus on classical groups and their disconnected
subgroups.

In [8,9], Ford determines the irreducible triples (G, H, V) where G is a classical
group, H is disconnected, H? is simple and the composition factors of the restriction
V|go are p-restricted. Our main aim is to extend Ford’s analysis by removing the
restrictive conditions on the structure of H and the composition factors of V| ;0. The
cases for which V| o is irreducible are easily deduced from the work of Seitz [17], so
we focus on the situation where V| g is irreducible, but V| 4o is reducible. By Clifford
theory, the highest weights of the K H-composition factors of V are H-conjugate and
this severely restricts the possibilities for V. Since the triples with H maximal have
recently been determined in [3,4], in this paper we will adopt the following hypothesis:

Hypothesis 1.1 The group G is a simply connected cover of a simple classical alge-
braic group defined over an algebraically closed field K of characteristic p > 0, H
is a closed positive-dimensional subgroup of G, and V is a nontrivial p-restricted
irreducible tensor indecomposable rational K G-module such that the following con-
ditions hold:

H1. V # WT for any automorphism t of G, where W is the natural module;
H2. HZ(G)/Z(G) is disconnected and non-maximal in G/Z(G).

Let G be a classical group as in Hypothesis 1.1, let n denote the rank of G and let
{X1,..., Ay} be a set of fundamental dominant weights for G (we adopt the standard
labelling given in Bourbaki [2]). We will write V (A) for the irreducible K G-module
with highest weight A.

Remark 1.2 Condition H1 in Hypothesis 1.1 is equivalent to assuming V # W, W*,
and also V # Vg (X3), Vg (Aa) if G = D4. This hypothesis is unavoidable. For exam-
ple, we cannot feasibly determine all the simple subgroups of G that act irreducibly on
W or W* (indeed, even the dimensions of the irreducible modules for simple groups
are not known, in general). In particular, HI1 is a condition adopted in [3,17].

Suppose G is of type B, or D, and let R(W) = R be the radical of the corre-
sponding bilinear form on W (recall that either R = 0, or p = 2, dim W is odd and
dim R = 1). An orthogonal decomposition of W is a decomposition of the form

W=Wit -+ W,

@ Springer



On irreducible subgroups of simple algebraic groups

where the W; are pairwise orthogonal subspaces of W. Note that if W = Wj +
-+ 4+ W; is such a decomposition, then the W; are non-degenerate spaces such that
win (Zj#i W;) C R for each i (in particular, if p # 2then W = W| +--- + W, is
a direct sum). We say that a subgroup H of G normalizes such a decomposition if it
permutes the W;.

Definition 1.3 Let G be a classical group of type B, or D,, as in Hypothesis 1.1. A
closed subgroup H of G is a decomposition subgroup if one of the following holds:

(a) H normalizes an orthogonal decomposition W = Wy + --- 4+ W;; or

) (G, p) = (Dy,2), H stabilizes a 1-dimensional non-singular subspace U of W,
and H normalizes an orthogonal decomposition of the natural module for the
stabilizer Gy = B, 1.

Similarly, if (G, p) = (Cp, 2) then H is a decomposition subgroup of G if it is the
image of a decomposition subgroup of the dual group G = B, with respect to a
bijective morphism ¢ : G — G.

Theorem 1.4 Suppose G, H and V. = Vg()\) satisfy the conditions in Hypothesis
1.1, and assume that V|go is reducible. Then V |y is irreducible only if one of the
following holds:

(a) (G, H, V) is one of the cases in Table 1; or
(b) G is of type By, or D, (or type Cy, if p = 2), V is a spin module and H is a
decomposition subgroup.

Moreover, if (a) holds then V |y is irreducible.

Remark 1.5 In case (i) of Table 1, 7;, denotes a maximal torus of G. In all cases, H 0
is the connected component of a maximal subgroup of G, with the exception of the
cases labelled (ii) and (iii), where H is contained in a subgroup D4 < G. Also note
that in cases (iii)—(vi), W|go is the tensor product of the natural modules of the simple
components of H. In case (ii), H is the image of a subgroup Cf’.X < Cy4 as in (iii),
under an isogeny ¢ : C4 — Ba. In cases (v) and (vi), we record H and V up to
Aut(G)-conjugacy (so in case (vi) for example, if A is the image of H under a graph
automorphism of G, then Vg (Ag) is an irreducible K H-module). Finally, let us note
that the situation in part (b) of Theorem 1.4 is very special and we refer the reader to
Sect. 7 for further details.

Table 1 The irreducible triples (G, H, V) in Theorem 1.4

G H A Conditions
@) Ay T,.X Myl <k<n X < Sym,, | is £-transitive, £ = min{k,n + 1 — k}
(i) By B}.X A3 p=2,X =273 or Sym;
(i)  Cy4 ci.x A3 p=2,X =273 or Sym;
(iv) Cy C}.23  r.h3 p#£2(p £2,3if A =13)
(v) Dy C3.23 M+ Ag, A3+ 2y p=2
(vi) Dg Cf.X A7 p # 3, X < Symy is transitive
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Remark 1.6 If V| o is irreducible, then (G, H 0 V) is one of the cases in [17, Table 1]
and

H° < H < Ng(H®) and Cg(H®) < Z(G).

More precisely, we are either in the situation described in part (b) of Theorem 1.4,
or in terms of Seitz’s notation in [17, Table 1], one of the following holds (modulo
scalars):

(a) Ng(H®) = HY;

(b) Ng(H® = HY2 and (G, H°, V) is one of the cases labelled 14, Is, Is (with
n = 3 in the notation of [17, Table 1]), II1, St, S7, MR, MRy;

(c) Ng(H®) = HO.Sym3 = D4.Sym; and (G, HO, V) is the case labelled Sg.

Here we refer the reader to the proof of [3, Theorem 2.5.1] to see that Ng (H 0) =HY2
in the case labelled S7, and that N (H®) = HO.Sym3 in case Sg.

Let us briefly describe our approach to the proof of Theorem 1.4. Suppose V| o
is reducible. If H is a maximal subgroup of G then (G, H, V') can be read off from
the main theorems of [3,4], so let us assume H < M < G with M maximal. Since
Vg is irreducible, it follows that V|, is also irreducible and we can consider the
possibilities for the irreducible triple (G, M, V'), which are determined in [17] (if M
is connected) and [3,4] (if M is disconnected). We can then proceed by studying the
possible embeddings of H in M.

Our next result is a combination of the main theorems in [3,4,17], together with
Theorem 1.4. Note that we assumen > 3if G = B,,n >2if G = C,,and n > 4 if
G = D,.

Corollary 1.7 Let G be a simply connected cover of a simple classical algebraic group
over an algebraically closed field K of characteristic p > 0. Let H be a positive-
dimensional closed subgroup of G, and let V.= Vg (A) be a nontrivial p-restricted
irreducible tensor indecomposable rational K G-module such that V |y is irreducible.
Then one of the following holds:

(a) V = WT for some automorphism t of G, where W is the natural module;
(b) G isoftype B, or Dy (or type Cy, if p =2) and V is a spin module;
(¢) (G, H, V) is recorded in Table 2.

Remark 1.8 Let us make some comments on the cases in Table 2:

(1) In Table 2, we write X for Syms or Z3, Z for Z, or 1, and Y denotes any k-
transitive subgroup of Sym,,, ;.

(i) For G of type A,, the highest weight X is recorded up to conjugacy by a graph
automorphism of G (this is consistent with [17, Table 1]). For instance, in the first
row of the table, wehave G = A,, H = T,,.Y and A = A, with2 < k < (n+1)/2.
By applying a suitable graph automorphism, we see that Vg (A¢)| g is irreducible
forall2 <k <n-—1.

@ Springer



On irreducible subgroups of simple algebraic groups

Table 2 Positive-dimensional irreducible subgroups of classical groups

G H A Al go K Conditions

An .Y g - "t 2<k<m+ D2

Adm—1 Cm kAq kwq 1 m>=2 k=2

Adm—1 Cm akk +brry)  awg + bwgy 1 See Remark 1.8(v)(a)

A By Ak W 1 2<k<m, p#2

A By Am 20m 1 mz=2,p#2

Adm—1 Dp.Z i Wk 1 2<k<m—1,p#2

Adm—1 Din.Z Ap—1 wy—1 + om 1 m=>=4, p#2

Ayp—1 Dp.2 Am 2wm 2 m=>=2, p#2

Am(ma2) AZ2 0 ® 2w 2 m=2p£2

A(mz+m—2)/2 Am Ao w] + w3 1 m2>=3, p#2

Amm+3)/2 Am Ao 2wy + wy 1 mz=2,p#2

A2z Es X2 w3 1 p#F2

Ao Eg A3 [on 1 p#2,3

A E¢ A w) + ws 1 p#£2,3

Ais Ds A 3 1 p#2

Als Ds A3 w) + wy 1 p#2,3

By Dn.Z Y'T'any X' lajor + 1 >3, p=2
ap—1(@p—1 + wn)

By Dp2 Y aik il g+ 2 See Remark 1.8(v)(b)
(ap—1+ Dawn

By Fy 201 2wyq 1 p=3

Bg C3 2A1 2w 1 p=3

By B?.X A3 0] @ w ® 3w 3 p=2

B3 Gy Ao w) 1 p=2

B3 Gy A+ A2 w] + @ 1 p=2

B3 Gy ki kw 1 k=22, p#2

B3 G» airy + b3 bw) +awy 1 ab#0,2a+b+2=0(p)

B3 Go aky +biy aw| + bwn 1 22,b>21,a+b+1=0(p)

B3 Ar.Z 2\ 2w1 + 2wy 1 p=3

Cp D,.Z Zfl:_ll aik; Zz—l ajw; + 1 n>=3 p=2
ap—1(@p—1 + wn)

Com CE2 dp_i+ary, @+ Don ® 2 See Remark 1.8(v)(c)
(Om—1 + aom)

Cag E7 A w6 1 p#2

Cog Eq A3 w5 1 p#£2,3

Cog E4 A w4 1 p#2,3

Cog E4 As w) + w3 1 p#2,3,5

Ci6 Dg 22 w4 1 p#F2

Ci6 D¢ A3 w3 + w5 1 p#2,3

Cio As.Z o w) + wy 1 p#2
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Table 2 continued

G H A A yo K Conditions

Cio As.2 A3 w1 + 2w4 2 p#2,73

Cy C3 A2 2wy 1 p#2,7

C7 C3 A3 w1 + 2w> 1 p#2,3

Cy ci.x A2 0® 20 ®2w] 3 p#2

Cy ci.x A3 0] @ w] ®3w] 3 p#£3

C3 G A2 w? 1 p=2

C3 Gy A+ A2 w] + w2 1 p=2

Dy, B, khp_i kawy,_; 1 k>2,ie{0,1}

Dy, B, 1 akk + b, _; awy + bw,_; 1 See Remark 1.8(v)(d)
Dy, (D2,.2).2 A+ Ay (0] + ©m) ® wy—; 4 m >3o0dd,i €{0,1},p=2
Dy cj.x A+ A4 0] ® 0] ® 3w 3 ie{l,3,p=2

(iii) In the fourth column, we describe the restriction of A to a suitable maximal torus
of the derived subgroup [H 0. HO] (this is denoted by A|go0), in terms of highest
weights for the simple components. The one exception is the case (G, H) =
(A,, T,.Y), where HY = T, is a maximal torus of G and thus [H?, H°] = 1.

(iv) In the fifth column, ¥ denotes the number of K H 0-composition factors of V| go.

(v) Inthe final column, we record various conditions on G, H and X that are necessary
and sufficient for the irreducibility of V|g. In a few cases, the conditions for
irreducibility are rather complicated and so we record them here (the example in
case (b) was discovered by Ford in [8]):

(@ (G, H, %) = (Aam—1, Cpy ari +brip1): 1 Sk <mja+b=p—1;p #2;
a#0ifk=m—1.

(®) (G,H,A) = (By, Dy.2,> ;aixi): p # 2, a, = 1;if a;,a; # 0, where
i <j<nandagy =0foralli <k < j,thenag; +a; =i — j(modp); if
i < nis maximal such that a; # 0, then 2a; = —2(n — i) — 1(modp).

© (G, H,7) = (Com, C5.2, ham—1 + ahom): 0 < a < p; (m,a) # (1,0);
2a + 3 = 0(modp).

(d) (G,H,)) = (Dy, By—1,ari +bry—i): 1 <k <n—-2;i €{0,1}; ab # 0;
a+b+n—k—1=0(modp).

Our final result concerns chains of irreducibly acting subgroups. Let G and V be
given as in Hypothesis 1.1 and write £ = £(G, V) for the length of the longest chain
of closed positive-dimensional subgroups

H <H_1<---<H<H =G
such that V|, is irreducible. We call such a sequence of subgroups an irreducible
chain. If G is an orthogonal group (or a symplectic group with p = 2) and V is a spin

module, then £(G, V') can be arbitrarily large, and it is easy to see that the same is true
if V=WorW*
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Theorem 1.9 Suppose G and V satisfy the conditions in Hypothesis 1.1 and assume
V is not a spin module. Then either £(G,V) < 5, or G is of type A, and
A€ {A2, A3, Ap—2, Ap—1}.

The upper bound in this theorem is best possible. In fact, if we exclude the excep-
tional cases then either £(G, V) < 4,0r G € {B4, C4}, A = A3, p =2 and

A3.Z3 < A3Symy < Dy < D42 < G

is an irreducible chain of length 5 (see Theorem 8.1 for a more precise statement).
The exceptions with G = A, are genuine in the strong sense that £(G, V) can be
arbitrarily large. We refer the reader to Sect. 8 for further details.

2 Preliminaries
2.1 Notation and terminology

Most of our notation is fairly standard. As in Hypothesis 1.1, let G be a simply
connected cover of a simple classical algebraic group, which is defined over an alge-
braically closed field K of characteristic p > 0. Fix a Borel subgroup B = UT
of G, where T is a maximal torus of G and U is the unipotent radical of B. Let
I1(G) = {ay, .. ., a,} be the corresponding base of the root system X (G) of G, where
n denotes the rank of G. Let {11, ..., A, } be the fundamental dominant weights for
T corresponding to IT1(G).

There is a bijection between the set of dominant weights of G and the set of
isomorphism classes of irreducible K G-modules; if A is a dominant weight then we
use Vi () to denote the unique irreducible K G-module with highest weight A. We also
recall thatif p > Othenadominant weight A = >, a;A; is p-restricted if a; < p forall
i. By Steinberg’s tensor product theorem, every irreducible K G-module decomposes
in a unique way as a tensor product Vy ® Vla "®---®@V,", where V; is a p-restricted

irreducible K G-module, Opi G — G is a standard Frobenius morphism (with

Oy = 1if p =0), and Vl.gp’ (which we will also denote by Vi(pl)) is the K G-module
obtained by preceding the action of G on V; by the endomorphism o, . It is convenient
to say that every dominant weight is p-restricted if p = 0.

In addition, Lie(G) denotes the Lie algebra of G, and U, = {x4(¢)|t € K} is the
root subgroup of G corresponding to arootaw € X(G). If x € G thent, : G — G is
the inner automorphism of G induced by conjugation by x, so ,(g) = xgx~" for all
g € G. We write T; for an i-dimensional torus. If H is a closed positive-dimensional
subgroup of G and Tyo is a maximal torus of [ H 0. HY contained in T, then we abuse
notation by writing /| ;o to denote the restriction of a 7-weight u to the subtorus 7'zo.
We define a partial order < on the set of weights for 7', where ; < v if and only if
w=v— " cie; for some non-negative integers ¢; (in this situation, we say that
is under v). Finally, we set Ng = N U {0}, we write Sym,, and Alt,, for the symmetric
and alternating groups of degree n, and we denote a cyclic group of order m by Z,,
(or just m).
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Recall that a map ¢ : G — Gj of algebraic groups is a morphism if it is a
group homomorphism that is also a morphism of the underlying varieties. In partic-
ular, it is important to note that an injective morphism does not necessarily induce
an isomorphism G| = ¢(G) of algebraic groups. If G is a semisimple algebraic
group with root system &, then we will say that G is of type ® (and we will some-
times denote this by writing G| = ). For example, SL,(K) and PGL;(K) are both
simple algebraic groups of type Ay = By = Cj, and PSp,(K) and SOs5(K) are
both of type By = C,. Finally, note that if H is a closed positive-dimensional
subgroup of an algebraic group G, and ¢ : H — G is the inclusion map, then
the differential d¢ : Lie(H) — Lie(G) is an injective Lie algebra homomorphism
(since ¢ : H — @(H) is an isomorphism of algebraic groups).

2.2 Diagonal embeddings

Let G/Z be a central product, where G = G| X - -- X G; and Z < Z(G). A subgroup
H/Z of G/Z is a subdirect product if each of the projection maps 7; : H — Gj
is surjective. In the context of algebraic groups, the related notion of a diagonally
embedded subgroup is defined as follows:

Definition 2.1 Let H be a closed subgroup of G = G| X --- x G; where the G; are
isomorphic simply connected simple algebraic groups. We say that H is diagonally
embedded in G if each projection r; : H — G is a bijective morphism. Note that we
do not require each projection map 7; to induce an isomorphism H = G; of algebraic
groups.

The next lemma is a well known result of Steinberg (see [18, Theorem 30] and [19,
10.13]), which describes the bijective endomorphisms of a simple algebraic group.
Here t, and o, are defined as in Sect. 2.1, and we adopt Steinberg’s definition of a
graph automorphism of a simple algebraic group G (see [18, Sect. 10]). In particular, a
graph automorphism is an isomorphism of algebraic groups unless (G, p) = (C3, 2),
(G3,3) or (Fy, 2).

Lemma 2.2 Let G be a simple algebraic group over an algebraically closed field of
characteristic p > 0. Let ¢ : G — G be a bijective morphism. Then ¢ = txaqyk for
some x € G, p-power q and integer k € {0, 1}, where y is a graph automorphism
of G. Moreover; if G is classical and (G, p) # (C3, 2), then ¢ is an isomorphism of
algebraic groups if and only if o, = 1.

Lemma 2.3 Let ¢ : H — G be a surjective morphism of algebraic groups and let
dy : Lie(H) — Lie(G) be the corresponding differential map. Then do(Lie(H)) is
a K G-submodule of Lie(G), and hence also an ideal of Lie(G).

Proof Let Adg : G — GL(Lie(G)) be the adjoint representation of G. We must
consider Adg (g)(de(X)), for g € G and X € Lie(H). As above, lett, : G — G
denote conjugation by g. Then Adg (g)(de(X)) = (dt, o dp)(X) = d(ty o p)(X).
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Since ¢ is surjective, g = ¢(h) for some h € H, so we have

Adg(g)(de(X)) = d(tym) o 9)(X) = d(p o ty)(X)
= dg o Ady (h)(X) € do(Lie(H)).

Therefore, dp(Lie(H)) is Adg-invariant and hence a K G-submodule of Lie(G).
Finally, let V be a K G-module with corresponding representation p : G — GL(V),

and let S be a G-invariant subspace of V. Then S is invariant under the action of

dp(Lie(G)). We conclude that de(Lie(H)) is an ideal of Lie(G). O

Recall that a morphism ¢ : H — G of algebraic groups is an isogeny if it is
surjective with finite kernel. If such a map exists, we say that H is isogenous to G
(this is not a symmetric relation).

Lemma 2.4 Let G be a simply connected simple classical algebraic group of rank m
over an algebraically closed field K of characteristic p > 0, let H be a connected
algebraic group and let ¢ : H — G be an isogeny. Then ¢ is a bijection. Moreover, if
do # 0 then either ¢ is an isomorphism of algebraic groups, or one of the following
holds:

(i) G and H are both of type A, with p dividing m + 1;
(1) G and H are both of type By, Cp, or D,,, with p = 2;
(iii) (G, H) is of type (B, Cy) or (Cyy, Byy), with p = 2.

Proof First we claim that H is also a simple group of rank m. Clearly, if N is a
proper nontrivial connected normal subgroup of H, then ¢(N) is a proper nontrivial
connected normal subgroup of G, which is not possible since G is simple. Therefore,
H is simple. If Ty is a maximal torus of H, then ¢(7Tx) is a maximal torus of G (see
[1, Proposition 11.14], for example), and dim 7y = dim ¢(Ty). Therefore, H has
rank m. Now, by comparing dimensions, we deduce that G and H have the same root
system, unless (G, H) = (B, Cy) or (Cy, Bp). Note thatif p # 2 and G = By,
then H is also of type B, because an isogeny from By, to C, only exists when p = 2.
Similarly, if p # 2 and G = C,, then H is of type Cy,.

To see that ¢ is a bijection (of abstract groups), first observe that ker(¢) < Z(H)
since H is simple, so the claim is trivial if p = 2 and H = By, or C,,. Now assume
p # 2if H = By, or Cp. As above, G and H have the same root system. In
particular, if Hy. denotes the simply connected group with the same root system as H,
then Hy. and G are isomorphic algebraic groups (this follows from the classification
of simple algebraic groups over K, using the fact that G is simply connected). Set
Y = ¢ om, where m : Hyc — H is the natural isogeny. Then ¢ : Hy, — G is an
isogeny with kernel L < Z(Hy), so Hy./L = G as abstract groups. In particular,
Z(Hy/L) = Z(G) = Z(Hg), so L = 1 is the only possibility. Therefore i is
injective, and thus ¢ is also injective. We conclude that ¢ is a bijection.

To complete the proof, we may assume that d¢ # 0 and (G, H, p) is not one of
the cases labelled (i)—(iii) in the statement of the lemma. As above, G and H are both
simple groups of the same type and rank. Since Lie(H) is simple (see [11, Table 1]),
it follows that dg is an isomorphism of Lie algebras and thus ¢ is an isomorphism of
algebraic groups. O
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Lemma 2.5 Let J be a closed connected subdirect product of G1 x G2, where G
and Gy are isomorphic simply connected simple classical algebraic groups. Then J is
diagonally embedded in G| x G», and either J = G| x G, or J = G as algebraic
groups.

Proof Letm; : J — G; be the i-th projection map and set L = ker(dmy) Nker(dm,).
Note that L = 0 since J is a closed positive-dimensional subgroup of G| x G».
Without loss of generality, we will assume that dzr; # O.

First assume ker(wp) is infinite. Since m is injective on ker(wy), we have
dimker(rr;) = dimm(ker(;r1)). Moreover, the surjectivity of m, implies that
mp(ker(ry)) is an infinite normal subgroup of G3, so the simplicity of G, implies
that my(ker(r1)) = Gy and thus dimker(wr;) = dim G,. Therefore, dimJ =
dim G + dim G, and we conclude that / = G| x G».

For the remainder, we may assume that ker(sr1) is finite, so 7y is an isogeny and
Lemma 2.4 implies that 77y is a bijection and either J = G, or (G, J) is one of the
cases labelled (i)—(iii). In particular, J is simple and ker(sry) is finite. By a further
application of Lemma 2.4, we see that 775 is also a bijection and thus J is diagonally
embedded. To complete the proof it remains to show that J = G as algebraic groups.
Seeking a contradiction, let us assume that ker(dm;) # 0 fori = 1, 2, so im(dm;) is
a proper non-zero ideal of Lie(G;) (see Lemma 2.3).

First assume p = 2 and (G, J) is of type (B, Bn), (Ci, Cp)s (By, Cpy) OF
(Cy, By). For m > 2, the ideal structure of Lie(J) is described in [6, Sect. 5].
Excluding the case where J = C,, is simply connected and m > 3 is odd, we observe
that Lie(J) has an irreducible socle S (as a K J-module), which immediately implies
that L contains S. This is a contradiction, since L = 0. Now assume J = C,, is
simply connected and m > 3 is odd. If G| = C,, then J = G since G| is simply
connected, so let us assume G| = B,,. The socle of Lie(J) is of the form Z & M,
where Z = Z(Lie(J)) is 1-dimensional and M is a nontrivial irreducible module.
Without loss of generality, we may assume that M is not contained in ker(dm), which
implies that ker(dm1) = Z. Therefore im(d) is an ideal of Lie(G) of codimension
1, but this is not compatible with the ideal structure described in [6]. Therefore, once
again we have reached a contradiction. Finally, if / = B; = C is adjoint then Lie(J)
has an irreducible socle and we can repeat the argument given above.

Next suppose that G| and J are both of type A,,, where p divides m + 1. We may
assume that m > 2. Seeking a contradiction, suppose that J is not simply connected.
By inspecting [11, Table 1] we deduce that im(dr;) = Z(Lie(G;)) and ker(dm;) is
the commutator subalgebra of Lie(J) for i = 1, 2. But this implies that L # 0, which
is a contradiction. To complete the proof, we may assume that G| and J are both of
type D,,, with p = 2. If m is odd then we can repeat the previous argument, using
[11, Table 1], so let us assume m is even. If J is not simply connected then Lie(J) has
an irreducible socle S (see [6, Sect. 5]), which must be contained in L. Once again,
this is a contradiction. O

The next result is a natural generalization of Lemma 2.5.

Proposition 2.6 Let J be a closed connected subdirect product of G X --- x Gy,
where the G; are isomorphic simply connected simple classical algebraic groups.

Then the following hold:
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(i) J is semisimple.
(i1) There exists a positive integer r < t such that J = Jy - - - J., where each J; is
isomorphic to G1.
(iii) There exist integers 0 = to <t} <t < --- < t, = t such that J; is diagonally
embedded in Gy, 1 % -+ x Gy,.

Proof We use induction on ¢, noting that the case t+ = 1 is trivial, and Lemma 2.5
handles the case r = 2. Letus assumet > 3,andlets; : J — G; be the i-th projection
map. As in the proof of the previous lemma, we may assume that dmr; # 0.

If ker(7r;) is finite for any i, then dim J = dim G and thus ker(sr) is also finite.
Then by arguing as in the proof of Lemma 2.5, we deduce that J is diagonally embed-
dedin G| x --- x Gy and J = G. For the remainder, we may assume that ker(7;)
is infinite for all i. Since ; (R, (J)) is a proper normal subgroup of r;(J) = G; for
each i, it follows that J is reductive. Similarly, by considering 77;(Z(J)), we deduce
that Z(J) is finite and thus J is semisimple. In particular, we may write

=Ty,

where each J; is simple. Note that 7r; (J;) is a connected normal subgroup of G; for
all i, j,som;(J;) = 1 or G;. Let o be the projection map

o:J—> Gy x---xGy.

We now consider two cases.

Case 1. ker(o) is infinite.
First assume ker(o) is infinite, so ker(o)? is a connected positive-dimensional
normal subgroup of J. By relabelling the J;, if necessary, we may assume that

ker(c)’ = J; - J,

forsomea € {1, ..., r} (see [13, Theorem 27.5(c)], for example). Now 71 (J;) = G
forall 1 < i < a, so the injectivity of 71 on ker(o)?, together with the simplicity of
G1,implies thata = 1 and Jj is of type G 1. In particular, » > 1 since we are assuming
that ker(sr1) is infinite. Also note that ; (J; - -- J,) = G; foralli > 2.

We claim that 771 (J;) = 1 forall2 <i <r,s0Jp---J, < Gy x---x G, is asubdi-
rect product and the result follows by induction. To justify the claim, leti € {2, ..., r}
and consider w1y, y, : J1Ji — Gi.Sincem(J1) = G, wehave i (J1J;) = G. Now
ker(m1]y, jl-)o is a connected normal subgroup of J; J;, so ker (|, ji)O =1,J1, J;or
JiJ;. It is easy to see that ker (1], J,.)O = J; is the only possibility, so 71 (J;) = 1 as
claimed.

Case 2. ker(o) is finite.

To complete the proof, we may assume that ker(o) is finite. Now J/ker(o) is
connected and reductive, and it is isomorphic to a subdirect productof G x - - - x G;. By
induction, there exists s € {1, ...,r—1}suchthatJ/ker(oc) = L;---Lsand L; = G
foreachi. But J = Jy - - - J, and the J; are simple, so r = s and dim J; = dim G for
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all i (indeed, J; is isogenous to G 1), hence dim J = r dim G . Note that » > 1 since
ker(sry) is infinite.

Sincemry : J — G issurjective, we have dim ker(r1) = (r —1) dim G 1. Moreover,
by relabelling the J; if necessary, we may assume that ker(m)o =Jy---J, (see[13,
Theorem 27.5(c)]). Therefore, my(J1) = Gy and Jo---J, < G2 X --- X G;. By a
further relabelling, we may assume that there exists an integer b € {1, ..., t} such
that r; (J1) = G for1 <i < b,andm;(J;) = 1ifb <i < t.

First we claim that b < t. Seeking a contradiction, suppose that b = ¢, so ; (J1) =
G; forall i. Let j € {2,...,r} and consider 7|y, ; : J1J; — G;. By arguing as
above, we deduce that ker (77;| , JJ.)O = Jj,som;(J;) = 1for all i. Therefore J; = 1
and thus r = 1, which is a contradiction.

Since b < tand J; < G| X - - - X Gy is a subdirect product, by induction we deduce
that J is diagonally embeddedin G| x - - - x Gp and J; = G1. If wefixi € {1, ..., b}
and j € {2, ..., r}, then ker(m;| , jj)o = Jj and thus J5 - - - J, < ker(7;). Therefore,
Jo-- - Jr < Gpg1 X - - - X Gy is asubdirect product (since ; (J) = G and 7; (J1) = 1
for all i > b) and the result follows by induction. O

2.3 Irreducible triples

Define G, H and V as in Hypothesis 1.1. The next result records a basic observation
(see [4, Remark 2]).

Lemma 2.7 If V |y is irreducible, then H does not normalize a nontrivial connected
unipotent subgroup of G. In particular, H® is reductive.

Suppose V |y is irreducible, but V| 4o is reducible. Then Clifford theory implies that
Vi =Vi@® & Vi, (1

where m > 2 and the V; are irreducible K H%-modules that are transitively permuted
under the induced action of H/HP.

Remark 2.8 Since the irreducibility of V| implies that HO is reductive, we have
HY = JZ(H") where J = [H, H°] is the derived subgroup of HY. Now Z(H®)
acts as scalars on the V; so that they are also irreducible upon restriction to J. In
particular, the irreducibility of V |y implies that the K J-composition factors of V|,
are transitively permuted under the induced action of H/H?.

If the V; in (1) are isomorphic as K H°-modules, then V| 7o 18 said to be homoge-
neous. For example, V| o is homogeneous if Ng (H% = HC;(H). The following
result is [3, Proposition 2.6.2].

Proposition 2.9 If H is a cyclic extension of H®, then the irreducible K H-modules
Vi in (1) are pairwise non-isomorphic. In particular, V| o is not homogeneous.

We will also need the following lemma.

Lemma 2.10 Let V| and V, be p-restricted irreducible K G-modules and set V =
Vi ® Va. Then one of the following holds:
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(i) V isirreducible, G = B, or C,, p = 2 and V| and V> can be arranged so that
Vi = Vg (ui) and 1 (respectively ) has support on the short (respectively,
long) roots;

(i1) V has non-isomorphic composition factors.

Proof By [17, (1.6)], V is irreducible if and only if G and V satisfy the conditions
in (i), so let us assume V is reducible. Write V; = Vg (u;) and note that V has
a composition factor of highest weight © = @1 + w2 occurring with multiplic-
ity 1. Then any other composition factor has highest weight v # w and the result
follows. O

3 Subgroup structure
3.1 A reduction theorem

Let G be a simple classical algebraic group with natural module W. Following [14,
Sect. 1], we introduce six natural, or geometric, collections of closed subgroups,
labelled C; for 1 < i < 6,and we set C = | J; C;. These subgroups are defined in terms
of the underlying geometry of W, and a rough description of the subgroups in each C;
collection is given in Table 3 (note that the subgroups in the collection Cs are finite).
There are two types of subgroups in the C4 collection (indicated by the two rows in Table
3); following [4], we write C4 = C4(i) U C4(ii) accordingly. The following result is
[14, Theorem 1] (we use the term non-geometric for the subgroups arising in part (ii)).

Theorem 3.1 Let G be a simple classical algebraic group with natural module W,
and let H be a closed subgroup of G. Then one of the following holds:

(i) H is contained in a member of C;

(i1) modulo scalars, H is almost simple and E(H) (the unique quasisimple normal
subgroup of H) is irreducible on W. Further, if G = SL(W) then E(H) does not
fix a non-degenerate form on W. In addition, if H is infinite then E(H) = HO is
tensor indecomposable on W.

Table 3 The C; collections

Rough description

Cy Stabilizers of subspaces of W

C Stabilizers of orthogonal decompositions W = @; W;, dim W; = a

C3 Stabilizers of totally singular decompositions W = W1 @& W

Cq Stabilizers of tensor product decompositions W = W| @ Wp
Stabilizers of tensor product decompositions W = Q); W;, dim W; = a

Cs Normalizers of symplectic-type r-groups, r 7 p prime

Ce Classical subgroups

@ Springer



T. C. Burness et al.

3.2 Geometric subgroups of GO(W)

In our inductive proof of Theorem 1.4, we will need to consider the subgroup structure
of G = GO(W), which is the full isometry group of a non-degenerate quadratic form
on W. Here dim W = 2n > 6 and thus G* = SO(W) is a simple group of type D,.
The notion of a geometric subgroup extends naturally to G and we can define the
subgroup collections Cy, . . ., Cg as above. It is straightforward to check that the proof
of the main theorem of [14] extends to this slightly more general situation (see [14,
Theorem 1']), and thus Theorem 3.1 holds. In particular, any subgroup of G that is not
contained in a geometric subgroup is said to be non-geometric, and these subgroups
satisfy the conditions described in part (ii) of Theorem 3.1.

In the proofs of Propositions 5.10 and 5.19, we need information on the maximal
non-parabolic geometric subgroups of G. This is given in the following proposition.

Proposition 3.2 Let M be a positive-dimensional non-parabolic geometric subgroup
of G = GO(W) = D,,.2, which is not contained in G°. Then the possibilities for M
are recorded in Table 4.

Proof Here M is a disconnected C;-subgroup of G, where i € {1, 2, 3, 4} (recall that
the subgroups in Cs are finite, and there are no Cg-subgroups in orthogonal groups). The
structure of M is easily determined from its geometric description (see [4, Sect. 2.5],
for example), and it is straightforward to determine whether or not M is contained in
GY.

For example, if M € C; then M = Gy is the stabilizer of a subspace U of W (the
natural K G-module), and one of the following holds (recall that M is non-parabolic,
so U is not totally singular):

(a) U is non-degenerate and dim U is even;
(b) U is non-degenerate, dim U is odd and p # 2;
(c) U is non-singular, dimU = 1 and p = 2.

In (a) and (b), M = GO(U) x GO(U%L) is not contained in G°. Similarly, in (c),
M = B,_1 x 2 (up to isomorphism) is not in GO. These are the cases labelled (i), (ii)
and (iii) in Table 4.

Table 4 The non-parabolic geometric subgroups M < Dj.2 with M £ Dy,

M Collection Conditions
) D;D,_;.22 ¢ 1<l <n/2
(ii) BB,_j_| x 22 ¢ 0<l<n/2,p#2
(iii) B,_1x2 Ci p=2
(iv) (2" x B}).Sym, C 2n=QI+1Dt,1 >1,t >2even, p £2
) (D;.Z’).Sym, Cy n=It,l >1,t>2
(vi) Ap_1T1.2 C3 n odd
(vii) B,Dy.2 Cyq (i) n=QRa+)ba>21,b>22,p#2
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Next suppose M is a C4(i) tensor product subgroup of type SO(W;) ® SO(W,),
where W = W1 ® W, dim W; = q;, a1 # a»> and p # 2. Note that

M = GO(W7) o GO(W3) = (SO(W1) o SO(W2)).(x1, x2)

is a central product and the x; are certain involutions. More precisely, if a; and a, are
both even, then we may assume that x; acts as a reflection on W and centralizes W
(and vice versa for x3). Therefore, x1, x € SO(W) and thus M < GY. On the other
hand, if a; is odd (so a» is even) then we can choose x; so that it acts as —1 on W,
and centralizes Wa, and x, is defined as above. Here x; € G but x, ¢ GO, whence
M is not contained in GY. This is the case labelled (vii) in Table 4.

The other cases are similar. For instance, suppose M is a C3-subgroup. Geomet-
rically, M is the stabilizer of a decomposition W = Uj & U,, where U; and U, are
maximal totally singular subspaces of W, so dim U; = n and M = GL(U;).2. Now
GY contains an element interchanging U; and U, if and only if n is even, so M is
contained in GV if and only if n is even, and this explains the parity condition on n
recorded in Table 4 (see case (vi)). O

Proposition 3.3 Let M be one of the subgroups of G = D,,.2 listed in Table 4, and
assume n = 3 and p # 2. Set V.= V0(A), where one of the following holds:

(@) A =Ap_1+ Ay
(b) A=Ay, wherel <k <n— 1.

Then V extends to a representation of G, and V |y is reducible.

Proof First observe that A is fixed under the induced action of an involutory graph
automorphism of G on the set of T-weights of G (where T is a maximal torus of G?),
so the representation V = V50(A) does indeed extend to arepresentation of G = G 2.
We will deal in turn with each of the relevant cases in Table 4 (note that case (iii) is not
applicable, since we are assuming that p # 2). Seeking a contradiction, let us assume
that V|y is irreducible. By Clifford theory (see Sect. 2.3), the K M°-composition
factors of V are transitively permuted under the induced action of M/M?°.

Case 1. M is a Cy-subgroup of type D;D,,_;.2>.

Here 1 <[ < n/2 and M° = M M,, where M, = D; and My, = D, _;. We
will inspect the proof of [4, Lemma 3.2.3]. By [17], V|0 is reducible and thus
Clifford theory implies that there are either two or four K M°-composition factors
(since [M : M| = 4).

First assume [ = 1, so M = Mo(rl, 7o) where 7] is an involution inverting the
1-dimensional torus M7, and 77 is an involutory graph automorphism of M> = D,,_1.
We may assume that My = (U4q,, ..., U+q,). Note that M acts as scalars on the
KM 0-compositi0n factors of V, each of which is an irreducible K M-module. If
there are exactly two K M°-composition factors of V' then the argument in the proof
of [4, Lemma 3.2.3] goes through unchanged (the details are given in the proof of [4,
Lemma 3.2.2]), and the result follows immediately.

Similar reasoning applies if there are four composition factors. By Clifford theory,
if v is the highest weight of a K M 0-composition factor, then v|y, = Alm, or (t2-1) |,
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(here v|p, denotes the restriction of v to a suitable maximal torus of M> contained
in T, and similarly for A|y, and (72 - A)|m,). However, u = A — o) —ap — -+ —

ay—1 = —Xh1 + 24, affords the highest weight of a K M O-composition factor in case
(a), but clearly |y, is not conjugate to Alp,. Case (b) is entirely similar, using
u=Ai—ay —---— ar. Therefore, in both cases we have reached a contradiction.

Now assume [/ > 2. As noted in the proof of [4, Lemma 3.2.3], up to conjugacy we
have

My = (Usa;s - Uty Ust(o_ 420+ +atn—o)+atn_1+an))

)
My = (Usgyyys - -+ Uta,)

and M = M°(t|, 1), where 71 and 7, act as involutory graph automorphisms on M
and M», respectively. Let {w1,1, ..., w1} and {wy 1, ..., w2 ,—} be the fundamental
dominant weights corresponding to the above bases of the root systems of M1 and M5,
respectively (here 7 acts as a transposition on {wy,1, ..., @1}, interchanging w j—1
and w1, and similarly 72 acts on {w2 1, ..., w2 ,—;} by interchanging the weights
2.n—1—1 and ) 7). Note that if u = D7, b;A; is a weight for T’ then

-1
Hlpo = Zbiwl,i + (b1 +2bj+ -+ 2by,—2 + bp_1 + by
i=1

3)
n—l
+ Z bryiwa ;.
i=1
Consider case (a). Here u = A — oy — o4 — - - - — y—p — a1 affords the highest

weight of a K M°-composition factor (see the proof of [4, Lemma 3.2.3]) and we
calculate that

mlyo = o11-1 + @11 + 20201, Ay =201 + 02 p-1-1 + O
In particular, we observe that
wlpo & {Alpg0, (T1 - M pg0, (22 - M) g0, (1172 - M) pg0},

SO |0 1s not M-conjugate to A|s0. This is a contradiction.
In case (b) we have A = A, where 1 < k < n — 1, and thus

w1,k l<k<Il—1
Mo = w-1+owy;  k=1-1
M=) 20y k=1

2010+ wk—1 <k <n—1.
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Set
A= — g1 —--—oy L <k<l
u=131r—o k=1
A—oa—ay)—--—o l<k<n—1.

Then  affords the highest weight of a K M%-composition factor, and in each case
it is easy to check that p|,0 is not M-conjugate to A|,0. For example, suppose
1 <k <1l—1.Then u = Ag—1 — A + A41 and thus @0 = w1 k-1 + @21,
which is not conjugate to A|y0 = wj k. The other cases are similar.

Case 2. M is a C-subgroup of type B;B,_;_1 x 2%.

Here 0 < I < n/2 and MO = MiM>, where My = B; and M, = B,,_j_1.
Let {B1,..., B} and {y1, ..., yn—i—1} be bases of the root systems of M| and M>,
respectively, and let {n1, ..., n;} and {v1, ..., v,—;—1} be the corresponding funda-
mental dominant weights. Then up to conjugacy, we may assume that the simple root
elements of M| and M, are as follows

| X (0) 1<i<l
(0 = Hx[s(r)xe 0 i=1
EO; I<j<n—-1-1
Xy (1) = [xan_] (Oxe,(t) j=n—1—1

forallt € K,whered = a;+ o1+ +op—1ande = oy +oj41+---+op—2+oy
(see [21, Claim 8], for example). Note that V|,,0 is homogeneous.

First consider (a). In terms of the above notation, we calculate that A|,,0 = 21, +
2v,,—1—1. By considering the restrictions ;| ,,0, we see that A — o, and A — o, both
restrict to the weight A|y;0 — ¥,_/—1. This weight has multiplicity 1 in the K M°-
composition factor of V afforded by A. Moreover, one checks that A is the only T'-
weight p in V such that A |0 — Yp—j—1 < |0 and A0 — Y—1—1 # |0, so there
must be a K M°-composition factor with highest weight A| ;0 — 1, 1. However, this
contradicts the homogeneity of V| 0.

Now consider (b). Suppose k < [, so [ > 0 and A|y, is trivial. Now the weight

w = A—ay—--- — a affords the highest weight of a K M°-composition factor of
V, but 1|y, is nontrivial and this contradicts the homogeneity of V|,,0. Now assume
k > 1. Here A|y0 = 21 + vk—;+1. However, the weight p = A —ay —oy41 —- - - — i

affords the highest weight of a K M°-composition factor of V and

m-1+vkgy2 k<n—2

e = H Mot 42011 k=n—2

Once again, this contradicts the homogeneity of V| 0.

Case 3. M is a C;-subgroup of type (2" x Bl’).Symt.
Here 2n = (21 + 1)t,l > 1 and t > 2 is even. Note that the conclusion to [4,
Lemma 4.2.1] still applies in this situation.
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First consider (a). If [ = 1 then the argument in the third paragraph on [4, p. 48]
applies, and we reach a contradiction via [4, Lemma 4.2.1]. Next suppose (/,t) =
(2,2),son = 5. Here we argue as in the third to last paragraph on [4, p. 50]. (Alterna-
tively, in the notation of [4, Lemma 4.3.8], note that dim V = dim Vp (1) = 210 and
Ao =2w1,2 + 2w 2, so the KM 0-composition factor afforded by A has dimension
10? = 100, which does not divide dim V.) Finally, if/ > 2and (, t) # (2, 2) then we
can argue as in the third to last paragraph on [4, p. 52] (again, we get a contradiction
via [4, Lemma 4.2.1]). Case (b) is similar and we omit the details.

Case 4. M is a Cy-subgroup of type (D;.2").Sym,.

Heren =1It,1 > 1 and t > 2. As in the previous case, note that the conclusion to
[4, Lemma 4.2.1] still applies.

If /] = 1then M = Ng(T) is the normalizer of a maximal torus and this case is
ruled out as in the first paragraph in the proof of [4, Lemma 4.3.8]. Now assume [ > 2.
Consider case (a). If [ > 3 then we can argue as on [4, p. 56] to rule out this case, and
as noted in the penultimate paragraph on [4, p. 57], the same argument also applies if
| = 2. Case (b) is very similar: if [ > 3 then we argue as on [4, p. 55] (we repeatedly
apply [4, Lemma 4.2.1]), and for [ = 2 we note that the argument on [4, p. 57] goes
through unchanged.

Case 5. M is a C3-subgroup of type A,—171.2.

Here n > 3 is odd. Set L = (MO)’ = A,_1 and note that V| has exactly two
composition factors. We may assume that L = (U+q, ..., U+q,_ ;). As in the proof
of [4, Lemma 3.2.2], let V; be the sum of the T-weight spaces (T a maximal torus of
GO = D,)in V = Vgo(A) of the form A — Z;:ll ciaj — jou, j € Ng. Since V; is
L-stable, every T-weight of V is of this form, with j = 0 or 1 (by [16, Theorem 1]
and saturation; see [12, Sect. 13.4]). In particular, woA = —(t - 1) is of this form
(where wy is the longest word in the Weyl group of G, and 7 is an involutory graph
automorphism of G that interchanges the weights A,_; and A,). Therefore, if we
write A = >!'_, a;; then

n
2% = (@1 = @) Ont = hn) = D i
i=1

and ¢, € {0, 1}. By expressing the A; in terms of the «;, we deduce that either A = A1,
orn = 3 and A = A or A3. This immediately eliminates cases (a) and (b).

Case 6. M is a C4(i)-subgroup of type B, Dp.2.

Here n = (2a + 1)b and M° = M| M, is semisimple, where M is of type B,
and M is of type Dp. Note that the embedding of M in G is via a tensor product
action on the natural K G-module W. Write M = M°(c), where o induces a graph
automorphism on M, and centralizes M.

LetIT(M) = {B1, ..., Ba}and T1(M>) = {y1, ..., ¥»} be bases of the root systems
X (M1) and X (M>), respectively. Now W restricts to M as 2b copies of the natural
module for M1, and hence up to conjugacy, we may assume that /1 lies in the subgroup

(U1 |a+1Dj+1<i<@a+DG+1,0<j<b),
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the derived subgroup of an Ay, x --- x A, (b copies) Levi subgroup of G. The
projection of M into each of the factors of this group is the natural embedding of a
group of type B, in Ay,. We may assume that

Qatn)j+ilyo =B forall0 < j<b,1<i<a
and
Q2a+1)j+atilyo = Ba—iv1 forall0 < j <b, 1<i<a,

where |0 denotes the restriction of « to a maximal torus Ty;0 < T of M.

Let P be the parabolic subgroup of M, which contains the opposite Borel subgroup,
with Levi factor M1 Tj,0. We may assume that P is contained in the parabolic subgroup
of G, which contains the opposite Borel subgroup of G, whose Levi factor has derived
subgroup as given above. By comparing the flags of commutator subspaces of W
with respect to the two unipotent radicals, we are able to determine the restrictions of
sufficiently many 7-weights to 7,0 in order to deduce the restrictions of the remaining
simple roots. We get

A2atrnjlyo =vj — Bo. A@ar)plyo = vo — vo—1 — (Bo — B1),

where 1 < j <band By =227, Bi.

By [17], V|0 is reducible, so Clifford theory implies that V has precisely two
K M°-composition factors, with highest weights A|,,0 and (o - 1)|,,0. In particular, if
we set Ty, = Ty0 N My, then every K Mi-composition factor of V has highest weight
Alm,, whence every Ty, -weight of V is of the form

a
Am, — anﬂj, for some n; € Ny. )
j=1

However, in case (a) we find that the weight A — «,, restricts to Al + Bo — Bi,
which contradicts (4). In (b), choose 1 < i < b such that |(2a + 1)i — k| is minimal,
and set 4t = A —ag — agq1 — -+ — a@at1)i if kK < (2a + 1)i, otherwise set u =
A — QQa+1)i — %Qa+1)i+1 — -+ - — a. Then

ply =4 —r =i = Bo))lmy = (A —r =+ Bo)lu,

where either » = 0 or r is a positive root of M. Once again, this contradicts (4).
This completes the proof of Proposition 3.3. O

Proposition 3.4 Let M be one of the subgroups of G = D,,.2 listed in Table 4, and
assume p = 2. Set V.= Vso(A), where

n—2
A= Zaiki +ap—1(An—1 + Ay)

i=1
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is p-restricted. Assume that V is nontrivial and V. # W, W*. Then V extends to a
representation of G, and V| is reducible.

Proof As before, A is fixed by an involutory graph automorphism of G°, so V extends
to a representation of G = G°.2. Seeking a contradiction, let us assume that V| is
irreducible. There are four cases to consider.

Case 1. M is a C;-subgroup of type D;D,,_;.2>.

Here M° = M;M,, where M| = D;, M, = D,_jand 1 < [ < n/2. First
assume / = 1. As in the proof of the previous proposition, we may assume that
My = (Utqy, ..., U+q,), and by arguing as in the proof of [4, Lemma 3.2.3] we
quickly reduce to the case where V|0 has exactly four composition factors. Let k be
minimal such that a; 7# 0. Then A —o —- - - — o affords the highest weight of a K M»-
composition factor of V, which is not conjugate (via a graph automorphism of M>) to
the composition factor afforded by A. This contradiction eliminates the case [ = 1.

Now assume [ > 2. As before, M = M 0(7/1, y2), where y| and y» act as involutory
graph automorphisms on M and M>, respectively, and we may assume that M and
M, are as givenin (2). Let {w1 1, ..., w1} and {wy 1, ..., w2 ,—} be the fundamental
dominant weights corresponding to the bases [1(M7) and I1(M>) in (2), respectively.
In view of (3), it is easy to see that A|y,0 = (y2 - A)| 0 and

V1Mo = iy2 - Mlyo
= Ay + Qg + -+ ap—2) +an—1 +ay) (@1,-1 — w1,1).

Now, by arguing as in the proof of [4, Lemma 3.2.3] we quickly reduce to the case > =

apn—1(Ap—1+Ay,). Byinspecting (2), weseethat t = A —aj —oyp1—- - — a2 —p—1
affords the highest weight of a K M°-composition factor, but this is not conjugate to
Alpgo since plp0 = Alp0 + w11 — 011 — W2 11 + @2, 4.

Case 2. M is a Cy-subgroup of type B,_1 X 2.

Write M = M° x (z). By [17], V|0 is reducible and thus V |3,0 = V| @ Va2, where
V; and V; are irreducible K M%-modules. Since z is central, it follows that Vo is
homogeneous, but this is ruled out by Proposition 2.9.

Case 3. M is a Cp-subgroup of type (Dl’.2’).Symt.

Here n = It,wherel > 1 and r > 2. The case / = 1 can be ruled out by arguing as
in the first paragraph in the proof of [4, Lemma 4.3.8]. If [ > 3 then by arguing as in
the proof of [4, Lemma 4.3.8] (see [4, p. 55]) we reduce to the case A = A1+ A,, and
this possibility is ruled out by the argument in the penultimate paragraph on [4, p. 56].
Finally, if/ = 2 then we quickly getdown tothe cases A € {A1+A,—1+An, An—1+An}.
The case A = A,—1 + A, is ruled out as in loc. cit., and the other case is eliminated by
arguing as in the final paragraph in the proof of [4, Lemma 4.3.8].

Case 4. M is a C3-subgroup of type A,_1T7.2.

Here n > 3 is odd and the argument given in the analysis of Case 5 in the proof of
Proposition 3.3 can be applied.

This completes the proof of Proposition 3.4. O
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4 Geometric subgroups: the connected case

Suppose G, H and V = V() satisfy the conditions in Hypothesis 1.1. In this section
and the next, we will establish Theorem 1.4 when H is contained in a geometric
maximal subgroup M of G, excluding the special situation described in part (b) of
Theorem 1.4. Assume V|p is irreducible, so H? is reductive by Lemma 2.7. Our
first task is to determine the possibilities for the irreducible triple (G, M, V). If M is
connected then we can read off the relevant cases by applying [17, Theorem 1]; the
cases that arise are recorded in Table 5. Similarly, if M is disconnected, we can appeal
to the main theorem of [4], which yields the list of cases given in Table 6 (in the first
line of the table, T denotes a maximal torus of G).

Remark 4.1 1t is worth noting that the cases listed in [17, Table 1] are recorded in
terms of the image of the underlying representation ¢ : G — GL(V), so Seitz’s
table gives (¢(G), ¢(M), V), rather than (G, M, V). For instance, at the level of
subgroups, the cases labelled Sz and S4 in [17, Table 1] correspond to irreducible
triples with (G, M) = (C3, G3) or (B3, G3), but only the former possibility is listed
in [17, Table 1] because in both cases the image ¢(G) is of type C3. We also observe
that there are certain maximal rank configurations arising in [17, Theorem 4.1] which
are not listed [17, Table 1]. For example, referring to the case labelled MR in [17,
Table 1] (so p = 3), Theorem 4.1 of [17] implies that the short (respectively, long)
root A, in G acts irreducibly on any p-restricted G;-module whose highest weight
has support on the short (respectively, long) roots, but only the former is listed in the
table. In addition, we also note that the highest weights in [17, Table 1] are only given
up to conjugacy by a graph automorphism, and we adopt the same convention in Table
5. Note that if the graph automorphism introduces a Frobenius twist on the module,
then we will list the irreducible action on the corresponding p-restricted module.

Remark 4.2 As noted in Remark 1.2, if W denotes the natural K G-module then any
irreducible triple (G, M, V) with V. = W7 (for some t € Aut(G)) is also excluded
in [17, Table 1]. In particular, Seitz does not list the cases (G, M) = (D4, Ap) (with
p # 3) and (B2, A1) (p # 2,3), with V a spin module for G. For example, the
spin module for B; is 4-dimensional, and it corresponds to the natural symplectic
representation of C».

Remark 4.3 The triples of the form (G, M, V), where (G, p) = (B;,2) and M is a
disconnected geometric maximal subgroup, are not stated explicitly in [4], but they are
easily determined from the relevant list of cases in [4, Table 1] for the corresponding
dual group of type C,,. The only possibilities are M = B/ .Sym, (a C;-subgroup) with
A=Ap,or M =D,2and A = A, or > ;_, a;};. Note that G acts reducibly on W, so
there are no triples involving non-geometric subgroups.

Remark 4.4 Let us make a few comments on the cases in Tables 5 and 6:

(a) In case (ii) in Table 5 we have G = A,, and M = C,,, where n = 2m — 1 and
m > 2. Moreover, A = aiy + bAigy1, where | <k <m,a+b=p—1>1land
a # 0if k = m — 1. In particular, p # 2.
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Table S M is a connected geometric subgroup

G M Collection A Conditions
@) Ap Cm Ce ki1, k=2 n=2m—1,m2>=22,p#2
(ii) Cm Ce See Remark 4.4(a) n=2m-—1,m2>=2
(iii) By Ce M, L <k <m n=2m,m2=23,p#2
(iv) By Ce Am n=2m,mZ=2,p#2
v) D, B Cy khp—1,kip, k=2 n=m+1,m=23,p#2
(vi) B, Ci See Remark 4.4(c) n=m+1,m2>=23,p#2

Table 6 M is a disconnected geometric subgroup

G M Collection A Conditions

@) An Ng(T) C Mol<k<n

(ii) A2 2 Calii) A2, An—1 n=mm+2),p£2,m>2

(iii) Dy .2 Cs Mol<k<n n=2m—1,p#2

(iv) By Dy .2 Ci See Remark 4.4(e)

) D2 C >l p=2

(vi) Cn ci2 C See Remark 4.4(f) n=2m

(vii) Dy.2 Co il ak p=2

(viii) Dy (D,Zn.Z).Z C M A Ap—1, A1 +2n n=2m,m >=3odd, p=2

(ix) By B2 Calii) A4 p#3

*) Cy  C{Symy  Cylii) 22,23 p#E2(p#£2.3if 2 =13)

(xi) Dy C3.Symy  Cylii) R ESVIP W p=2

(xii) Dg C}.Symy  Cylii) A7 p#£3

(xiii) c32 Calii) A7 p#5

(b) Note that H is a decomposition subgroup in case (v) of Table 5, so we may assume
that k > 2 (if k = 1 then V is a spin module).

(c) Incase (vi)in Table 5wehave G = D,, M = B,,, (withn =m+1 >4, p #2)
and A = bry + ary—1,wWhere l <k <n—1,ab#0anda+b+n—1—-k=
O(modp).

(d) InTable 5, following [17, Table 1], for G of type A,, we record the highest weight
A up to conjugacy by a graph automorphism.

(e) Consider case (iv) in Table 6, where G = B,, and M = D,,.2 is a C;-subgroup.
Here p # 2 and the conditions on the highest weight A = >""_, ;1; are given in
part (b) of Remark 1.8(v). Since H is a decomposition subgroup, we may assume
that a; # 0 for some i < n.

(f) In case (vi) in Table 6 we have G = C,, and M = C,%q .2 is a Cp-subgroup, where

n = 2m. Moreover, A = A,_1 +ak,, where 0 < a < p and 2a + 3 = O(modp).
In particular, p # 2.
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(g) In cases (xi), (xii) and (xiii) we record M and V up to Aut(G)-conjugacy. For
instance, in case (xi), if M denotes the image of M under an appropriate triality
graph automorphism of G then (G, M, Vg (A1 + A3)) is an irreducible triple.

The main result of this section is the following.

Theorem 4.5 Let G, H andV be given as in Hypothesis 1.1, andassume H < M < G
where M is a connected geometric maximal subgroup of G. Then V |y is reducible.

Proof Write V. = Vg ()). The possibilities for (G, M, V') are given in Table 5; in each
case M is asimple group of rank m. Let {n1, ..., n,,} be a set of fundamental dominant
weights for M. Seeking a contradiction, let us assume that V| is irreducible.

First consider case (i) in Table 5 (this is the case labelled I; in [17, Table 1]). Here
G = A, and M = C,, is a Cg-subgroup of G, wheren =2m — I, m > 2 and p # 2
(this is the natural embedding Sp(W) < SL(W)). Note that A = kAj, &k > 2 and
Vim = Va(kny) (see [17, Table 1]). Let J be a maximal subgroup of M containing
H, so

H<J<M<G.

We consider the irreducible triple (M, J, Vys(kn1)). If V| ;o is irreducible then the
triple (M, J°, Vas(kn1)) has to be in [17, Table 1], but it is easy to check that there are
no compatible examples. Therefore J is disconnected and V| ;o is reducible. In this
situation, (M, J, Vis(kn1)) must be one of the triples arising in the main theorems of
[3,4], but once again we find that there are no such triples. We conclude that V |y is
reducible in case (i).

The other cases in Table 5 are very similar, although some extra care is required in
case (vi). Here G = D,,, M = B,,_ is aCj-subgroup (we can view M as the stabilizer
in G of a I-dimensional non-degenerate subspace of W), and & = bA;+ak, 1 satisfies
the following conditions:

1<k<n—-1, a,b#0, a+b+n—1—k=0(modp) %)

(see case IV in [17, Table 1]). We note that V'|py = Vi (bni + an,—1). As before,
let J be a maximal subgroup of M containing H, and consider the irreducible triple
(M, J, Vy (bng + ang—1))-

If V| ;o isirreducible then by inspecting [17, Table 1] we see that the only possibility
is the case labelled IH’I, where M = By (son=4),J =Gy, k=2anda+2b+2 =
O(modp). By (5), we also have a + b + 1 = O(modp), so p divides b + 1, and thus
p divides a, which is a contradiction since the highest weight A = biy + ar,—1
is p-restricted. Therefore J is disconnected and V| ;o is reducible. We are now in a
position to apply the main theorems in [3,4]. We deduce that the only possibility is
the configuration found by Ford, with J = D,,_.2 (see the case labelled U in [8,
Table II]; also see Remark 4.4(e)). Since the highest weight of V| is bny + any—1,
we must have a = 1 and 2a = —2(n — 1 — k) — 1(modp). But it is easy to see that
this congruence condition is incompatible with the congruence condition in (5). O
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Table 7 The irreducible triples (G, H, V) in Theorem 5.1

G H A Conditions

An T.X My L <k <n X < Sym,, | is {-transitive, £ = min{k, n + 1 — k}
By B}.X A3 p=2,X = Z3 or Sym;

Cy c3.x A3 p=2,X=Z3 or Symy

Cy C3.73 A2, A3 p#£2(p#£2,3if A=213)

Dy C3.73 A+ Aa, A3+ Ay p=2

Dg Cf.X A7 p # 3, X < Symy is transitive

5 Geometric subgroups: the disconnected case

The main result of this section is the following, which completes the proof of Theorem
1.4 when H is contained in a maximal geometric subgroup of G.

Theorem 5.1 Let G, H and V = Vg (L) be given as in the statement of Theorem
1.4, and assume that H < M < G where M is a disconnected geometric maximal
subgroup of G. Then V |y is irreducible if and only if (G, H, V) is one of the cases
recorded in Table 7.

Remark 5.2 Suppose that H < M < G, where (G, M, V) is the case labelled (vii) in
Table 6, s0 G = C,, M = D,,.2 and p = 2. In Proposition 5.19 we deduce that V |y
is irreducible if and only if (n, p) = (4,2),x = A3 and H = C?.X with X = Z3 or
Symjy, and so this establishes Theorem 5.1 in this situation. The result for case (vii)
will be obtained from the result for (v) via an isogeny. That is, V |y is irreducible if
and only if (n, p) = (4,2), A = A3 and H = B13.Z3 or B?.Sym3. Therefore, for the
remainder of this section we will exclude case (v) in Table 6 from our analysis.

We begin with a couple of preliminary lemmas. Our first result will play an important
role in the analysis of cases (vii), (x), (xi) and (xii) in Table 6.

Lemma 5.3 Let G be a simple classical algebraic group with natural module W, and
let H be a closed positive-dimensional subgroup of G such that W|yo is reducible.
Then there exists a geometric maximal subgroup M of G such that

(i) H < M, and
(i) M does not normalize any decomposition of the form W = W1 ® - - - @ Wy, where
t > 3 and the W; are equidimensional.

Proof This follows from the proof of [14, Theorem 1']. In particular, we refer the
reader to the proofs of Lemmas 3.1, 3.2 and 3.3 in [14]. O

We will also need the following lemma when dealing with cases (ii) and (viii) in
Table 6.

Lemma 5.4 Let G = A, or Dy, and set i = y - i1, where 11 = > ;ajri isa T-
weight of G and y is an involutory graph automorphism of G. If we write (1o — 11 =
>; ciai, then each c; is non-negative if and only if (11 = 2.
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Proof First assume G = A,,. We may assume that y interchanges the fundamental
dominant weights A; and Apq1—; (1 < i < n/2),s042 = D ; any1—iri.Setl = [n/2].
Since

1 i—1 n
o= Dlitn+1—iaj+ > i+ 1- ja;

n+11\+4 —
j=1 j=i

(see [12, Table 1], for example) it follows that

n

1 < . ay .
o — i = D anpii—a) [ D i+ 1=+ D in+1— ja;

n+1
+ i=1 j=1 j=i

=n+1 Z(n+1—1)a,21(an+1 )
j=1 i=1
+Zja, Z (41— i)an1-i —a) | :
i=j+1
so for 1 < j < £ we have
j—1

1
cj=— (n+1—2j>21<an+11 az)+—]2(n+1—21)(0n+1 P —ap)
i=1 i=j

andif £ + 1 < j < n then

n—j
Cj:n (}’l+l—2])zl(an+l —i al)+
i=1

1(n+1—j)

L
D (1 =20 — anpi-).

i=n+1—j

We deduce that ¢; + ¢,41—j = O forall 1 < j < £. In addition, if n is odd then
c¢+1 = 0. The result follows.

The case G = D, is very similar. Here we may assume that y interchanges A, _1
and A, so up — 1 = (ap — an—1)(An—1 — Ap) and the desired result follows. O

For the remainder of this section, we will assume that (G, H, V) is given as in
the statement of Theorem 1.4, so the conditions in Hypothesis 1.1 are satisfied. We
will deal with each of the cases in Table 6 in turn, excluding case (v) as explained in
Remark 5.2.
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5.1 Proof of Theorem 5.1, part I

In this section, we will establish Theorem 5.1 in the case where H < M < G and
(G, M, V) is one of the cases labelled (i), (i), (iii), (iv), (vi), (viii), (ix) or (xiii) in
Table 6. The remaining cases, labelled (vii), (x), (xi) and (xii), will be handled in
Sect. 5.2.

Proposition 5.5 Suppose H < M < G and (G, M, V) is the case labelled (i) in
Table 6, so G = Ay, M = Ng(T) = T.Sym,, | is the normalizer of a maximal torus
T of G,and V = Vg(h) with 1 < k < n. Then V| is irreducible if and only if
H =T.X and X < Sym, . is {-transitive, where £ = min{k,n + 1 — k}.

Proof Here V.= Vg(h) = AK(W) is the k-th exterior power of the natural K G-
module W, and by duality we may assume that | < k < (n + 1)/2. Let W(G) =
Ng(T)/T = Sym,, | be the Weyl group of G.

Set S = H” and note that S < T is a subtorus. Let Ag(W) and Ag(V) be the set
of S-weights of W and V, respectively, so

Wis= @ W Vis= @ W

neAs(W) nens(V)

where W, is the p-weight space of W, and similarly V,, is the p-weight space of
V. There is a natural action of NG (S) on Ag(W) and Ag(V) given by (x - n)(s) =
w(xsx~). In particular, NG (S) permutes the S-weight spaces on W and V.

First assume S = 7. Here the S-weight spaces on W and V are 1-dimensional, and
Vg is irreducible if and only if H/T < W(G) acts transitively on Ag(V). This is
equivalent to the condition that H/T is a k-transitive subgroup of W(G) = Sym,, ;.
Indeed, we note that the S-weight vectors on V' are of the form w;; A --- A w;,, where
the i are distinct and {wy, ..., w,41} is a basis of W consisting of S-weight vectors.
This gives the desired result when S = T, so for the remainder let us assume that S is
a proper subtorus of 7.

Seeking a contradiction, suppose V |y is irreducible. Now H < Ng(S) (since
S = HY and thus V| Ng(s) 18 irreducible. In particular, Ng(S) acts irreducibly on
W (otherwise Ng(S) lies in a parabolic subgroup of G, which would imply V|y
is reducible), so Ng(S) must transitively permute the set of S-weight spaces on W.
Therefore, these S-weight spaces are equidimensional, whence Ng(S) < J < G,
where J is a Cy-subgroup of G. More precisely, J is the normalizer in G of the
direct sum decomposition €D, o ;) Wy If we now consider the irreducible triple
(G, J, V) then the main theorem of [4] implies that the S-weight spaces on W are
1-dimensional, so S is a regular torus. In particular,

S§<Ce(8) =T < Ncg(S) < Ng(T)=M
and we define

W(S) := NG(8)/Cc(S) = Ng(S)/T < Ng(T)/T = W(G).
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As noted above, YW(S) permutes the S-weight spaces V), and the irreducibility of
VIng(s) implies that this action is transitive. In particular, the S-weight spaces on V
are equidimensional. In fact, we claim that they are 1-dimensional. To see this, let d
denote the dimension of S and fix a basis {wy, ..., w,41} of W comprising S-weight
vectors. Then there exist integers ¢; j, 1 <7 <d,1 < j <n+ 1 such that

Cl,j C2‘j Cd,j
(sl,...,sd)-wjz(s1 sy sy )wj

for all (sg,...,sq) € (K*)d = Sandall 1 < j < n+ 1. Without loss of generality,
we may assume that the w; are ordered so that the d-tuples

L1y o sCld)s s (Catl1s oy Cngld) (6)

are in lexicographic order. (Note that these d-tuples are distinct since the S-weight
spaces on W are 1-dimensional.) Then wy A --- A wr € V is an S-weight vector of
weight

S Sipeni | Yigcai
Sl S2 Sd .

In view of the lexicographic ordering of the tuples in (6), it follows that this S-weight
has multiplicity 1, and this justifies the claim.

As previously observed, the irreducibility of V|y;s) now implies that W(S) <
Sym,, ;| is k-transitive, so to complete the proof of the proposition, it suffices to show
that YW(S) is not 2-transitive.

To see this, first let ¢ be the codimension of S in T and let X(7) = Z" and
X (S) = 7"~ be the corresponding character groups. The sublattice S+ is defined by

St={yeX()|yls=1}=Z°
and we set
_ 1 _ ol
XTMr=X(T)®zR, Sg=5 ®zR.

Now W(G) acts faithfully on X (T)gr, and W(S) = Ng(S)/T stabilizes the c-
dimensional subspace Sﬁ. Let P be the pointwise stabilizer of Sﬁ in W(G). By
[15, Corollary A.29], P is a parabolic subgroup of W(G) = Sym,, |, so it is a direct
product of smaller degree symmetric groups. In particular, P is intransitive. Finally,
we observe that YW(S) normalizes P (since it stabilizes kag), so the intransitivity of
P implies that WW(S) is either intransitive, or transitive and imprimitive. In particular,
W(S) is not 2-transitive. O

Proposition 5.6 Suppose H < M < G and (G, M, V) is the case labelled (iv) in
Table 6. Then V |y is reducible.

@ Springer



T. C. Burness et al.

Proof Here G = B,, and M = D,,.2, where n > 3 and p # 2. We have
H<M=D,2<G=8B,

and V = Vg()), where the highest weight 1 = >, a;; satisfies the conditions
recorded in Remark 4.4(e). This is the case labelled U, in [8, Table II]. In particular, we
note that a, = 1 and V|0 has exactly two composition factors, say V|0 = V1 @ V3,
where V; has highest weight p;, and

n—2

11 =" aini + an 11 + @1+ D,
i=1
n—2

o =" aini + @1+ D01+ ap_1nn.
i=1

(with respect to fundamental dominant weights {5y, ..., n,} for M 0= D,). As noted
in Remark 4.4(e), we may assume that a; # 0 for some i < n.

Seeking a contradiction, let us assume that V|g is irreducible, so H £ M 0 since
V|0 is reducible. Set Hy = H N M° and let J be a maximal subgroup of M that
contains Hy. Then H = H;.2 and the irreducibility of V| implies that V;|g, and
V2|, are irreducible, so V| and V|, are also irreducible.

We can now consider the irreducible triple (M 0, V1), which must be one of
the cases recorded in [3,4,17]. Given the conditions on A (in particular, the fact that
a, = 1 and a; # 0 for some i < n), it is easy to see that there are no compatible
examples in [3,4]. The only possible example in [17, Tablel] is the case labelled
IV/l, with J = B,_1,a = 1 and b # 0. However, we claim that the conditions
in this configuration are incompatible with those that are given in Remark 4.4(e).
Indeed, we have a,—1 = 0 and there is a unique k < n — 1 with g # 0. In case
IV} we have a; + n — k = O(modp) and the conditions in Remark 4.4(e) yield
2ar = —2(n — k) — 1(mod p). If both conditions hold, then p divides a; +n — k and
1 4+ 2a; + 2(n — k), so p divides 1 + a; + n — k. Clearly, this is impossible. |

Proposition 5.7 Suppose H < M < G and (G, M, V) is the case labelled (vi) in
Table 6. Then V | is reducible.

Proof Here G = C,,, M = qu.Z is a Cy-subgroup and A = A,_; + ak,, where
n=2m,0 < a < pand2a+ 3 = 0(modp). In particular, note that p # 2
and a < p — 1. Seeking a contradiction, let us assume that V| is irreducible. Set
MO = Ci = MM, (a direct product of two simply connected groups of type Cy,)
and let {w; 1, . .., ®; »n} be fundamental dominant weights for ;.

As recorded in [4, Table 4.2], we have V|0 = V| @ V2 where

Vi = VMI((Cl + l)a)l,m) & VMz (a)Z,m—l + awZ,m)
Vo = Vi (@1,m—1 +awim) @ Vi, ((a + Dz ).
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Set H; = H N MY and note that Hl0 =H%and H = H;.2. In particular, since V |y
is irreducible it follows that V| g, has exactly two composition factors, namely

Vig, = Vilg, @ V2lg,-

Note that H is a proper subgroup of M since we are assuming that H is disconnected
and non-maximal. Let ; : H; — M, be the i-th projection map and note that
ker(dmy) Nker(dm,) = 0 since Hj is a closed positive-dimensional subgroup of M 0

Claim. 71 (Hy) and 7> (H;) are infinite.

Seeking a contradiction, suppose that 71 (H) is finite, in which case my(Hp) is
infinite since H is positive-dimensional. The finiteness of 7 (H}) implies that dm; =
0, so ker(dmp) = 0 since ker(dm) Nker(dmp) = 0. Also note that ker(sr1) is a closed
subgroup of finite index in Hj, so Hl0 < ker(rr1) and thus 2| 4o : HY > M, is
injective.

Next we claim that 77, is surjective. Suppose otherwise. Then there exists a positive-
dimensional maximal subgroup J> of M; such that mo(H;) < Jo» < M. The
irreducibility of Vi|p, and V2 |g, implies that 2 (H) acts irreducibly on the K M-
modules with highest weights w2 ,,—1 + awz », and (a + 1)w2 ,,, SO we can consider
the irreducible triples

(M, o, Vi (02, -1 + awz ), (M2, J2, Vi, ((a + Dz ).

By inspecting [17, Table 1] we see that there are no compatible examples with J,
connected. Similarly, by applying the main theorems in [3,4], there are no examples
with J, disconnected. This is a contradiction, hence 7 is surjective.

It follows that o (H) = Ma, so ma|gyo : HY — M, is a bijective morphism.
Moreover, ker(d (2| 5o)) = 0 since ker(dmz) = 0, so d(m2|go) is an isomorphism of
Lie algebras and thus 75| ;0 is an isomorphism of algebraic groups. In particular, H°
is a simply connected group of type C,,. By Lemma 2.2 we may write ma|gzo = fy
for some x € H, where 1, is an inner automorphism (conjugation by x). In addition,
note that H < Ng(H®) = HCg(H®) and thus V|0 is homogeneous.

Let {n1,...,n,) be a set of fundamental dominant weights for H°. Then V| KO
has composition factors isomorphic to Vo (,—1 +anm) and Vyo((a + 1)1, ), which
contradicts the fact that V|go is homogeneous. We conclude that 1 (H}) is infinite,
and similarly 72 (H1) is also infinite.

Claim. 7 and 7, are surjective.

Seeking a contradiction, suppose 7 is not surjective. Since 1 (Hy) is infinite, there
exists a positive-dimensional maximal subgroup J; of M such that 7 (H;) < J; <
M and we can consider the irreducible triples

My, Ji, Vi, ((a + Dwr,y)), (My, J1, Vi (01,m—1 + awy p)).

As before, we find that there are no compatible examples, which is a contradiction and
thus 77; is surjective. An entirely similar argument shows that 7 is also surjective.
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By the previous claim, it follows that 7 (H% = M; fori = 1,2, s0 H is a
subdirect product of the direct product M° = M/ M,. By applying Lemma 2.5, noting
that H° < M°, we deduce that H? = M is diagonally embedded in M| M>, so we
may write

H = {(11(x), T2 (X)) |x € Spay, (K)},

where 7; : Sp,,,(K) — M, is a bijective morphism. By appealing to Lemma 2.2, we
may write ; = ty,0,; for some x; € H 0 and p-power g; (where 0y; is a standard field
automorphism), and once again we note that V| o is homogeneous. Note that at least
one g; is equal to 1 (since HY is a closed subgroup M?); without loss of generality we
will assume g = 1.

Let {n1, ..., nm} be a set of fundamental dominant weights for H°. Then

Vilgo = Vyo((@ + D) @ Vigo (-1 + anm)

and

Val o = Vigo (-1 + anm) 0 & Vyo((a + D),

so V| go has composition factors with highest weights

Nm—1+ ((a+ Dg1 +a)nm, qim—1 + (aq1 +a + Dny.

Since V|go is homogeneous, these highest weights must be equal and thus ¢; = 1.
Now p < a — 1 so the modules Vgo((a + 1)n,,) and Vgo(nm—1 + any,) are p-
restricted and thus Lemma 2.10 implies that V|40 is not homogeneous. This is a
contradiction. O

Proposition 5.8 Suppose H < M < G and (G, M, V) is the case labelled (viii) in
Table 6. Then V |y is reducible.

Proof Here G = D, and M = (Di.Z).Z is a Co-subgroup, where n = 2m, m > 3 is
odd and p = 2. Moreover, V = Vg(A) where A = A1 + A,_1 or A] + XA, (see Table
6); without loss of generality, we will fix A = A; + A,,—;. Seeking a contradiction, let
us assume that V| g is irreducible.

Write MY = D,Zn = MiM; and let {w; 1, ..., w;,} be fundamental dominant
weights for M;. Then [4, Table 4.2] indicates that V|0 = V1 & V2 @ V3 @ V4, where

Vi=Vu, (@11 +o1.m) ® Vi, (@2,m—1)
Vo = Vi (01,1 + 01,m—1) ® Vi, (02,m)
V3 = Vi (01,m—1) ® Vi, (02,1 + w2,m)
Vi = Vi (@1,m) ® Vg, (02,1 + w2,m—1)

Set Hy = H N MY and note that Hl0 = HO and |H : Hi| = 4. Indeed, H/H]| is
isomorphic to a subgroup of M/M° and thus |H : H;| < 4, but V|u, has at least
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four composition factors and thus the irreducibility of V |y implies that |H : Hy| = 4.
Therefore, V |y, has exactly four composition factors, namely

Vig, = Vilg, @ Valy, @ Vily, @ Valn,-

In order to proceed as in the proof of the previous proposition, we need to slightly
modify our set-up. Indeed, G is the simply connected group of type D,, so M? =
M/ M, is a central product of spin groups of type D,,. Since the K M°-module W lifts
to a representation p : L — GL(W), where L = LL» is the direct product of two
simply connected groups of type D,,, we have M® = L/Y where Y = ker(p). In
particular, there exist subgroups R < Ry < L such that H] = R;/Y and HY = R/Y.
Note that Hl/HO = Ri/R and RY = R?. Let m; : Ry — L; be the i-th projection
map and note that ker(dm) Nker(dm,) = 0 since R is a closed positive-dimensional
subgroup of L.

The K M°-module Vi lifts to arepresentation p; : L — GL(V;), so we can consider
Vi g, . The irreducibility of V;|y, implies that V;|g, is also irreducible, whence 1 (R1)
is irreducible on each of the K L|-modules

Vi (w11 +o1,m), V(o1 +o1,m—1), Vi (@im-1), Vi, (01,), ()

and similarly 7> (Ry) is irreducible on the K Ly-modules

Vi,(@m—1), Viy(@2m), Vi,(w21+w2m), Vi,(w21+w3m-1). (8)

Claim. w1 (R;) and > (R;) are infinite.

We proceed as in the proof of Proposition 5.7. Suppose 71 (R7) is finite. Then
72 (Ry) is infinite, ker(dm,) = 0 and R(l) < ker(mry), soma|go : R — Lis injective.

Suppose 3 is not surjective. Then there exists a positive-dimensional maximal
subgroup J, of Lj such that m>(Ry) < J» < L, and we can consider the irreducible
triples (L2, J2, U) for the four K L>-modules U in (8). By applying the main theorems
of [3,4,17] we find that there are no compatible examples (note that in the case labelled
IV/ in [17, Table 1], we require the parameters to be @ = b = k = 1, hence the given
congruence condition implies that m is even, which is false). This is a contradiction,
hence m; is surjective.

It follows that 72(RY) = L and m|go : R® — L, is a bijective morphism.
Furthermore, ker(d (72| z0)) = 0 so d(m2|go) is an isomorphism and thus 3| o is an
isomorphism of algebraic groups. In particular, R is simply connected of type D,,. By
Lemma 2.2, we may write 12| po = txyk forsomex € R%and integer k € {0, 1}, where
y is an involutory graph automorphism (note that m # 4, so a triality automorphism
does not arise here). Now H < Ng(H") induces algebraic group automorphisms
of HO that permute the K R%-composition factors of V, so V| go has the following
homogeneity property:

Either V|go is homogeneous, or the homogeneous components of V|po are
conjugate under an involutory graph automorphism of R.

&)
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Let {n1, ..., nn} be fundamental dominant weights for R®. Then V| o has compo-
sition factors isomorphic to Vo (1), Vigo (7m), Vgo (1 + 1) and Vigo (1 + 1),
but this is incompatible with (9). Therefore 1 (R1) is infinite, and similarly 7> (R]) is
also infinite.

Claim. 7y and 7y are surjective.

Suppose 1 is not surjective. Then there exists a positive-dimensional maximal
subgroup Ji of L such that 71 (R;) < J; < L and we can consider the irreducible
triples (L1, Ji, U) for the four K Li-modules U in (7). We have already noted that
there are no compatible examples and thus 7y is surjective. Similarly, 75 is surjective.

We have 7; (R%) = L; fori = 1,2, so R is a subdirect product of L = L{L> and
thus Lemma 2.5 implies that either R® = L, or R” = L is diagonally embedded in
LiLy. If RO = L then H? = MY and the irreducibility of V|g implies that H = M,
which is false. Therefore R is diagonally embedded, so

R = {(11(x), 12(x))|x € Spin,,, (K)}

and 7; : Spin,,, (K) — L; is a bijective morphism. In particular, we may write
T =y aql.yki for some x; € R?, p-power g; and k; € {0, 1} (see Lemma 2.2). Again,
we observe that (9) holds. Since RV is a closed subgroup of L, it follows that at least
one ¢; is equal to 1. We may assume g = 1.

Let {51, ..., nm} be a set of fundamental dominant weights for R?. By considering
the restriction of V to R?, we deduce that V;| o has a composition factor with highest
weight p; as follows:

(k1. k2) M2 M3 4

0,0) qini + Nm—1+ q10m am + @ lm—1 + Nm N+ qim—1 + m N1+ Mm—1 + q17m
(1,0) qim + (g1 + Dnm—1 qim + (g1 + Dnm N+ (g1 + Dnm N+ (g1 + Dnm—1
O, qim + (g1 + Dnm am + (@1 +Dnm—1 m+ (@1 +Dnm—1 m + (g1 + D

D

qim + qilm—1 + Nm

g1+ Nm—1 + q10m

N+ Nm—1 + q10m

M+ gilm—1 + m

In view of (9), we deduce that g; = 1 in all four cases. By applying Lemma 2.10 it
follows that V| o is not homogeneous. More precisely, (1 affords the highest weight
of a composition factor of V1| o and if v is the highest weight of any other composition
factor of Vi|po, then v # p; and v < 1. However, in view of Lemma 5.4, this is
incompatible with (9). O

Proposition 5.9 Suppose H < M < G and (G, M, V) is the case labelled (ii) in
Table 6. Then V| is reducible.

Proof Here G = A, and M = A%,,Z is a C4(ii)-subgroup, where n = m(m + 2),
p # 2and m > 2. Moreover, V = V(1) and A = A, or A,_1. By duality, we may
assume that V = Vg (ko) = AZ(W). Seeking a contradiction, let us assume that V |y
is irreducible.
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Write M = A2, = MM, and note that this is a central product. Let {w; 1, .. .,
;i m} be fundamental dominant weights for M;. As recorded in [4, Table 6.2], we have
Viyo = V1 @ Vo, where

Vi=Vu(@12) ® Vi, 2an1), Vo = Vi, Qwi1) @ Vi, (@2,2).

Set H; = H N M° and note that Hlo = HY% and H = H,.2. Since V| g is irreducible
it follows that V|, has exactly two composition factors, namely

Vig, = Vilg, @ V2ly,-

Note that H° < MO since H is disconnected and non-maximal.

As in the proof of Proposition 5.8, we need to modify this initial set-up in order to
proceed as we did in the proof of Proposition 5.7. Since W is a K M°-module, it lifts
to a representation p : L — GL(W), where L = LL> is the direct product of two
simply connected groups A,, = SL,,+1(K). Then M = L/Y, where Y = ker(p),
and so there exist subgroups R < R; < L such that H; = R;/Y and H? = R/Y.
Note that Hl/H0 = R1/R is finite, so RO = R?. Let m; : Ry — L; be the i-th
projection map and observe that ker(dm1) N ker(dmy) = 0.

Since the K M°-module V; lifts to a representation p; : L — GL(V;), we can
consider the restriction of V; to Ry. The irreducibility of Vi|g, and V|g, implies
that Vi |g, and V2 |g, are also irreducible, whence 71 (Ry) is irreducible on the K L-
modules Vy,(w1,2) and Vi, (2w1,1), and m2(Ry) acts irreducibly on Vi, (2w, 1) and
Vi, (@2,2).

Claim. w1 (R;) and > (R;) are infinite.

We proceed as in the proof of Proposition 5.7; the details are very similar. Suppose
that 771 (R}) is finite, so ker(dmp) = 0. Then 7 (R) has to be infinite since H (and
thus Hi, and also R) is infinite. Since ker(sr;) < R has finite index, it follows that
RY < ker(ry) and thus 7| go : R® — L is injective.

Suppose > is not surjective. Then there exists a positive-dimensional maximal
subgroup J> of L such that mp(R;) < Jo < Ljy. As noted above, m2(R7) acts
irreducibly on Vi, (2w; 1) and Vi, (w2,2), so we may consider the irreducible triples
(L2, J2, Vi,(2wy,1)) and (Lo, J2, Vi, (w2,2)). Inthe usual way, by inspecting [3,4,17],
we deduce that there are no compatible examples, whence 7> is surjective.

Therefore 715(RY) = L, and thus m|go : R® — L; is a bijective morphism.
Moreover, ker(d(m2|g0)) = 0 so d(mw2|go) is an isomorphism and thus 72|go is an
isomorphism of algebraic groups. By Lemma 2.2, we can write w2 | go = # y* for some
x € R? and integer k € {0, 1}, where y is a graph automorphism. Note that (9) holds.

Let {n1, ..., nm} be a set of fundamental dominant weights for RO. Then V| go has
composition factors isomorphic to Vzo(2n1) and Vzo(12) if k = 0, and Vo (27,,) and
Vgo(nm—1) if kK = 1. But the corresponding highest weights are incompatible with (9),
so we have reached a contradiction. We conclude that 771 (R1) is infinite, and similarly
72 (Ry) is also infinite.
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Claim. w1 and m; are surjective.

Suppose mp is not surjective. Then there exists a positive-dimensional maximal
subgroup Ji of L such that 71 (R;) < J; < L1 and we can consider the irreducible
triples (L1, J1, V1, (2wi1,1)) and (L1, J1, Vi, (w1,2)). As above, there are no compat-
ible examples and thus 71 is surjective. An entirely similar argument shows that 7> is
also surjective.

Now ni(RO) = L; fori = 1,2, so RY is a subdirect product of L = L{L, and
thus Lemma 2.5 implies that R = L, is diagonally embedded in L{L, (note that
H® < MY, so RY < L). Therefore

RY = {(r1(x), 2(x))|x € SLys1(K)},

where 7; : SL,,+1(K) — L; is a bijective morphism. As before, we may write
T =1y crqiyki for some x; € RO, p-power g; and k; € {0, 1}. Note that (9) holds. As
before, we may assume that g = 1.

Let {n1, ..., nm} be a set of fundamental dominant weights for RY. Now Vigo =
Vilgo @ V2| go and we calculate that V| zo has composition factors with the following
highest weights w1 and pa:

(k1 k2) 1 "2

0,0 21 +q1m 2q1n1 +m
(1,0) 201 + 91Mm—1 m +2q10m
0, 1) q1m2 + 2nm 29101 + Nm—1
(1, 1) q1Mm—1 + 2nm Nm—1~+ 2q11m

In all four cases, (9) implies that g1 = 1.

Now V| o is non-homogeneous by Lemma 2.10. More precisely, V1| go has a com-
position factor of highest weight 1 as in the table (with g; = 1), occurring with
multiplicity 1. If v denotes the highest weight of any other composition factor of
Vilgo,thenv # pypandv < g (sopu; —v = Zi c;a; for some ¢; € Ny). Therefore,
Lemma 5.4 implies that V|zo does not satisfy the homogeneity condition in (9) and
this final contradiction completes the proof of the proposition. O

Proposition 5.10 Suppose H < M < G and (G, M, V) is the case labelled (iii) in
Table 6. Then V | is reducible.

Proof Here G = A,,, V = Vg(A) with 1 < k < n,and M = D,,.2 is a Cg-subgroup
withn = 2m — 1, m > 2 and p # 2. Let {n1,..., nxu} be a set of fundamental
dominant weights for M? = D,,. There are three separate cases to deal with here,
depending on the value of k (by duality, we may assume that 2 < k < m):

(@) k = m: V]yo = Vi @ V3 is reducible, where V| and V, have highest weights
20m—1 and 2n,,, respectively (see [4, Table 3.2]).

(b) k = m — 1: V|,,0 is irreducible, with highest weight n,,_1 4+ n,, (see case Is in
[17, Table 1]). Note that m > 3.
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(c) 2 <k <m — 1: Vo is irreducible, with highest weight n; (see case I4 in [17,
Table 1]). Note that m > 4.

Seeking a contradiction, let us assume that V |y is irreducible.
First assume that (a) holds. Note that H £ MY since V| o 1s reducible. To begin
with, let us assume m = 2. Here G = A3 and HO < M% = A A4, so

HY € (15, Ay, A\ Ty}

(recall that H? is reductive; see Lemma 2.7). Also note that V = A%(W), where W
is the natural K G-module. We claim that H = Aj. To see this, suppose S < H 0
is a central torus. Then H < Ng(S) and thus the set of fixed points of S on V is
H -invariant. But S lies in a maximal torus of MY, which has nontrivial fixed points
on V, so this contradicts the irreducibility of V|g. This justifies the claim. Therefore

H < Ng(H®) = H'CG(H?)

and thus V| o is homogeneous.

By considering the possible embeddings of H? in MY, it follows that W| o is the
two-fold tensor product U @ U, where U is the natural K H O_module. Hence, W|go =
W1 @ W3, where Wi = Vgo(2w) and W2 = Vo (Ow) is the trivial irreducible K H 0.
module (here w is the fundamental dominant weight for H 0. Since dim W; # dim W
we deduce that W|y,. g0y is reducible and thus Ng (H 0 lies in a parabolic subgroup
of G. This contradicts the irreducibility of V.

Now assumem > 3.Set H; = HNM°andnote that H = H;.2,s0V | #, has exactly
two composition factors, namely Vi|g, and V2 |g,. Note that Hy < M 0 Since we are
assuming that H is disconnected and non-maximal. Let J be a maximal subgroup of
MPO that contains H, so we have

H=HnNM’<J<M’=D,,.
We consider the irreducible triples (MO, J, Vi) and (MO, J, Vp), where V| =

Va0 (2nm—1) and Vo = Vy30(2n,,). By inspecting [17, Table 1], and using the main
theorems of [3,4], we deduce that J = B, is the only possibility and

Vily = Valy =V, 2&m—-1)

(where {&1, ..., &,—1} are fundamental dominant weights for B,,_1); see case [V in
[17, Table 1]. Note that if H; = J = B,,_ then the two K H 0-composition factors of
V]go (namely Vi|go and V2| go) are isomorphic, but this is ruled out by Proposition
2.9. Therefore H is a proper subgroup of J, so let L be a maximal subgroup of J that
contains Hj, in which case

H=HNM°<L<J=8,_ <M’=D,.
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We now consider the irreducible triple (J, L, Vg, _,(2&,,—1)). In the usual way, by
inspecting [3,4,17], we deduce that there are no compatible configurations and this
completes the analysis of case (a).

Next consider case (b). First assume H < M. Since we are assuming H is discon-
nected and non-maximal, it follows that H < J < M9 for some maximal subgroup
J of MY, and we may consider the irreducible triple (MO, J, Voo (Mm—1 + nm)). By
inspecting [3,4,17], it is easy to check that there are no compatible examples. In the
same way, we deduce that H £ M 0in case (c).

Finally, let us consider cases (b) and (c), with H ¥ MP. Let J be a maximal
subgroup of M = D,,.2 such that

H<J<M=D,2=GOW).

Note that J is disconnected, and J is either geometric or non-geometric (as described
in Sect. 3.2). Given the highest weight of V|40, we can rule out the latter possibility by
applying [3, Theorem 3], so we may assume J is geometric. (Note that we can appeal
to [3, Theorem 3] since V|0 is irreducible.) The possibilities for J are determined
in Proposition 3.2 and they are listed in Table 4. We now apply Proposition 3.3,
which implies that V| is reducible. This final contradiction completes the proof of
the proposition. O

Proposition 5.11 Suppose H < M < G and (G, M, V) is one of the cases labelled
(ix) or (xiii) in Table 6. Then V | g is reducible.

Proof First consider the case labelled (xiii). Here G = Dg, M = C%.Z is a C4(ii)-
subgroup, p # 5 and V = Vs (17). Seeking a contradiction, let us assume that V |y
is irreducible. We proceed as in the proof of Proposition 5.8.

Write M® = M M>, which is a central product of two simply connected groups
of type C», and let {w1,1, w1 2} and {wy,1, w22} be fundamental dominant weights for
M and M, respectively. As recorded in [4, Table 6.2], we have V|0 = Vi & V2,
where

Vi=Vu(01,1) @ Vi, (02,1 +@22), Vo2 =V (w11 +w12) @ Vg, (w2,1).

Set H = HNM° so H = H;.2 and HY = HO. Since V| g is irreducible it follows
that V| g, has exactly two composition factors, namely Vi|g, and V2|p,.

The K M°-module W lifts to a representation p : L — GL(W), where L = L1L,
is a direct product of two simply connected groups of type Ca, so M = L/Y where
Y = ker(p). Since H® < H; < MO, there exist subgroups R < Ry < L such
that Hy = R;/Y and HO = R/Y. Note that RO = R?. Let 7; : Ry — L; be the
i-th projection map and observe that ker(dm) N ker(dmp) = 0. Since the K MPO-
module V; lifts to a representation p; : L — GL(V;), we can consider V;|g,. The
irreducibility of V; |y, implies that V;|g, is also irreducible, so we deduce that 71 (R)
acts irreducibly on the K L{-modules Vi, (@1,1) and Vi, (w11 + w1 2), and similarly,
w2 (Ry) is irreducible on Vi, (w2,1) and Vi, (w21 + w2,2).
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Claim. 1 (Ry) and m(R1) are infinite.

We proceed as in the previous cases. Suppose 71 (R1) is finite. Then w2 (Ry) is
infinite, ker(dmy) = 0 and R(l) < ker(7ry), so 2| po ¢ RY = L,is injective.

Suppose 13 is not surjective. Then there exists a positive-dimensional maximal sub-
group J> of Ly suchthatm, (R1) < Jo < L2, and we can consider the irreducible triples
(L2, J2, Vi, (@2,1)) and (L2, J2, Vi, (w2,1 + @2,2)). By inspecting [3,4,17] we find
that there are no compatible examples, which is a contradiction and thus 7> is surjec-
tive. Therefore nz(R(l)) = Ly and thus | po : RY — L, is abijective morphism. Since
ker(d(m2|g0)) = 0 we deduce that 72| o is an isomorphism of algebraic groups, so by
Lemma 2.2 we can write 2| go = £, for some x € RO.If {n1, n2} is a set of fundamen-
tal dominant weights for R, then V| g0 has composition factors isomorphic to Vo (11)
and Vo (11 + 12), but V| zo is homogeneous since Ng(H®) = HC;(HY), so this is
a contradiction. We conclude that 771 (Ry) is infinite, and similarly 7> (R1) is infinite.

Claim. w1 and m; are surjective.

Suppose 1 is not surjective. Then there exists a positive-dimensional maximal
subgroup J1 of L such that 71 (R;) < J; < L1, and we can consider the irreducible
triples (L1, Ji, Vi, (@1,1)) and (L1, Ji, V,(@1,1 + w1,2)). As noted above, there are
no compatible examples, so 771 must be surjective and an entirely similar argument
shows that 75 is also surjective.

We have ni(RO) = L; fori = 1,2, so RY is a subdirect product of L = L{L> and
thus Lemma 2.5 implies that either R® = L, or R® = L, is simply connected and
diagonally embedded in L. If R® = L then H® = M and thus H = M (since H is
disconnected), which is false. Therefore, R® = L is diagonally embedded and thus

R = {(t1(x), 2(x))|x € Spy(K)}

where each 7; : Sp,(K) — L, is a bijective morphism. By Lemma 2.2 we may write
T = txl.oql.yki for some x; € RO, p-power ¢; and k; € {0, 1}, where y is a graph
automorphism of C; if p = 2, otherwise y = 1. We may assume that g» = 1. Since
Ng(H®) = HOCi (HY), it follows that V| go is homogeneous.

As above, let {n1, n2} be a set of fundamental dominant weights for RY. First
assume that p # 2, so (k1, k2) = (0,0). Then V|zo has composition factors with
highest weights (g1 4+ 1)n1 + 12 and (g1 + 1)n1 4+ 112, and the homogeneity of V| zo
implies that g; = 1. But Lemma 2.10 implies that V| zo is non-homogeneous, so we
have reached a contradiction.

Now assume p = 2. Here V| zo has composition factors with highest weights 1t
and w, as follows:

(k1, k) 23 %)

(0,0) (g1 +Dny+m (g1 + Dn1 +q1m2
(1,0) n +2(g1 + D (g1 + Dn1 +q1m2
0, 1) (g1 +Dny+m qim1 +2(g1 + Dmz
(1,1) N +2(q1+Dm qin1 +2(q1 + Dm

Since V| o is homogeneous, we deduce that k; = k> and g1 = 1.
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If (k1, k) = (0, 0) then Vi|go = Vzo(n1) ® Vgo(n1 + n2) and thus Lemma 2.10
contradicts the homogeneity of V| zo. Similarly, if (kq, k2) = (1, 1) then

Vilgo = Vgo(2112) @ Vigo (1 + 2112) = Vo (12)? ® Vgo (1) @ Vigo (172)@
= (Vgo(m2) ® Vigo(m2)® ® Vigo (1)

Now Vgzo(12) ® Vzo(n2) has composition factors with highest weights 21, and 27,
whence Vi|zo has composition factors with highest weights 7 + 41, and 57;. This
final contradiction completes the analysis of case (xiii) in Table 6.

The case labelled (ix) is similar (and easier). Here G = By, V = Vg(A4) and M =
Blz.2 is a C4(ii)-subgroup, where p # 2, 3. The connected component M® = M M,
is a central product of two simply connected groups of type B, and we note that

Vipgo =Vi® Vo = (Vi (01) ® Vi, Bw2)) & (Viy, Bw1) @ Vi, (@2))

(see [4, Table 6.2]), where w1 and w; are fundamental dominant weights for M and
M>, respectively. We leave the remaining details to the reader. O

5.2 Proof of Theorem 5.1, part II

In order to complete the proof of Theorem 5.1, it remains to deal with the cases labelled
(vii), (x), (xi) and (xii) in Table 6.

Remark 5.12 Suppose that V |y is irreducible, where H < M < G and (G, M, V)
is one of the cases (x), (xi) or (xii). Here M is the normalizer of a tensor product
decomposition W = W) ® --- ® W; of the natural K G-module, with t = 3 or 4.
Therefore, by combining Lemma 5.3 with our earlier work in Sects. 4 and 5.1, we
deduce that W|go is irreducible. Indeed, if W | o is reducible then Lemma 5.3 implies
that we may replace M by some other geometric maximal subgroup of G that does
not normalize such a decomposition, in which case our earlier work implies that V |y
is reducible.

In order to deal with cases (x) and (xi), we first establish some preliminary reduc-
tions.

Lemma 5.13 Let G = Cqand let H < G be a closed positive-dimensional subgroup
that is contained in a C4(ii)-subgroup M = C13.Sym3 of G. Set V.= Vg (A), where
r=Xyand p #2, orr = Azand p # 3.1f Vg is irreducible, then H® is a subdirect
product of M = Cf.

Proof Here MY = C? = M| M,Mj3 is a central product of three simply connected
groups of type C. Let w; be the fundamental dominant weight for M;, and note that

Viyo =V1 & V2 @ Vs, (10)
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where
Vi = Vi, Qi) ® Vi, Qwz) @ Vi, (0w3)
Vo = Vi, Qi) @ Vi, 0w2) ® Vi, 2ws) (11)
V3 = VM] (Oa)l) & VMZ (26()2) ® VM3 (2(03)

if A = Ay, and

Vi = Vi (@1) ® Vi, (@2) @ Vi Bws)
Vo = Vi (@1) @ Vi, Bwz) ® Vi (w3) (12)
V3 = VM1 Bw1) ® VM2 () ® VM3 (w3)

if A = A3 (see [4, Table 6.2]). As noted in Remark 5.12, the irreducibility of V|y
implies that W| o is irreducible, where W denotes the natural K G-module.

As a KM°-module, W lifts to a representation p : L — GL(W), where L =
L1L,Lj is the direct product of three simply connected groups of type C;. Then
M® = L)Y, where Y = ker(p), and there exists a subgroup R of L such that H 0=
R/Y.

We need to show that RV is a subdirect product of L. Note that the irreducibility of
W | go implies that W|po is also irreducible. Set J = [RO, RO] and recall that HY is
reductive (see Lemma 2.7), so R is reductive and thus

Je{C3, C?, Cy, 1)

IfJ = Ci% then we are done, so assume otherwise. If J = 1 then RY is a torus,
contradicting the irreducibility of W|go. Finally, suppose J = Cl2 or Cy. Since R°
is the product of J and a central torus, the irreducibility of W/|zo implies that W|;
is irreducible. This immediately implies that the projection maps 7; : J — L; are
surjective, so R is a subdirect product of L as required. O

Lemma 5.14 Suppose H < M < G and (G, M, V) is the case labelled (x) in Table
6, where V.= Vg(A2) and p # 2. If V |y is irreducible, then H* = M°.

Proof As in the previous lemma, G = C4 and MO = Cf = MM, M5 is a central
product of simply connected groups of type Ci. Define L = L{L>L3, Y and R as
above, so Y < Z(L), M = L/Y and H” = R/Y. Note that V|0 = Vi ® Vo & V3,
where the V; are given in (11). Also recall that the irreducibility of V |y implies that
W] yo is also irreducible (see Remark 5.12).

By Lemma 5.13, R is a subdirect product of LL,L3, so Proposition 2.6 implies
that R? is isomorphic to a commuting product of simple groups of type Cy. If R? is
ofztype C13 then H® = MY and we are done, so let us assume that R is of type C; or
Cr.

1Suppose RV is of type C;. Let n; be the fundamental dominant weight for R?. By
Proposition 2.6, R® = L is simply connected and diagonally embedded in L, so we
may write

RY = {(11(x), T2(x), T3(x))|x € Sp,(K)}

@ Springer



T. C. Burness et al.

where 7; : Spy(K) — L; is a bijective morphism. By Lemma 2.2, ; = 1,04
for some x; € R and p-power ¢;, and we may assume that g3 = 1 (since R is
a closed subgroup of L). Then V|go has composition factors with highest weights
2q1 + 2g2)n1, 2q1 + 2)n and (2g2 + 2)n;. Since V|go is homogeneous (note
that Ng(H®) = HCs(H?)), it follows that g; = g» = 1. But now Lemma 2.10
contradicts the homogeneity of V| go.

Finally, let us assume that RY = R|R, is of type Clz. Let {n1, n2} be fundamental
dominant weights for R®. Once again, Proposition 2.6 implies that R; and R, are
simply connected groups of type Ci, and without loss of generality we may assume
that

Ry ={(t1(x), I, Dlx € Spo(K)}, Ry = {(1, 22(x), 13(x)) |x € Spy(K)}

where 7; : Sp,(K) — L, isabijective morphism. As before, we may write t; = fy,;0y;,
so V| go has composition factors with highest weights

2g1m + 2q2m2,  2g1m + 2q3m,  2(q2 + g3)n2. (13)

Since R is a closed subgroup of L, at least one ¢; is equal to 1. By considering
N (HY), itfollows that V| o is either homogeneous, or the homogeneous components
of V| ro are conjugate under an involutory automorphism of R interchanging R and
R>. However, this observation is incompatible with the weights recorded in (13). This
is a contradiction. O

The next lemma gives an analogous reduction for V = V(13) in case (x) in Table
6. Note that we include the additional case p = 2, which will be needed in Propositions
5.17 and 5.19.

Lemma 5.15 Suppose H < M < G with G = C4, M = C1 Sym3 and p # 3. Set
V = Vg (A3) and assume that V| is irreducible. Then H° = M°.

Proof This is entirely similar to the proof of Lemma 5.14, and we omit the details. In
particular, we note that there are no additional difficulties when p = 2. O

We are now in a position to settle cases (x) and (Xi).

Proposition 5.16 Suppose H < M < G and (G, M, V) is the case labelled (x) in
Table 6, s0 G = Cy4, M = C1 Symy and V. .= Vg (L), where . = Ay or A3. Then Vg
is irreducible if and only if H = C3 Z3.

Proof If V| is irreducible, then Lemmas 5.14 and 5.15 imply that H° = M°. There-
fore, H transitively permutes the V; in (10), so H/H® < Symj is transitive. Since
H < M, we conclude that H = C %.23 is the only possibility. O

Proposition 5.17 Suppose H < M < G and (G, M, V) is the case labelled (xi)
in Table 6, so G = D4y, M = C?.Sym3, p =2andV = Vg(L), where A €
{A1 4+ Ag, A3 + Ag}. Then V |y is irreducible if and only if H = C%.Z3.
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Proof Write M* = C3 = M;M>Mj3 and let »; be the fundamental dominant weight
for M;. Note that

H<M=C;.Symy <G =Dy <N =Cy.

Suppose that V| is irreducible.

First consider the case A = A3 + A4. Here V|0 = V1 @ V2 @ V3 and (12) holds
(see [4, Table 6.2]). Let {&1, &2, &3, &4} be fundamental dominant weights for N. Since
V is the restriction of the K N-module Vy(&3) to G (see the case labelled MRy in
[17, Table 1]), Lemma 5.15 implies that H® = MY and thus H = Cf.Z3 is the only
possibility. An entirely similar argument applies if A = X; + A4, and once again we
deduce that H = C13.Z3. O

To complete the proof of Theorem 5.1 it remains to consider cases (vii) and (xii)
in Table 6. First we establish an important reduction for case (vii).

Lemma 5.18 Suppose H < M < G and (G, M, V) is the case labelled (vii) in Table
6,50G=C,,M =D,2 p=2and ) = Zl 11 airi. If Vg is irreducible, then
n=4x=2rand H < M°.

Proof Here M = D,,.2 is a Cg-subgroup of G, where G = C,,, n > 2 and p = 2.
Set V. = Vg(A) and let {n1, ..., n,} be a set of fundamental dominant weights for
M° = D,. We have ) = > 11 a;A; and V|0 is irreducible with highest weight

n—2

=" ani + ap1(n-1 + 1)
i=1

(see case MRy in [17, Table 1]).

Note thatn > 3 since we are assuming that A is nontrivial, p-restrictedand V # W.
Suppose that V |y is irreducible.

First assume H £ M°. As in the proof of Proposition 5.10, let J be a maximal
subgroup of M = D,,.2 = GO(W) containing H. Then J is disconnected, (M, J, V)
is an irreducible triple, and V|0 = Vy,0(u). By applying [3, Theorem 3], we deduce
that J is a geometric subgroup of M, so the possibilities for J are listed in Table 4. By
applying Proposition 3.4, we conclude that V| is reducible, which is a contradiction.

Now suppose H < M. Let J be a maximal subgroup of M containing H (note that
H < MO since we are assuming H is disconnected). Then V|; is irreducible and we
can consider the possibilities for the irreducible triple (M°, J, V| u0). By inspecting
[3,4,17], given the highest weight of V|;,0, we quickly deduce that n = 4 is the
only possibility (note that if n = 3 then the highest weight of V|,,0 has at least two
non-zero coefficients and it is easy to check that there are no compatible examples),
J = Cf.Sym3 is a C4(ii)-subgroup of M® = Dy and Vipgo = Vyo(n3 4 n4), so
A= A3. |

Proposition 5.19 Suppose H < M < G and (G, M, V) is the case labelled (vii) in
Table 6,50 G = C,, M = D,,.2, p =2 and A = Z"_ll ajAi. Then V |y is irreducible
ifand only ifn = 4, . = A3 and H = C3.Z3 or C;.Syms.
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Proof Suppose that V| is irreducible. By the proof of the previous lemma, n = 4,
A = Az and

H<J=C;.Sym; <M°=Dy <G =Cy.

In addition, if {5, ..., n4a} are fundamental dominant weights for M 0 — Dy, then
Viyo = Vyo(ns + na). Therefore, we have now reduced the problem to the case
numbered (xi) in Table 6, which was handled in Proposition 5.17. In particular, we
conclude that H = Cf.Zg or C13.Sym3, as required. O

Remark 5.20 Asnoted in Remark 5.2, Proposition 5.19 implies that V| g is irreducible
in case (v) if and only if G = By, p =2, > = A3 and H = B;.Z3 or B;.Syms.

To complete the proof of Theorem 5.1, it remains to deal with the case labelled (xii)
in Table 6.

Proposition 5.21 Suppose H < M < G and (G, M, V) is the case labelled (xii) in
Table 6, so G = Dg, M = C‘l‘.Sym4, p #3andV = Vg(A), where A = Ay. Then
Vg is irreducible if and only if H = Cf.X, where X < Symy is transitive.

Proof Write MO = Ci‘ = MM, M3My, which is a central product of simply con-
nected groups of type C1, and let w; be the fundamental dominant weight for M;. Then
[4, Table 6.2] indicates that V|0 = V1 @ Vo @ V3 @& V4, where

Vi = Vu(@1) @ Vi, (@02) ® Viyy (03) @ Vi, Bws)
Vo = Vi (1) @ Vi (@2) ® Vg, Bws) @ Vi, (w4)
V3 = Vi (@1) @ Vi, Bwr) ® Vs (w3) @ Vi, (w4)
Vi = Vi, Bwr) @ Vi, (@2) ® Vs (w3) @ Vi, (w4)

(14)

Assume that V| g is irreducible, so W| o is also irreducible (see Remark 5.12), where
W is the natural K G-module.

Since W is a K M°-module, it lifts to a representation p : L — GL(W), where L =
L1L>L3Ly is the direct product of simply connected groups of type C. Then M? =
L/Y,where Y = ker(p), and there exists a subgroup R of L such that H = R/ Y.

Claim. HY is a subdirect product of M°.

We need to show that R is a subdirect product of L. To do this, we proceed as
in the proof of Lemma 5.13; the argument is very similar (using the irreducibility of
W] o) and we omit the details.

Claim. H® = M°.

Since RV is a subdirect product of L, Proposition 2.6 implies that R is isomorphic
to a commuting product of simply connected groups of type C;. If R is of type C f
then H = MY, so we may assume that R is of type Ci, C12 or Cf.

Suppose R is of type Cj. Let 1 be the fundamental dominant weight for R%. By
Proposition 2.6, we may write

R% = {(t1(x), T2 (x), 3(x), T4 (x)) |x € Sp,(K)},

@ Springer



On irreducible subgroups of simple algebraic groups

where 7; : Sp,(K) — L; is a bijective morphism. As before, Lemma 2.2 implies that
T; = ty;04,; for some x; € R? and p-power ¢;, and we may assume that g4 = 1. Then
V| go has composition factors with highest weights

(@1 +q2+q3+3)n, (g1 +q2+3g3+ Dn,
(q1+3q+q3+ Dn, (Bq1+q2+q3+ Dn.

Since NG (H®) = HCg (HY), it follows that V| go is homogeneous, so ¢; = 1 for all
i. But Lemma 2.10 implies that V| go is non-homogeneous, so we have reached a con-
tradiction. Note that if p = 2 then one of the tensor factors in V;| o is non-restricted,
but we can still argue as in the proof of Lemma 2.10 by considering the tensor product
of the restricted factors.

Next suppose RY = R R, where each R; = Cj is simply connected. Let {1, 12}
be fundamental dominant weights for R®. In view of Proposition 2.6, we may assume
that either

Ry ={(t1(x), 1, 1, )|x € Sp,(K)},

15)
Ry = {(1, 2 (x), 13(x), 4 (%)) |x € Spy(K)}

or

Ri = {(z{(x), (%), 1, DIx € Spy(K)},

, , (16)
Ry = {(1, 1, 13(x), 74 (x))|x € Spy(K)}

where 7;, ri’ are bijective morphisms from Sp, (K) to L;. Note that V| go is either homo-
geneous, or the homogeneous components of V| o are conjugate under an involutory
automorphism of R that interchanges R; and R».

First assume (15) holds. As above, we may write 7; = ty;0,, 50 V| go has composi-
tion factors with highest weights 111 + (g2 +¢3 +3g4)m2, g1 + (g2 + 393 +q4)n2,
q1m + Bg2+q3+qa)n> and 3q1 11 + (g2 + g3 +q4)n2, and at least one g; is equal to 1.
But this contradicts the above homogeneity properties of V| go. Similarly, suppose (16)
holds and write 7/ = 10! where at least one g/ is equal to 1. Then V| o has composi-
tion factors with highest weights (q1 +¢5)m +(q5+3q,)n2. (g1 +g5)n1+Ba5+q4)n2,
(¢ +3q3)m + (g5 + q))n2 and (3q] + g5)n1 + (g5 + 3g4)n2, and we deduce that
g/ = 1for all i. Then V|zo has composition factors with highest weights 211 + 41
and 2711 + 21, but once again this is incompatible with the observed homogeneity
properties of V| go.

Finally, let us assume RY =R, RoR3 is of type C13. Let {n1, n2, n3} be fundamental
dominant weights for R?. In view of Proposition 2.6, we may assume that

Ry = {(t1(x), 2(x), 1, DIx € Spy(K)}
Ry ={(1, 1, 3(x), D)|x € Spy(K)}
Ry ={(1, I, I, 74 (x))|x € Spy(K)}
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where 7; = 1,04 as above. Note that V|zo is either homogeneous, or any two
homogeneous components of V|zo are conjugate via an automorphism of R of
order 2 or 3, induced by a suitable permutation of the three factors of R®. How-
ever, V| o has composition factors with highest weights (g1 +g2)n1 + g3n2 + 3g4n3,

(q1+492)n1+3q3m2+4413, (q1+392)n1 +q3n2+494n3 and Bq1+492)n1 +q302+49473,
so V| go does not have the stated homogeneity property. This is a contradiction.

We have now reduced to the case H* = M = C‘l‘. From the above description of
V| o it is clear that V| is irreducible if and only if H = C}.X, where X < Sym,
is transitive. The result follows. O

This completes the proof of Theorem 5.1.

6 Non-geometric subgroups

In order to complete the proof of Theorem 1.4, it remains to determine the irreducible
triples (G, H, V) satisfying Hypothesis 1.1, where V|go is reducible and H is not
contained in a geometric subgroup of G. Here the latter condition implies that H is
one of the non-geometric subgroups that arise in part (ii) of Theorem 3.1 in Sect. 3. In
particular, W|yo is irreducible and tensor indecomposable, so we can apply the main
theorem of [3]. (Note that if (G, p) = (C,, 2) and H fixes a non-degenerate quadratic
form on W, then H is contained in a geometric Cg-subgroup D,.2 < C,, which is a
situation we dealt with in Proposition 5.19.)

Theorem 6.1 Let G, H and V = Vg (A) be given as in Hypothesis 1.1, and assume
that H is not contained in a geometric subgroup of G. Then V |y is reducible.

Proof By [3, Theorem 1], the only possibility is the case (G, H, A) = (C1o, As5.2, 13)
with p # 2, 3. However, we claim that H is a maximal subgroup, so this example
does not satisfy the conditions in Hypothesis 1.1. To see this, let {5, ..., n5} be a
set of fundamental dominant weights for H 0 and note that W = Vyo(n3) (where W
is the natural K G-module). Suppose H is non-maximal, say H < M < G with M
maximal. Then M is non-geometric, so M? is a simple group that acts irreducibly on
W and thus (M°, H?, W) is an irreducible triple. By inspecting [17, Table 1], we see
that there are no compatible examples. This is a contradiction, so H is maximal as
claimed. m|

In view of Theorems 4.5, 5.1 and 6.1, the proof of Theorem 1.4 is complete.

7 Spin modules

In this section, we briefly consider the special case arising in part (b) of Theorem 1.4,
where G is a simply connected group of type B, or D, (ortype C, if p =2), Visa
spin module and H is a decomposition subgroup of G, as defined in the introduction.

Recall that H normalizes an orthogonal decomposition

W=W+---+W,
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of the natural K G-module W, where the W; are pairwise orthogonal subspaces.

Our goal here is simply to highlight the difference between this very specific sit-
uation and the general case we have studied in Sects. 4, 5 and 6. We will do this
by establishing a preliminary result (see Proposition 7.4); a detailed analysis of spin
modules and decomposition subgroups will be given in a forthcoming paper.

Let G be a simply connected simple algebraic group of type B, or D, over an
algebraically closed field K of characteristic p. For convenience, we will assume
that p # 2. Let W be the natural K G-module. As before, fix a set of simple roots
{aq, ..., oy} and fundamental dominant weights {Aq, ..., X, } for G. We will assume
thatn > 3if G = B, and n > 5if G = D, (note that the spin modules for Dy are
excluded in Hypothesis 1.1; see Remark 1.2). We may write G = G/Z = SO(W),
where Z < Z(G). Similarly, for a subgroup J of G weset J = JZ/Z < G.

Let V be a spin module for G. In terms of highest weights, either V = Vg (A,), or
G = D, and V = Vg (A,—1) (in the latter case, note that Vg (A,,—1) = Vg (A,)T, where
7 is a graph automorphism of G). The next result is well known (see [4, Lemma 2.3.2]
for a proof).

Lemma 7.1 dim Vi, (A,) = 2" and dim Vp, (A,—1) = dim Vp, (A,) = 2",

Let W = W; L W, be an orthogonal decomposition, where W; and W, are
non-degenerate subspaces with dim W; > 3. Let H be the stabilizer in G of this
decomposition, so H = H°.2 and H is a central product of two simply connected
orthogonal groups. More precisely,

H=Gw, NGy, = (GO(W)) x GOW>))NG = H .2

andﬁ0 = SO(W1) x SO(W>) is semisimple.

Proposition 7.2 Let V be a spin module for G and let H be the stabilizer in G of
an orthogonal decomposition W = W L Wj as above. Then V| is irreducible.
Moreover, each K H-composition factor of V is a tensor product of spin modules for
both orthogonal factors of HP.

Proof If G = B, then H/Z(G) is a disconnected subgroup in the collection C;
of geometric maximal subgroups of G, and the result follows immediately from [4,
Proposition 3.1.1]. Now assume G = D,,. If W is odd-dimensional, then H/Z(G) is
connected and Seitz’s main theorem [17, Theorem 1] implies that V| 5o is anirreducible
tensor product of appropriate spin modules (see the cases labelled IV (with k = 1)
and IV; in [17, Table 1]). Finally, suppose W is even-dimensional. If dim Wy # n,
then H/Z(G) is a disconnected Ci-subgroup and [4, Proposition 3.1.1] applies. If
dim W| = n is even then H is properly contained in a C>-subgroup of G (namely, the
full normalizer in G of the orthogonal decomposition); the proof of [4, Lemma 3.2.3]
goes through unchanged, and the result follows. O

Now consider an orthogonal decomposition of the form

W=w L---1LW, (17)
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where t > 2 and each W; is a non-degenerate subspace with dim W; > 3. Let H be
the stabilizer in G of this decomposition, so

t
H=()Gw, = (GO(W) x - x GOW) NG =H 2~
i=1

If t = 2 then V| is irreducible by Proposition 7.2, so let us assume ¢ > 3. We claim
that V| g is still irreducible. To see this, we first handle the special case where the W;
are equidimensional.

Lemma 7.3 [fdim W; =d > 3 for all i, then V| is irreducible.

Proof If d = 21 + 1 is odd, then H = 2'~! x B! and H.Sym, is a C>-subgroup of
G. Here the proof of [4, Lemma 4.3.2] goes through unchanged (the symmetric group
Sym, in the C;-subgroup plays no role in the argument) and we deduce that V|y is
irreducible.

Now assume d = 2/ is even, so H = Dl’.Z’_1 and we may write HO = X1+ Xg,
where each X; = Dy is simply connected. Here the elementary abelian 2-group 2/~!
is generated by involutions zj, ..., z;—1, where z; acts as a graph automorphism on
X; and X, 1, and centralizes the remaining factors of H>. Now Vi ® --- @ V; is a
composition factor of V|yo, where each V; is a spin module for X;. By repeatedly
applying the z; € H to conjugate this composition factor, we deduce that V| o has at
least 2/~ ! distinct, H-conjugate K H°-composition factors. Since

27 dim(Vy @ -+ @ V) = 2071 210D = o=l — gim v

(see Lemma 7.1) we conclude that V| is irreducible. O

We can now establish our main result for spin modules and decomposition sub-
groups.

Proposition 7.4 Let H be the stabilizer in G of the decomposition in (17), and assume
dim W; > 3 for each i. Then V |y is irreducible.

Proof Letd,, ..., ds be the distinct dimensions of the summands in (17), and let a;
be the number of summands of dimension d;. If s > 1 then we may assume that
di < djyq forall 1 < i < s. We may re-order and re-label the subspaces in (17) so
that

W = (Wl,l Lol Wl,al) Lol (Wy,l Lol Wr,ax)’ (18)
where dim W; ; = d; for all i, j. Then
H = (GO(Wy1) X -+ x GO(Wy 4,) X -+ x GO(W 1) X --- x GO(Wy4,)) N G.

We proceed by induction on s.
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The base case s = 1 was handled in Lemma 7.3, so let us assume s > 1. Set
Uy=Wi L L Wig) Lo LW Lo LWsq4,)
and
Up=Ws1 L L W,

soW =U, LUpyand H < M, where

M = (GO(U;) x GO(U))NG = m° 2.

Write M® = M{M,, where M; and M, are simply connected orthogonal groups
with natural modules U; and U, respectively. Let H} = H N MO and note that
H=H.2¢%M°.

Here M° = M 1M is a central product. The KM 0_module W lifts to a represen-
tation p : L — GL(W), where L = L; x L» is the direct product of two simply
connected orthogonal groups with L; = M;, so M* = L/Y where Y = ker(p). In
particular, there exist subgroups R < Ry < L suchthat Hy = R;/Y and H 0—R /Y.
Note that H;/H® = Ry /R and R® = R (since H* = H}). Let7; : R; — L; be the
i-th projection map and note that Ry = m1(R) X m2(R1). There are several cases to
consider.

First assume U; and U, are odd-dimensional. Here [17, Table 1] indicates that
Viyo = Vi ® V, is irreducible, where V; is the spin module for M;. The K MO-
module V lifts to a representation ¢ : L — GL(V), so we can consider V|g,. By
induction, V; |z (r,) is irreducible for i = 1, 2, so V|g, is irreducible and thus V |y, is
also irreducible. The result follows.

Next suppose dim Uj is even and dim U is odd, so [4, Proposition 3.1.1] implies
that V|0 has exactly two composition factors, namely

Vigo = (Vi ® Va) @ (V] ® Va),

where V| and Vl/ are the two spin modules for My, and V5 is the spin module for
M,. Here the K M°-modules V; ® V, and Vl’ ® V> lift to representations ¢ : L —
GL(Vi® V) and ¢’ : L — GL(VI’ ® V2), so we can consider (V; ® V2)|g, and
(V{ ® V2)|g, - By induction, V2|, (g,) is irreducible, and 71 (R1) acts irreducibly on V;
and V|. Therefore, V| g, has precisely two composition factors, which are interchanged
by an element in R;.2 that acts as a graph automorphism on L; and centralizes L.
Therefore, V |y is irreducible. An entirely similar argument applies if dim U is odd
and dim U, is even.
Finally, suppose U; and U, are both even-dimensional. Here

Vipo=Vie W e (Ve V)

where V; and V/ are the two spin modules for M;, and the inductive hypothesis implies
that 77; (R1) acts irreducibly on V; and Vi/ ,fori =1, 2. As before, it follows that V |g,
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has exactly two composition factors, which are interchanged by an element in R;.2
that acts simultaneously as a graph automorphism on both L and L. Therefore, the
two K Hj-composition factors of V are H-conjugate, and thus V| is irreducible. O

In view of the previous proposition, we can easily construct chains of positive-
dimensional closed subgroups

H, <Hi1<---<H <G

such that V|, is irreducible for all i. For instance, take any sequence of successive
refinements of a fixed orthogonal decomposition of W such that each refinement is
also an orthogonal decomposition that only contains subspaces of dimension at least
three. Then the stabilizers in G of these decompositions form a chain of subgroups
with the desired irreducibility property. In particular, such a chain can be arbitrarily
long. This is in stark contrast to the general situation, where the length of an irreducible
chain is at most five (see Theorem 1.9, which will be proved in the next section).

8 Irreducible chains

In this final section we prove Theorem 1.9. Recall that if G is a simple algebraic
group and V = Vi (X) is a nontrivial p-restricted irreducible K G-module, then we
write £ = £(G, V) for the length of the longest chain of closed positive-dimensional
subgroups

H <H_1<---<H<H =G

such that V| g, is irreducible.

As noted in the previous section, if G is an orthogonal group (or a symplectic group
with p = 2) and V is a spin module, then £(G, V) can be arbitrarily large (one can
simply take an appropriate chain of decomposition subgroups, for example). Similarly,
if V.= W or W* (where W is the natural K G-module) then £(G, V) is unbounded. For
instance, if G = Sp,,, (K) then set H; = Sp,(K ) X;, where X; < Sym,, is transitive.
The transitivity of X; implies that W|y;, is irreducible, and it is easy to see that if n is
sufficiently large then we can find arbitrarily long chains of transitive subgroups

Xi < Xi—1 << X1 =Sym,.

In fact, if we choose n appropriately, then we may assume that each X; is 3-transitive
(see Remark 8.2 below).

Now let us assume that V £ W, W*, and also assume that V is not a spin module.
In this situation, it is natural to ask whether or not £(G, V) is bounded above by
an absolute constant. Our main theorem is the following, which immediately yields
Theorem 1.9. (Note that in Table 8, T is a maximal torus of G and M,, is the simple
Mathieu group of degree n).
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Table 8 The irreducible chains in Theorem 8.1

G \%4 L(G,V) Conditions Chain

By A3 5 p=2 B}.Z3 < B}.Symy < Dy < D4.2 < By
Cy A3 5 p=2 C3.Z3 < C}.Sym3 < Dy < D4.2 < Cy
An Ay, Ay—3 4 n € {10, 11, 22, 23} T My <T.Altyy <T.Sym, ) <Ay
A2 A5, 19 4 T.Mpy < T.Altpg < T.Symyy < A3

B3 2A1 4 p=3 Ay < A2 <Gr < B3

Theorem 8.1 Let G be a simply connected cover of a simple classical algebraic group
with natural module W. Let V. = Vg (A) be a p-restricted irreducible K G-module,
where V.2 W, W* and V is not a spin module. Then either

() 4G, V) <5;or
(i) G=A,and ) € (A2, A3, Ap—2, Ap—1}.

More precisely, excluding the cases in (ii), we have £(G, V) < 3, unless (G, V) is one
of the cases listed in Table 8.

Remark 8.2 The cases in part (ii) of Theorem 8.1 are genuine exceptions; for suitable
values of n, £(G, V) can be arbitrarily large. By duality, we only need to consider the
cases A = Ay and A3. Recall that if H = T,,.X < G, then V5(A3)|g is irreducible
if and only if X < Sym, , is 3-transitive (and similarly, X has to be 2-transitive
if A = Xp); see Proposition 5.5. Suppose n = g = 2°¢ for some positive integer
e > 2. The finite simple group PSL;(g) has a faithful 3-transitive action on the
projective line F, U {oo}, which extends to a faithful action of its automorphism group
PI'Lo(g) = PSL2(g).Z,. Therefore, PSLy(q).d < PI'Ly(g) is a 3-transitive subgroup
of Sym,,, | for every divisor d of e. In particular, by choosing e appropriately we can
construct arbitrarily long chains of 3-transitive subgroups of Sym,,, |, and each of the
corresponding subgroups 7,,.X < G acts irreducibly on Vg (X2) and Vg (A3).

Proof of Theorem 8.1 The proof is a combination of the main theorems in [3,4,17],
together with Theorem 1.4. To illustrate the general approach, we will consider the
case G = A;. Set V = Vg (1). In order to prove the theorem, we may assume that

A Ah, A2, A3, Ap—2, Ap—1, A} (19)

and £(G, V) > 4, so there is an irreducible chain Hy < H3 < Hy < H = G.

Consider the irreducible triple (G, Hs, V). First assume that Hy is disconnected
and V| HY is reducible. Then (G, Hs, V') must be one of the irreducible triples arising
in Theorem 1.4, so Hy = T.X4 and A = A, where X4 < Sym, | is s-transitive
and s = max{k,n + 1 — k} > 4. Moreover, H; = T.X3 and H, = T.X;, where
X3 < X2 < Sym,, | are also s-transitive groups of degree n + 1.

Using the classification of finite simple groups, it can be shown that Sym,, , ; and
the alternating group Alt,; (for n > 5) are the only 4-transitive groups of degree
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n + 1, unless n € {10, 11,22, 23} in which case the Mathieu group M, 4 is also
4-transitive (see [5, Theorem 4.11], for example). Similarly, if # > 5 then Sym,,, ; and
Alt,4+1 (forn > t + 1) are the only z-transitive groups of degree n + 1, with the single
exception of Mpg whent = 5andn = 23. Since s > 4, it follows that either s = 4 and
n € {10, 11,22,23}, ors = 5 and n = 23. In each case, X4 = M, 11, X3 = Alt,+1,
X = Sym,, | and no proper positive-dimensional subgroup of Hy acts irreducibly
on V. These special cases are recorded in Table 8.

To complete the proof of Theorem 8.1 for G = A,,, we may assume that (G, Hy, V)
is an irreducible triple with Hs connected. The possibilities are recorded in [17,
Table 1], and in view of (19) we see that the relevant cases therein are labelled

I, 1], 1, 13, s, Is, Lo, (20)

Consider the irreducible triple (G, Hz, V). If H3 is connected, then (G, H3, V) also
corresponds to one of the cases in (20), but it is routine to check that this collection
of cases does not contain a pair of triples (G, Hs4, V) and (G, H3, V) with Hy < H3.
Finally, suppose that H3 is disconnected. The connectivity of Hy implies that Hy <
H30 ,s0 V| HY is irreducible and we have an irreducible chain

Hy < HY < Hy < Hy < H; = G.

By the argument above, we have Hy = H30 and thus Hy < H3 < Ng(Hy). It is now
easy to see that (G, Hs, V) must correspond to the case I or Is in [17, Table 1], so
nis odd, Hy = D¢ y1y/2 and H3 = D 41y/2.2. But D, 41y/2.2 < Ay is a maximal
subgroup, so we have reached a contradiction.

This completes the proof of Theorem 8.1 for G = A,,. The other cases are similar,
and we leave it to the reader to check the details. O

This completes the proof of Theorem 1.9.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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