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Cyclin Y inhibits plasticity-induced 
AMPA receptor exocytosis and LTP
Eunsil Cho1,5,*, Dong-Hyun Kim2,*, Young-Na Hur1, Daniel J. Whitcomb2,3, Philip Regan2,3, 
Jung-Hwa Hong1, Hanna Kim1, Young Ho Suh4, Kwangwook Cho2,3 & Mikyoung Park1,5

Cyclin Y (CCNY) is a member of the cyclin protein family, known to regulate cell division in 
proliferating cells. Interestingly, CCNY is expressed in neurons that do not undergo cell division. 
Here, we report that CCNY negatively regulates long-term potentiation (LTP) of synaptic strength 
through inhibition of AMPA receptor trafficking. CCNY is enriched in postsynaptic fractions from 
rat forebrain and is localized adjacent to postsynaptic sites in dendritic spines in rat hippocampal 
neurons. Using live-cell imaging of a pH-sensitive AMPA receptor, we found that during LTP-inducing 
stimulation, CCNY inhibits AMPA receptor exocytosis in dendritic spines. Furthermore, CCNY 
abolishes LTP in hippocampal slices. Taken together, our findings demonstrate that CCNY inhibits 
plasticity-induced AMPA receptor delivery to synapses and thereby blocks LTP, identifying a novel 
function for CCNY in post-mitotic cells.

Cyclin Y (CCNY) is a member of the highly conserved family of cyclins that play crucial roles in cell 
cycle regulation and transcription1–4. Indeed, amino acid sequences of CCNY in different species such as 
human, rat, and mouse are highly conserved (Fig. 1b). In contrast to other conventional cyclins, which 
typically contain two cyclin folds4,5, CCNY has only a single cyclin fold (Fig.  1a)5,6. In addition, while 
most of the cyclins can be segregated into two functional classes by comparing their primary amino acid 
sequences, as being involved in regulation of either the cell cycle or RNA polymerase II activity, CCNY 
does not appear to belong to either of these two classes6. Such differences raise the possibility that CCNY 
has functions beyond cell cycle regulation.

CCNY was identified as an interacting partner of the cyclin-dependent kinase CDK14/PFTK1 by a 
yeast two-hybrid screen7 and also as a regulator of proper localization of axonal synaptic components in a 
C. elegans neuron by a forward genetic screen8. CCNY has been suggested to play a role in cancer cells9,10. 
In glioma and lung cancer cells, knockdown of CCNY inhibits cell proliferation and overexpression of 
CCNY promotes cell proliferation. In Drosophila, a CCNY null mutant shows developmental defects, 
including delayed larval growth, arrested pupal development, and metamorphosis defects11.

Activity-driven synapse formation, elimination, potentiation, and depression sculpt neural circuits 
during brain development and various forms of plasticity. Among forms of synapse plasticity, long-term 
potentiation (LTP) is the most widely studied synaptic correlate of learning and memory12–18. In C. 
elegans, CCNY is required for proper localization of synaptic components, which is an important step 
to formulate functional synapses8. In addition, CCNY plays a direct role in synapse elimination and an 
indirect role in concurrent synapse formation elsewhere in a single neuron during development19. These 
findings suggest that CCNY may play a role in activity-dependent synaptic plasticity. However, little is 
known about the function or regulation of CCNY in the mammalian nervous system. Here we show that 
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Figure 1. Expression patterns of CCNY in rat brains. (a) Schematic diagram of CCNY domain structure. 
Numbers indicate amino acid residues. Domain is predicted by ScanProsite (http://www.expasy.ch/tools/
scanprosite/)7. (b) Alignment of CCNY amino acid sequences among human, rat, and mouse was performed 
using NCBI BLAST program. Blue color indicates amino acids showing differences among species. Orange 
indicates cyclin box domain in CCNY. (c) CCNY expression levels in the several regions of rat brain. 
Quantification is shown in the lower panel (n =  3; postnatal day 30 male rats). An equal amount of protein 
(40 μ g) from each region was loaded. CTX, cortex; ST, striatum; HC, hippocampus; TH, thalamus; SN, 
substantia nigra; CB, cerebellum. (d) CCNY expression in the DG, CA3, and CA1 in the hippocampus. 
Postnatal day 30 male rats. (e,f) Hippocampal expression levels of CCNY in vivo (e) and in vitro (f) during 
development. P, postnatal day; DIV, days in vitro. (g) Distribution of CCNY in subcellular fractions of rat 
brains. H, homogenates; P1, nuclear pellet; P2, crude synaptosomal fraction; S3, cytosolic fraction; LP1, 
synaptosomal membrane fraction; LP2, synaptic vesicle-enriched fraction; SPM, synaptic plasma membrane 
fraction; T-sol, Tx-100-soluble fraction; PSD, postsynaptic density fraction. A total of 5 μ g of each fraction 
was loaded in immunoblot experiments. GluA1, PSD-95 and synaptophysin were used as controls.  
(h) CCNY is localized adjacent to PSD-95 in spines. Scale bars, 1 μ m. 3D iso-surfaced and volume rendered 
images with various angle views are shown in hi− hv.

http://www.expasy.ch/tools/scanprosite/
http://www.expasy.ch/tools/scanprosite/
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CCNY localizes in dendritic spines at perisynapstic sites, negatively regulates plasticity-induced AMPA 
receptor delivery to synapses and thereby blocks LTP. Our findings reveal CCNY as an inhibitory regu-
lator of synaptic plasticity of hippocampal LTP in the vertebrate central nervous system.

Results
CCNY is enriched in postsynaptic fractions and is localized adjacent to postsynaptic sites. We 
first investigated whether CCNY is expressed in the mammalian brain. There has been a previous report 
on the CCNY mRNA level in various human tissues7. In addition, in situ hybridization shows CCNY 
expression in brain regions, including hippocampus, cortex, striatum, olfactory bulb, and cerebellum 
(Supplementary Fig. 1; the Allen Brain Atlas). However, protein expression of CCNY in brain has not 
been examined. Using immunoblot analysis with several brain region homogenates, we found that CCNY 
is expressed throughout the brain with relatively higher levels in the striatum and hippocampus (Fig. 1c). 
In addition, CCNY is expressed in the dentate gyrus (DG), Cornu Ammonis 3 (CA3), and CA1 region of 
the hippocampus (Fig. 1d). CCNY protein expression in the hippocampus increases over development 
in vivo (Fig.  1e) and in vitro (Fig.  1f). We next asked whether CCNY is located at synapses. For this 
purpose, we performed subcellular fractionation from rat forebrains and found that CCNY is enriched 
in postsynaptic fractions (Fig. 1g). To examine the subcellular localization of CCNY relative to postsyn-
aptic density (PSD) in dendritic spines, we co-expressed CCNY wild-type (CCNY-WT) and PSD-95, a 
postsynaptic scaffolding protein in cultured hippocampal neurons. Confocal imaging (Fig. 1h) and 3D 
rendering (Fig. 1hi–hv) revealed that CCNY is localized in dendritic spines where it concentrates adja-
cent to the PSD as labeled by PSD-95.

CCNY regulates basal excitatory synaptic transmission through the control of surface level of 
synaptic AMPA receptors. Enrichment of CCNY in postsynaptic fractions suggests a role in synaptic 
function. To test this, we first designed a short hairpin RNA (shRNA) to specifically reduce CCNY expres-
sion. CCNY shRNA effectively knocked down CCNY expression in neurons, and co-expression of an 
shRNA-resistant form of CCNY along with the CCNY shRNA rescued CCNY expression levels, indicat-
ing the specificity of the CCNY shRNA (Supplementary Fig. 2). We used this shRNA system to examine 
the effect of CCNY knockdown on basal synaptic transmission by recording L-α -amino-3-hydroxy-5-me-
thyl-4-isoxazolepropionate (AMPA) receptor-mediated excitatory postsynaptic currents (EPSCAMPA) and 
N-methyl-d-aspartate (NMDA) receptor-mediated EPSCs (EPSCNMDA). In cultured hippocampal slices, 
CA1 neurons overexpressing CCNY shRNA exhibited increased EPSCAMPA amplitudes compared to 
untransfected control neurons (EPSCAMPA: CCNY shRNA-transfected cells: 276 ±  18%, n =  16; untrans-
fected cells, 194 ±  16%, n =  16; p <  0.05, Fig. 2a), and this increase of EPSCAMPA amplitudes was reverted 
back to control levels in CA1 neurons co-overexpressing the CCNY shRNA with an shRNA-resistant 
form of CCNY (EPSCAMPA: CCNY shRNA +  rescue-transfected cells: 199 ±  14%, n =  16; untransfected 
cells, 195 ±  13%, n =  16; p >  0.05, Fig.  2b). EPSCNMDA amplitudes were unaffected by CCNY knock-
down (EPSCNMDA: CCNY shRNA-transfected cells: 286 ±  17%, n =  16; untransfected cells, 296 ±  17%, 
n =  16; p >  0.05, Fig. 2a; CCNY shRNA +  rescue-transfected cells: 324 ±  9%, n =  16; untransfected cells, 
338 ±  21%, n =  16; p >  0.05, Fig. 2b). These data indicate that CCNY negatively regulates basal synaptic 
transmission through AMPA but not NMDA receptors.

To further examine CCNY function in AMPA receptor-mediated synaptic transmission, we per-
formed surface immunostaining of the AMPA receptor subunit GluA1. Consistent with the results in 
EPSCAMPA amplitudes (Fig.  2a,b), knockdown of CCNY increased endogenous surface level of GluA1 
in dendritic protrusions compared to control cells (Fig. 2c,d) whereas co-expression of shRNA-resistant 
CCNY with the CCNY shRNA rescued the increase in surface levels of GluA1 caused by CCNY knock-
down (Fig. 2c,d). Labeling of NMDA receptors in dendritic protrusions was unaffected by CCNY knock-
down (Fig. 2e). Moreover, CCNY knockdown had no effect on the total levels of GluA1 or the NMDA 
receptor subunit GluN1 (Fig. 2f–h). The reduction of synaptic, but not total AMPA receptor levels upon 
CCNY knockdown suggests regulation of receptor trafficking.

We next tested whether overexpression of CCNY exerts an opposite effect on basal synaptic trans-
mission and synaptic AMPA receptors compared to CCNY knockdown. In cultured hippocampal 
slices, CA1 neurons overexpressing CCNY-WT exhibited reduced EPSCAMPA amplitudes compared to 
untransfected control neurons (EPSCAMPA: CCNY-WT-transfected cells: 217 ±  21%, n =  21; untrans-
fected cells, 295 ±  23%, n =  21; p <  0.05, Fig. 3a) with no change in EPSCNMDA amplitudes (EPSCNMDA: 
CCNY-WT-transfected cells: 206 ±  21%, n =  21; untransfected cells, 240 ±  24%, n =  21; p >  0.05, Fig. 3b). 
In addition, overexpression of CCNY-WT decreased endogenous surface levels of GluA1 in dendritic pro-
trusions (Fig. 3c,d), whereas NMDA receptor labeling was unchanged (Fig. 3e). Immunocytochemistry 
(Fig. 3f,g) and immunoblot analysis (Fig. 3h) showed no change of the total level of GluA1 and GluN1 
protein upon overexpression of CCNY. Taken together, these results suggest that CCNY exerts bidirec-
tional control of excitatory synaptic transmission through negative regulation of surface AMPA receptors.

CCNY inhibits AMPA receptor trafficking to synapses during LTP-inducing stimulation. Our 
findings show that CCNY functions to restrict the abundance of AMPA receptors at the synapse under 
basal conditions. During LTP, additional AMPA receptors are recruited to the postsynaptic membrane 
through exocytosis and lateral diffusion to mediate the enhanced synaptic strength that characterizes 
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Figure 2. Knockdown of CCNY enhances surface level of endogenous GluA1 and basal excitatory 
synaptic transmission. (a) Knockdown of CCNY increases basal EPSCAMPA amplitudes with no change in 
EPSCNMDA amplitudes. Pairwise analysis on the effect of the CCNY shRNA on basal EPSCAMPA amplitude 
(•, recorded at a holding potential of − 70 mV, n =  16) and EPSCNMDA amplitude (, recorded at a holding 
potential of + 40 mV, n =  16) in the same slice using the same stimulus position and intensity. Red symbols 
and error bars indicate mean ±  SEM. (b) The CCNY shRNA-mediated enhancement of basal EPSCAMPA 
amplitudes was rescued back to the level of untransfected neurons by co-transfecting with shRNA-resistant 
CCNY-WT construct (, n =  16) with no effect on EPSCNMDA amplitude (•, n =  16). Red symbols and 
error bars indicate mean ±  SEM. (c) Confocal immunostaining of endogenous surface GluA1 in CCNY 
shRNA transfected or CCNY shRNA-resistant CCNY-WT (Rescue) co-transfected neurons. Scale bar, 5 μ m. 
(d,e) Cumulative distribution of surface GluA1 (d) and GluN1 (e) in dendritic protrusions. Insets display 
means ±  SEM of surface GluA1 (d) and GluN1 (e) intensity. n =  847, 829, 515 protrusions from n =  24, 
27, 17 neurons, respectively in (d). n =  227, 361, 287 protrusions from n =  7, 11, 11 neurons, respectively 
in (e). **p <  0.005 relative to control. ##p <  0.005 relative to shCCNY. (f–h) Knockdown of CCNY does not 
change the total expression level of endogenous GluA1. (f,g) Confocal images of endogenous total GluA1 
in CCNY shRNA or scrambled shRNA transfected neurons. Neurons were transfected at DIV13− 14 and 
immunostained at DIV16− 18. NS, not significant, Scale bar, 20 μ m. (h) Cultured neurons infected with 
lentivirus overexpressing CCNY shRNA were applied to immunoblot analysis.
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Figure 3. Overexpression of CCNY-WT decreases surface level of endogenous AMPA receptors and basal 
excitatory synaptic transmission. (a,b) Overexpression of CCNY reduces basal EPSCAMPA amplitudes with 
no change in EPSCNMDA amplitudes. Pairwise analysis of the effect of CCNY-WT (21 pairs of transfected 
and untransfected neighboring cells) on basal EPSCAMPA amplitude (a) and EPSCNMDA amplitude (b). Pairs 
of transfected and untranfected neighboring cells in the same slice using the same stimulus position and 
intensity are individually plotted. Red symbol and error bars indicate mean ±  SEM. (c) Overexpression of 
CCNY-WT decreases surface level of endogenous GluA1. Confocal immunostaining of endogenous surface 
GluA1 in CCNY-WT transfected neurons. Neurons were transfected at DIV14− 15 and immunostained at 
DIV15− 17. Scale bar, 5 μ m. (d,e) Cumulative distribution of surface GluA1 (d) and GluN1 (e) in dendritic 
protrusions. Insets display means ±  SEM of surface GluA1 (d) and GluN1 (e) intensity. n =  1827, 1699 
protrusions from n =  31, 27 neurons, respectively in (d). n =  652, 509 protrusions from n =  10, 10 neurons, 
respectively in (e). **p <  0.0001 relative to control. (f–h) Overexpression of CCNY does not change the total 
level of endogenous GluA1. (f,g) Confocal images of endogenous total GluA1 in CCNY-WT transfected 
neurons. Neurons were transfected at DIV14− 15 and immunostained at DIV15− 17. NS, not significant, 
Scale bar, 20 μ m. (h) Cultured neurons infected with lentivirus overexpressing CCNY-WT were applied to 
immunoblot analysis.



www.nature.com/scientificreports/

6Scientific RepoRts | 5:12624 | DOi: 10.1038/srep12624

LTP20–23. We therefore hypothesized that CCNY plays a role in the activity-induced trafficking of AMPA 
receptors to the synapse which is normally observed during LTP. To test this hypothesis, we employed 
a hippocampal culture model of LTP, based on glycine stimulation (200 μ M, 3–5 min), to selectively 
activate synaptic NMDA receptors18,24–27. In addition, we took advantage of a pH-sensitive variant of 
GFP, superecliptic pHluorin (SEP), whose fluorescence is quenched at low pH. Using the SEP conjugated 
AMPA receptor subunit GluA1 (SEP-GluA1)24,27,28, we selectively visualized AMPA receptor exocytosis 
in dendritic spines by performing time-lapse imaging. In control neurons expressing SEP-GluA1, gly-
cine simulation elicited a significant increase in SEP-GluA1 fluorescence over time (F1, 285 =  202.429, 
p <  0.001; time, F27, 537 =  15.338, p <  0.001; Fig.  4a,c; Supplementary Movie 1; Supplementary Fig. 3). 
However, this glycine-induced increase in SEP-GluA1 fluorescence was significantly attenuated in neu-
rons overexpressing CCNY-WT (Bonferroni’s post-hoc, p <  0.001 compared to control neurons, Fig. 4a,c; 
Supplementary Movie 1; Supplementary Fig. 3).

The inhibition of SEP-GluA1 surface expression by CCNY overexpression could be explained by 
either (1) a lack of an intracellular pool of SEP-GluA1 available to be exocytosed or (2) blockade of the 
SEP-GluA1 exocytic pathway per se by CCNY. We reasoned that if the former is the case, the relative 
increase in the SEP-GluA1 signal after glycine stimulation should be comparable to that of control neu-
rons after CCNY knockdown. Conversely, if the latter is the case, it should be significantly higher than 
in control neurons after CCNY knockdown.

Whereas knockdown of CCNY significantly increased SEP-GluA1 fluorescence intensity compared to 
control neurons (Bonferroni’s post-hoc, p =  0.001, Fig. 4a–c; Supplementary Movie 2; Supplementary Fig. 3),  
co-expression of shRNA-resistant CCNY with the CCNY shRNA attenuated the increase in SEP-GluA1 
fluorescence caused by CCNY knockdown (Bonferroni’s post-hoc, p <  0.001 compared to CCNY shRNA; 
Fig.  4a–c; Supplementary Fig. 3). Indeed, cells expressing shRNA-resistant CCNY showed similar 
SEP-GluA1 fluorescence levels as neurons expressing CCNY-WT alone (shRNA +  Rescue, Bonferroni’s 
post-hoc, p =  1.000, Fig. 4c). This suggests that CCNY regulates surface GluA1 level by inhibiting their 
exocytosis during LTP. In further support of these findings, overexpression of CCNY-WT decreased the 
number of SEP-GluA1 insertion events in spines following glycine stimulation (Fig.  4d), while CCNY 
knockdown significantly increased the number of these events (Fig. 4d). This augmentation of exocytic 
events was rescued by co-expression of the shRNA-resistant CCNY-WT plasmid in CCNY knockdown 
cells (Fig.  4d), confirming that these events are attributed specifically to CCNY. Importantly, glycine 
stimulation did not affect the overall expression level of CCNY (Fig. 4e,f).

Knockdown of CCNY increases phosphorylation of GluA1 at S845 during LTP-inducing stimu-
lation. GluA1 has two well-characterized phosphorylation sites on the C-terminus such as serine (S) 
831 and S845, regulatory phosphorylation of which has been known to play a crucial role in synaptic 
plasticity29–35. Phosphorylation of S845 by protein kinase A (PKA) controls synaptic trafficking of GluA1 
during LTP36–40. To further support the finding that CCNY inhibits plasticity-induced AMPA recep-
tor trafficking, we tested whether the glycine-induced increase in phosphorylation of GluA1 at S845 
is affected under conditions of altered CCNY levels. Glycine stimulation increases phosphorylation of 
GluA1 at S845 (Fig. 4g,h) as it has been known to be observed in LTP. This increase was even further 
enhanced by CCNY knockdown (Fig. 4g,h). These results suggest that CCNY negatively controls GluA1 
phosphorylation at S845 during glycine-induced LTP.

CCNY negatively regulates LTP. We next investigated whether the regulation of GluA1 by CCNY 
is critical for LTP in organotypic hippocampal slices in which LTP has been more thoroughly stud-
ied than in cultured hippocampal neurons. We used a pairing protocol (200 pulses at 2 Hz, holding 
voltage, Vh =  0 mV) to induce LTP at the Schaffer collateral-CA1 synapses in hippocampal slices41. 
Consistent with our observations with SEP-GluA1, LTP was blocked by overexpression of CCNY-WT 
(CCNY WT-transfected cells: 83 ±  11%, n =  6; untransfected cells, 158 ±  9%, n =  7; p <  0.001, Fig. 5a), 
whereas it was enhanced following CCNY knockdown (CCNY shRNA-transfected cells: 178 ±  8%, n =  6; 
untransfected cells, 141 ±  3%, n =  6; p <  0.05, Fig.  5b). In comparison, LTP in cells co-expressing the 
shRNA-resistant CCNY-WT plasmid along with the CCNY shRNA was at levels similar to that obtained 
in untransfected cells (CCNY shRNA +  rescue-transfected cells: 151 ±  3%, n =  6; untransfected cells, 
142 ±  4%, n =  6; p >  0.05, Fig. 5c). Comparable LTP was also obtained in cells transfected with scrambled 
shRNA and in untransfected cells (n =  6; p >  0.05, Fig. 5d). Taken together, our data suggest that CCNY 
negatively regulates LTP by inhibiting AMPA receptor insertion into the synaptic plasma membrane.

Discussion
In the present study, we showed that the cyclin protein CCNY is expressed in the hippocampus, and 
is located in perisynaptic domains of dendritic spines. In addition, CCNY inhibits plasticity-induced 
AMPA receptor trafficking to the synapse. Given that knockdown of CCNY enhances LTP in hippocam-
pal slices, we postulate that CCNY inhibits functional plasticity by restricting the synaptic delivery of 
AMPA receptors during LTP (Fig. 6).

Recent studies have begun to define novel roles for cyclin proteins in non-proliferating neuronal cells42. 
Our findings reveal that CCNY regulates synapse function, while the canonical role of the cyclin proteins 
is to regulate cell proliferation. This unique function of CCNY in the nervous system could contribute to 
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Figure 4. CCNY inhibits plasticity-induced AMPA receptor exocytosis. (a,b) SEP-GluA1 was imaged 
before and after glycine stimulation. Arrows indicate spines showing the changes of SEP-GluA1 intensity 
during glycine-induced LTP. Pseudocolor intensity scale bar is shown. Scale bars, 1 μ m each. See also 
Supplementary Figure 3 for more images. (c) Data represent means ±  SEM of Δ F/ F0 from spines. n =  32, 
41, 31, 31 spines from n =  7, 5, 6, 6 neurons for control, CCNY-WT, shCCNY, and shCCNY +  rescue, 
respectively. Bonferroni’s post-hoc. (d) The number of SEP-GluA1 inserted and accumulated per 100 μ m 
of dendrite. n =  11, 10, 10, 6 neurons from left to right. *p <  0.01 relative to control, **p <  0.001 relative to 
control, ##p <  0.005 relative to shCCNY, student’s t test. (e) Total expression level of CCNY is unchanged 
during glycine-induced LTP. Cultured hippocampal neurons infected with lentivirus overexpressing 
CCNY-WT or CCNY shRNA were applied to immunoblot analysis before and 20 minutes after glycine 
stimulation. (f) Data represent means ±  SEM of CCNY level. n =  12, 5, 7 for control, CCNY-WT, and 
shCCNY, respectively. NS, not significant. (g) CCNY regulates phosphorylation of GluA1 at Ser845 during 
glycine-induced LTP. Cultured hippocampal neurons infected with lentivirus overexpressing CCNY 
shRNA or scrambled shRNA were immunoblotted with anti-phospho-GluA1 (S845) antibodies before and 
15–20 min after glycine stimulation. (h) Data represent means ±  SEM of phosphorylated levels of GluA1 at 
S845. n =  7. *p <  0.05, **p <  0.005, student’s t test.
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the increased complexity and diversity of brain function. Like other cyclin proteins, CCNY forms a com-
plex with CDKs, such as PFTK1/CDK14 and PCTK1/CDK16, to control several biological processes11,43,44. 
Interestingly, our data support that CCNY exerts its inhibitory roles on the AMPA receptor exocytosis 
during LTP. It will be important for future studies to determine whether CCNY performs other neuronal 
functions independent from, or in concert with, its known CDK partners PFTK1 and/or PCTK1.

Our study provides the first demonstration of CCNY function in the vertebrate nervous system. 
Our biochemical subcellular fractionation and high-resolution confocal imaging results indicate that 
a significant amount of CCNY is located in the immediate vicinity of the plasma membrane in spines. 
This localization of CCNY could provide for rapid regulation of CCNY during the activity-dependent 
AMPA receptor trafficking at synapses. Further investigation is necessary to determine whether CCNY 
functions away from the plasma membrane in other parts of neurons and to determine what mechanisms 
are involved for this function. AMPA receptors recruited to the synapse during LTP are originated from 
recycling endosomes26. Given the role of CCNY as a negative regulator of the AMPA receptor insertion 
during LTP, CCNY might exert its function by inhibiting the exit of AMPA receptors from the intracel-
lular compartments, such as recycling endosomes or by inhibiting the AMPA receptor-containing vesicle 
fusion process to the plasma membrane24.

The actin cytoskeleton is abundant in spines and plays a critical role in dynamic changes in the struc-
ture of dendritic spines. During LTP, spine enlargement and synaptic recruitment of AMPA receptors 
occur together13,17,45. In addition, AMPA receptors recruited to synapses utilize the actin-based motor 
myosin Vb to arrive at the synapse27,46. Our findings show that the activation of synaptic NMDA recep-
tors causes CCNY to play an inhibitory role in the AMPA receptor insertion, and LTP. Therefore, it would 
be interesting to investigate if CCNY-mediated inhibition of the AMPA receptor insertion during LTP 
involves actin remodeling. If so, CCNY could be proposed to be a factor to link structural and functional 
changes during LTP through the regulation of actin dynamics, leading to the control of both AMPA 
receptor delivery and spine enlargement. It will be important to delineate the cellular and molecular 
mechanisms required for CCNY signaling during neuronal structural and functional plasticity.

Figure 5. CCNY abolishes LTP. (a–c) CA1 neurons were biolistically transfected with CCNY-WT  
(a) CCNY shRNA (b) or co-transfected with CCNY shRNA and shRNA-resistant CCNY-WT construct 
(Rescue; c), and recorded in whole-cell patch-clamp mode. LTP is blocked in CCNY-WT transfected 
neurons (a; •, n =  6) compared to untransfected control neurons (a; , n =  7). LTP is enhanced in CCNY 
shRNA transfected neurons (b; •, n =  6) compared to untransfected control neurons (b; , n =  6). The 
CCNY shRNA-mediated LTP enhancement was rescued back to the level (c; , n =  6) of untransfected 
control neurons (c; , n =  6) by co-transfecting with shRNA-resistant CCNY-WT construct. Data represent 
means ±  SEM. (d) CCNY scrambled shRNA-expressing CA1 neurons elicit LTP (•, n =  6) to a level similar 
to untransfected control neurons (•, n =  6). Data represent means ±  SEM.
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The cyclins were first identified by their oscillating and cell cycle-dependent expression patterns and 
were reported to regulate cell division. Neurons in the central nervous system are postmitotic, terminally 
differentiated cells that are no longer capable of undergoing cell division1,2,47. Thus, studying the func-
tion of cyclin proteins in postmitotic neuronal cells may, at first glance, appear rather contradictory. Yet, 
non-mitotic roles of cell cycle proteins have been reported in the nervous system42. For instance, ablation 
of cyclin E using conditional cyclin E knockout mice reduces the number of synapses and spines and 
causes impairments in synaptic plasticity and memory formation42.

Given that the CCNY interacting partners responsible for the neuronal function of CCNY are 
unknown at the moment, identifying binding partners or regulatory mechanisms for CCNY at the syn-
apse will be important to define the precise mechanism by which CCNY regulates synaptic strength.

Methods
DNA constructs. CCNY-EGFP was generated by cloning of rat CCNY cDNA amplified by PCR from 
a rat brain cDNA library into the pEGFP-N1 (Clontech). CCNY-mCherry was generated by subcloning 
of rat CCNY cDNA in CCNY-EGFP into a pmCherry-N1. PSD95-mCherry, mCherry-N1, mCherry-C1, 
and superecliptic pHluorin (SEP)-GluA1 plasmids were gifts from Michael Ehlers (Pfizer Neuroscience, 
Cambridge, MA).

RNA interference and lentiviral constructs. Four 19-mer shRNA sequences targeting to 
rat CCNY (#1, 5′ -GAGTCTCTTCATTAACCAT-3′ ; #2, 5′ -GTACACCATCAAATGTGTA-3′ ; #3, 
5′ -GTGTAGCTCTTGCGATATA-3′ ; #4, 5′ -GTGCCACCAGATTATGACA-3′ ) and a scrambled CCNY 
shRNA#2 control (5′ -GCGACCTATAGCATAATTA-3′ ) were designed. The DNA oligonucleotides con-
taining BglII site at 5′  end, the shRNA sense sequence, 9 nucleotide hairpin loop region (TTCAAGAGA), 
the shRNA antisense sequence, and HindIII site at 3′  end were synthesized (Integrated DNA Technologies), 
annealed and ligated into the 5′ -BglII/HindIII-3′  sites of pSuper (OligoEngine) and pSuper-EGFP to gen-
erate pSuper-(EGFP)-CCNY shRNAs and pSuper-(EGFP)-CCNY scrambled shRNA. For shRNA rescue 
experiments, an shRNA#2-resistant plasmid of CCNY which contains a couple of silent mutations indi-
cated as underlined letters (5′ -GTACACAATTAAATGTGTA-3′ ) in the shRNA#2 target region was gen-
erated using site-directed mutagenesis (QuikChange Lightning, Agilent Technologies). pSuper-mCherry, 
pSuper-mCherry-CCNY shRNAs, and pSuper- mCherry-CCNY scrambled shRNA were generated by 
replacing GFP in pSuper-GFP, pSuper-GFP-CCNY shRNAs, and pSuper-GFP-CCNY scrambled shRNA, 
respectively with mCherry.

For constructing lentiviral vectors expressing CCNY shRNAs, the insert containing H1 promoter and 
CCNY shRNAs was isolated from pSuper-CCNY shRNAs, and subcloned between the HIV-flap and 

Figure 6. Model for the inhibitory role of CCNY during LTP. LTP stimulus induces AMPA receptor 
insertion to the surface (middle panel). Overexpression of CCNY (CCNY OE) inhibits plasticity-induced 
AMPA receptor exocytosis in the spine, therefore blocking LTP (left panel). Knockdown of CCNY (CCNY 
KD) significantly increases plasticity-induced phosphorylation of AMPA receptors (p845-GluA1) and their 
delivery to the plasma membrane in the spine, therefore enhancing LTP (right panel).



www.nature.com/scientificreports/

1 0Scientific RepoRts | 5:12624 | DOi: 10.1038/srep12624

ubiquitin promoter of FUGW lentiviral vector (a gift from Michael Ehlers, Pfizer Neuroscience). For 
constructing lentiviral vectors expressing CCNY-WT, the insert containing the CCNY-WT PCR frag-
ment was subcloned into EcoRI/BstBI sites of FUGW lentiviral vector. FUGW lentiviral vector contains 
the EGFP gene under a ubiquitin promoter to indicate viral production and infection.

Production of lentivirus. Lentiviral vector FUGW harboring CCNY-WT or CCNY shRNA, the 
packaging vector Δ 8.9, and VSVG envelope glycoprotein vector were cotransfected into HEK 293T cells 
using Fugene HD (Promega). Supernatants containing the lentivirus were harvested 36− 48 hours after 
transfection, and ultracentrifuged at 25,000 rpm to concentrate the lentivirus. The pellet was resuspended 
in phosphate-buffered saline (PBS), aliquoted, and stored at − 80 °C.

Preparation of brain homogenates and neuronal cell lysates. Hippocampi were rapidly removed 
from adult rat brain and homogenized with a Dounce glass tissue grinder homogenizer (Wheaton 
Industries) in ice− cold homogenization buffer (mM: 320 sucrose, 10 HEPES, 2 EDTA, protease inhibitor 
cocktail, 1 PMSF, pH 7.4). The neuronal cells were collected in lysis buffer (mM: 50 Tris− HCl, 150 NaCl, 
5 EDTA, 1% Triton X-100, protease inhibitor cocktail, 1 PMSF, pH 7.4) on ice, and lysed by incubating 
for 1 hr at 4 °C. After centrifugation at 1,000 g for 10 min at 4 °C, supernatants were collected, and protein 
concentrations were measured by Bradford assays (Bio-Rad Protein Assay kit, Bio-Rad Laboratories).

Subcellular fractionation. Subcellular fractionation was performed from P30 Sprague-Dawley (SD) 
rat forebrain as described previously48–50. In brief, the cerebellum and the brain stem were removed 
from thirty-day-old (P30) SD rat brain. The three rat forebrains were homogenized in buffer A 
(0.32 M sucrose, 20 mM HEPES, 5 mM EDTA, protease inhibitor cocktail, 1 mM PMSF pH 7.4) using a 
glass-teflon homogenizer with 30 strokes. Homogenate was centrifuged for 10 min at 1,000 g to produce 
a nuclear fraction (P1). The supernatant (S1) was centrifuged at 9,200 g for 10 min. The resulting pellet 
was washed by resuspending in buffer A and then centrifuged at 10,000 g for 20 min to produce crude 
synaptosomal fraction (P2). The supernatant was further centrifuged at 12,000 g for 30 min to collect the 
supernatant (S2). S2 was centrifuged at 165,000 g for 2 hours at 4 °C using NVT90 rotor to produce the 
cytosolic supernatant (S3) and the microsomal pellet (P3). P2 was resuspended in buffer A and lysed by 
hypo-osmotic shock using 9 volumes of H2O and 3 strokes with a glass-teflon homogenizer, and rapidly 
adjusted to 4 mM HEPES/5 mM EDTA (pH 7.4) and kept on ice for 30 min. The lysate was centrifuged 
at 25,000 g for 20 min at 4 °C to produce the synaptosomal membrane pellet (LP1) and the synaptic ves-
icle and cytosolic supernatant (LS1). LS1 was further centrifuged at 165,000 g for 2 hours at 4 °C using 
NVT90 rotor to produce the synaptic cytosolic supernatant (LS2) and the synaptic vesicle-enriched pellet 
(LP2). LP1 was resuspended and loaded on top of a discontinuous sucrose gradient solution contain-
ing 0.8 M, 1 M and 1.2 M sucrose. The gradient was centrifuged at 150,000 g for 2 hours at 4 °C using 
SW41Ti rotor. The cloudy band between 1.0 M and 1.2 M sucrose was collected and then diluted to 
buffer A. The diluted suspension was further centrifuged at 150,000 g for 30 min using SW41Ti rotor to 
produce the synaptic plasma membrane fraction (SPM). SPM was resuspended with 0.5% Triton X-100 
in buffer A and kept on ice for 15 min and then centrifuged at 32,000 g for 20 min to divide into soluble 
and insoluble fractions (Triton X-100 soluble fraction and Postsynaptic density fraction). Triton X-100 
insoluble PSD fraction was resuspended in buffer A. Five μ g of proteins of each fraction was analyzed 
by immunoblotting.

Immunoblot analysis and antibodies. Samples containing equal amounts of protein were dena-
tured in SDS sample buffer, subjected to SDS-PAGE, transferred onto a PVDF membrane, and applied 
to immunoblot analysis. Protein bands on immunoblots were visualized by a chemiluminescence method 
(Millipore) and an imaging documentation system (ImageQuant LAS 4000, GE healthcare). Images were 
analyzed using ImageJ. Primary antibodies against CCNY (Proteintech group), GFP (Roche), GluA1 
(a gift from Michael Ehlers, Pfizer Neuroscience), phospho-GluA1 (S845) (Thermo scientific), PSD-
95 (Thermo scientific, 7E3-1B8), Synaptophysin (Synaptic Systems), Prox1 (Proteintech group), Ctip2 
(Genetex), Py (a gift from D.T.S. Pak, Georgetown Univ.) or β -tubulin (Abcam) were used.

Immunocytochemistry. For staining surface AMPA receptors, hippocampal neurons were fixed with 
4% paraformaldehyde/4% sucrose in PBS. Then, surface GluA1 was labeled with rabbit anti-GluA1-N 
(1816, a gift from Michael Ehlers, Pfizer Neuroscience or Millipore) for 1 hr at room temperature. 
Neurons were washed and incubated with Cy3-conjugated anti-rabbit secondary antibody for 50 min 
at room temperature to visualize surface GluA1s. For staining HA-tagged CCNY or the total level of 
GluA1, hippocampal neurons were fixed with 4% paraformaldehyde/4% sucrose in PBS and permeated 
with 0.1% Triton X-100 in PBS. Then, HA-tagged CCNY or the total level of GluA1 was labeled with 
mouse anti-HA (Convance) or rabbit anti-GluA1-C (Abcam), respectively for 1 hr at room temperature. 
Neurons were washed and incubated with Cy3-conjugated secondary antibody for 50 min at room tem-
perature to visualize HA-tagged CCNY or the total level of GluA1.
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Cell culture and DNA transfection. HEK 293T cells were grown in DMEM (HyClone) supple-
mented with 10% fetal bovine serum. Hippocampal neuron cultures were prepared from E18 SD rat 
embryos and maintained for 10−21 days in vitro (DIV) (Park et al., 2006). Neurons were transfected 
between 10−14 DIV using the Lipofectamine 2000 (Invitrogen) for 1−2 or 4−7 days for overexpression 
or shRNA knockdown experiments, respectively.

Live−cell imaging. Live neurons grown on the coverslip that were transfected appropriately were 
transferred to the imaging chamber equipped with heating plate base (Live Cell Instrument, Seoul, 
Korea); filled with imaging solution (mM: 120 NaCl, 3 KCl, 2 CaCl2, 2 MgCl2, 15 glucose, 15 HEPES, 
pH 7.35), and imaged at 32 °C. Confocal images were acquired using the Revolution XD System (Andor 
Technology) equipped with Yokogawa CSU-X1 spinning disk confocal unit, 488 nm solid state laser, 
561 nm solid state laser, 640 nm diode laser, and Andor 6-line laser combiner. Images were taken using a 
60x (NA 1.4) or 100x Plan Apochromat objective (NA 1.4) and a 14-bit iXON3 DU-885 EMCCD cam-
era (Andor Technology) using the Metamorph software program (Molecular Device Inc.). We acquired 
a complete confocal z-sectioning of the region of interest, followed by maximal intensity projection to 
produce a two-dimensional image using Metamorph.

For glycine stimulation, neurons were treated with 200 μ M glycine in Mg2+-free imaging solution 
with 0.5 μ M TTX, 1 μ M strychnine, 20 μ M bicuculline methiodide for 3−5 minutes. Then, neurons were 
returned to imaging solution with 0.5 μ M TTX, 1 μ M strychnine, and 20 μ M bicuculline methiodide. 
Neurons at DIV 15−17 were used for imaging experiments.

Image analysis and quantification. To analyze the surface AMPA receptor intensity, integrated 
intensity of individual puncta of endogenous surface GluA1 on the dendritic protrusions was meas-
ured. For NMDA receptor analysis, integrated intensity of an NMDA receptor subunit GluN1 from 
the dendritic protrusions was measured. To evaluate the changes of SEP-GluA1 intensity in the spine, 
the change in fluorescence intensity, ΔF was normalized to F0 as ΔF/F0. Δ F was calculated by Ft− F0 
where Ft indicates the intensity at each time point, and F0 indicates the average intensity of all time 
points prior to glycine treatment. For 3D volume rendering (Fig.  1h), 4D viewer for Metamorph NX 
software was used. Image XY calibration was 0.02–0.12 μ m per pixel, and distance between planes was 
0.15–0.22 μ m.

Electrophysiology. Slices were prepared from postnatal day 4–6 Wistar rats. Rats were decapitated 
and their brains were rapidly removed and placed in ice-cold cutting solution that contained 238 mM 
sucrose, 2.5 mM KCl, 26 mM NaHCO3, 1 mM NaH2PO4, 5 mM MgCl2, 11 mM D-glucose and 1 mM 
CaCl2. Hippocampus was dissected and transversely sliced at a thickness of 350 μ m on a McIlwain tis-
sue chopper, and placed on top of semi-permeable membrane inserts (Millipore) in a six-well plate con-
taining culture medium (78.8% minimum essential medium, 20% heat-inactivated horse serum, 30 mM 
HEPES, 26 mM D-glucose, 5.8 mM NaHCO3, 2 mM CaCl2, 2 mM MgSO4, 70 μ M ascorbic acid and  
1 μ g/ml insulin, pH adjusted to 7.3 and 320–330 osmolality). Slices were cultured in an incubator (35 °C, 
5% CO2) for 10–11 DIV with a change of medium every 2 d. No antibiotics were used. Neurons were 
transfected using a biolistic gene gun at 3–4 DIV (100 μ g of construct). Electrophysiological record-
ings were performed at 3–4 days after transfection. Recordings were carried out in solution containing 
119 mM NaCl, 2.5 mM KCl, 4 mM CaCl2, 4 mM MgCl2, 26 mM NaHCO3, 1 mM NaH2PO4, 11 mM 
glucose, 0.02 mM picrotoxin 0.01 mM and 2-chloroadenosine, gassed with 5% CO2/95% O2, at pH 7.4.

Excitatory postsynaptic currents (EPSCs) were recorded using an Axopatch 700B amplifier (Axon 
Instruments). Pipette solution was comprised of 130 mM CsMeSO4, 8 mM NaCl, 4 mM Mg-ATP, 0.3 mM 
Na-GTP, 0.5 mM EGTA, 10 mM HEPES and 6 mM QX-314. The pH was adjusted to 7.2–7.3 using CsOH 
and osmolality was adjusted to 270–290 mOsm with sucrose as necessary. Electrodes were pulled using 
a horizontal Flaming Brown puller (P-97, Sutter Instruments). Electrode resistance was in the range 
of 4–6 MΩ. CA1 pyramidal neurons were voltage clamped at −70 mV. Only cells with series resist-
ance <20 MΩ  with a change in series resistance <10% from the baseline were included in this study. The 
amplitude of EPSCs was measured and these measurements were expressed relative to the normalized 
preconditioning baseline. LTP was induced by pairing 2 Hz stimulation with depolarization of the post-
synaptic cell to 0 mV for 100 s. AMPA receptor-mediated EPSC amplitude (EPSCAMPA) was measured 
as the peak EPSC amplitude at a holding potential of −70 mV, and NMDA receptor-mediated EPSC 
amplitude (EPSCNMDA) was measured at + 40 mV at 80–200 ms after the peak of EPSCAMPA. Data pooled 
across slices are expressed as the mean ±  SEM, and effects of conditioning stimulation were measured 
30–35 min after induction of LTP. Data are expressed relative to baseline (100% =  no change). Significance 
(p <  0.05) from baseline was tested using two-tailed t tests.
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