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Abstract

We consider the task of assessing the righthand tail of an insurer’s loss

distribution for some specified period, such as a year. We present and

analyse six different approaches: four upper bounds, and two approx-

imations. We examine these approaches under a variety of conditions,

using a large event loss table for US hurricanes. For its combination

of tightness and computational speed, we favour the Moment bound.

We also consider the appropriate size of Monte Carlo simulations, and

the imposition of a cap on single event losses. We strongly favour the

Gamma distribution as a flexible model for single event losses, for its

tractable form in all of the methods we analyse, its generalisability, and

because of the ease with which a cap on losses can be incorporated.
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1 INTRODUCTION

One of the objectives in catastrophe modelling is to assess the probability

distribution of losses for a specified period, such as a year. From the point

of view of an insurance company, the whole of the loss distribution is in-

teresting, and valuable in determining insurance premiums. But the shape

of the righthand tail is critical, because it impinges on the solvency of the

company. A simple measure of the risk of insolvency is the probability that

the annual loss will exceed the company’s current operating capital. Im-

posing an upper limit on this probability is one of the objectives of the EU

Solvency II directive.

If a probabilistic model is supplied for the loss process, then this tail

probability can be computed, either directly, or by simulation. Shevchenko

(2010) provides a survey of the various approaches. This can be a lengthy

calculation for complex losses. Given the inevitably subjective nature of

quantifying loss distributions, computational resources might be better used

in a sensitivity analysis. This requires either a quick approximation to the

tail probability or an upper bound on the probability, ideally a tight one.

In this paper we present and analyse several different bounds, all of which

can be computed quickly from a very general event loss table. By making

no assumptions about the shape of the righthand tail beyond the existence

of the second moment, our approach extends to fat-tailed distributions. We

provide a numerical illustration, and discuss the conditions under which the

bound is tight.
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Table I: Generic Event Loss Table (ELT). Row i represents an event with
arrival rate λi, and loss distribution fi.

Event ID Arrival rate, yr−1 Loss distribution

1 λ1 f1

2 λ2 f2
...

...
...

m λm fm

2 INTERPRETING THE EVENT LOSS TABLE

We use a rather general form for the Event Loss Table (ELT), given in

Table I. In this form, the losses from an identified event i are themselves

uncertain, and described by a probability density function fi. That is to

say, if Xi is the loss from a single occurrence of event i, then

Pr(Xi ∈ A) =

∫
A
fi(x) dx

for any well-behaved A ⊂ R. The special case where the loss for an occur-

rence of event i is treated as a constant xi is represented with the Dirac

delta function fi(x) = δ(x− xi).

The choice of fi for each event represents represents uncertainty about

the loss that follows from the event, often termed ‘secondary uncertainty’ in

catastrophe modelling. We will discuss an efficient and flexible approach to

representing more-or-less arbitrary specifications of fi in Section 5.

There are two equivalent representations of the ELT, for stochastic sim-

ulation of the loss process through time (see, e.g., Ross, 1996, sec. 1.5). The
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first is that the m events with different IDs follow concurrent but indepen-

dent homogeneous Poisson processes. The second is that the collective of

events follows a single homogeneous Poisson process with arrival rate

λ :=
m∑
i=1

λi

and then, when an event occurs, its ID is selected independently at random

with probability λi/λ.

The second approach is more tractable for our purposes. Therefore we

define Y as the loss incurred by a randomly selected event, with probability

density function

fY =
m∑
i=1

λi
λ
fi .

The total loss incurred over an interval of length t is then modelled as the

random sum of independent losses, or

St :=

Nt∑
j=1

Yj where


Nt ∼ Poisson(λt), and

Y1, Y2, . . .
iid∼ fY .

The total loss St would generally be termed a compound Poisson process

with rate λ and component distribution fY . An unusual feature of loss mod-

elling is that the component distribution fY is itself a mixture, sometimes

with thousands of components.
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3 A SELECTION OF UPPER BOUNDS

Our interest is in a bound for the probability Pr(St ≥ s) for some specified

ELT and time period t; we assume, as is natural, that Pr(St ≤ 0) = 0. We

pose the question: is Pr(St ≥ s) small enough to be tolerable for specified s

and t? We are aware of four useful upper bounds on Pr(St ≥ s), explored

here in terms of increasing complexity. The following material is covered

in standard textbook such as Grimmett and Stirzaker (2001), and in more

specialised books such as Ross (1996) and Whittle (2000). To avoid clutter,

we will drop the ‘t’ subscript on St and Nt.

The Markov inequality. The Markov inequality states that if Pr(S ≤ 0) = 0

then

Pr(S ≥ s) ≤ µ

s
(Mar)

where µ := E(S). As S is a compound process,

µ = E(N) E(Y ) = λtE(Y ), (1)

the second equality following because N is Poisson. The second expectation

is simply

E(Y ) =
m∑
i=1

λi
λ

E(Xi).

We do not expect this inequality to be very tight, because it imposes no

conditions on the integrability of S2, but it is so fast to compute that it is

always worth a try for a large s.
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The Cantelli inequality. If S is square-integrable, i.e. σ2 := Var(S) is

finite, then

Pr(S ≥ s) ≤ σ2

σ2 + (s− µ)2
for s ≥ µ. (Cant)

This is the Cantelli inequality, and it is derived from the Markov inequality.

As S is a compound process,

σ2 = E(N) Var(Y ) + E(Y )2 Var(N) = λtE(Y 2), (2)

the second equality following because N is Poisson. The second expectation

is simply

E(Y 2) =
m∑
i=1

λi
λ

E(X2
i ).

We expect the Cantelli bound will perform much better than the Markov

bound both because it exploits the fact that S is square integrable, and

because its derivation involves an optimisation step. It is almost as cheap

to compute, and so it is really a free upgrade.

The moment inequality. This inequality and the Chernoff inequality

below use the generalised Markov inequality: if g is increasing, then S ≥

s ⇐⇒ g(S) ≥ g(s), and so

Pr(S ≥ s) ≤ E{g(S)}
g(s)

for any g that is increasing and non-negative.
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An application of the generalised Markov inequality gives

Pr(S ≥ s) ≤ inf
k>0

E(Sk)

sk
,

because g(s) = sk is non-negative and increasing for all k > 0. Fractional

moments can be tricky to compute, but integer moments are possible for

compound Poisson processes. Hence we consider

Pr(S ≥ s) ≤ min
k=1,2...

E(Sk)

sk
. (Mom)

This cannot do worse that the Markov bound, which is the special case of

k = 1.

The integer moments of a compound Poisson process can be computed

recursively, as shown in Ross (1996, sec. 2.5.1):

E(Sk) = λt
k−1∑
j=0

(
k − 1

j

)
E(Sj) E(Y k−j). (3)

The only new term here is

E(Y k−j) =
m∑
i=1

λi
λ

E(Xk−j
i ).

At this point it would be helpful to know the Moment Generating Function

(MGF, see below) of each Xi.

Although not as cheap as the Cantelli bound, this does not appear to be

an expensive calculation, if the fi’s have standard forms with simple known

MGFs. It is legitimate to stop at any value of k, and it might be wise to
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limit k in order to avoid numerical issues with sums of very large values.

The Chernoff inequality. Let MS be the MGF of S, that is

MS(v) := E
(
evS
)

v ≥ 0.

Chernoff’s inequality states

Pr(S ≥ s) ≤ inf
k>0

MS(k)

eks
. (Ch)

It follows from the generalised Markov inequality with g(s) = eks, which is

non-negative and increasing for all k > 0.

If MY is the MGF of Y , then

MS(v) = MN (logMY (v)) v ≥ 0.

In our model N is Poisson, and hence

MN (v) = exp
{
λt(ev − 1)

}
v ≥ 0

(see, e.g. Ross, 1996, sec. 1.4). Thus the MGF of S simplifies to

MS(v) = exp
{
λt
(
MY (v)− 1

)}
.

The MGF of Y can be expressed in terms of the MGFs of the Xi’s:

MY (v) =
m∑
i=1

λi
λ
MXi(v).
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Now it is crucial that the fi have standard forms with simple known MGFs.

In an unlimited optimisation, the Chernoff bound will never outperform

the Moment bound (Philips and Nelson, 1995). In practice, however, con-

straints on the optimisation of the Moment bound may result in the best

available Chernoff bound being lower than the best available Moment bound.

But there is another reason to include the Chernoff bound, from large de-

viation theory; see, e.g., Whittle (2000, sec. 15.6 and ch. 18). Let t be an

integer number of years, and define S1 as the loss from one year, so that

MSt(k) = {MS1(k)}t. Then large deviation theory states that

Pr(St ≥ s) = inf
k>0

exp
{
−ks+ t logMS1(k) + o(t)

}
and so as t becomes large the Chernoff upper bound becomes exact. Very

informally, then, the convergence of the Chernoff bound and the Moment

bound suggest, according to a squeezing argument, that both bounds are

converging from above on the actual probability.

4 TWO ‘EXACT’ APPROACHES

There are several approaches to computing Pr(St ≥ s) to arbitrary accu-

racy, although in practice this accuracy is limited by computing power (see

Shevchenko, 2010, for a review). We mention two here.

Monte Carlo simulation. One realisation of St for a fixed time-interval

can be generated by discrete event simulation, also known as the Gillepsie

algorithm (see, e.g., Wilkinson, 2012, sec. 6.4). Many such simulations can
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be used to approximate the distribution function of St, and can be used to

estimate probabilities, including tail probabilities.

Being finite-sample estimates, these probabilities should have a measure

of uncertainty attached. This is obviously an issue for regulation, where the

requirement is often to demonstrate that

Pr(S1 ≥ s0) ≤ κ0

for some s0 which reflects the insurer’s available capital, and some κ0 spec-

ified by the regulator. For Solvency II, κ0 = 0.005 for one-year total losses.

A Monte Carlo point estimate of p0 := Pr(S1 ≥ s0) which was less than κ0

would be much more reassuring if the whole of the 95% confidence interval

for p0 were less than κ0, than if the 95% confidence interval contained κ0.

A similar problem is faced in ecotoxicology, where one recommendation

would be equivalent in this context to requiring that the upper bound of a

95% confidence interval for p0 is no greater than κ0; see Hickey and Hart

(2013). If we adopt this approach, though, it is incorrect simply to monitor

the upper bound and stop sampling when it drops below κ0, because the

confidence interval in this case ought to account for the stochastic stopping

rule, rather than being based on a fixed sample size. But it is possible to do

a design calculation to suggest an appropriate value for n, the sample size,

that will ensure that the upper bound will be larger than κ0 with specified

probability, a priori, as we now discuss.

Let u1−α(x;n) be the upper limit of a level (1 − α) confidence interval

for p0, where x is the number of sample members that are at least s0, and n
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is the sample size. Suppose that the a priori probability of this upper limit

being no larger than κ0 is to be at least β0, where β0 would be specified. In

that case, valid n’s satisfy

Pr
{
u1−α(X;n) ≤ κ0

}
≥ β0

where X ∼ Binom(n, p0).

There are several ways of constructing an approximate (1−α) confidence

interval for p0, reviewed in Brown et al. (2001).1 We suggest what they

term the (unmodified) Jeffreys confidence interval, which is simply the equi-

tailed (1 − α) credible interval for p0 with the Jeffreys prior, with a minor

modification. Using this confidence interval, Figure 1 shows the probability

for various choices of n with κ0 = 0.005 and p0 = κ0/2. In this case, n = 105

seems to be a good choice, and this number is widely used in practice.

Panjer recursion. The second approach is Panjer recursion; see Ross

(1996, Cor. 2.5.4) or Shevchenko (2010, sec. 5). This provides a recursive

calculation for Pr(St = s) whenever each Xi is integer-valued, so that S

itself is integer-valued. This calculation would often grind to a halt if ap-

plied literally, but can be used to provide an approximation if the ELT is

compressed, as discussed in section 6.1.

Perhaps the main difficulty with Panjer recursion, once it has been ef-

ficiently encoded, is that it does not provide any assessment of the error

which follows from the compression of the ELT. In this situation, a precise

1It is not possible to construct an exact confidence interval without using an auxiliary
randomisation.
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Figure 1: The effect of sample size on Monte Carlo accuracy. The graph
shows the probability that the upper bound of the 95% Jeffreys confidence
interval for p0 lies below κ0 = 0.005 when p0 = κ0/2.

and computationally cheap upper bound may be of more practical use than

an approximation. Section 6.1 also discusses indirect ways to assess the

compression error, using the upper bounds.

Monte Carlo simulation is an attractive alternative to Panjer recursion,

because it comes with a simple assessment of accuracy, is easily parallelis-

able, and the sample drawn can be used to calculated other quantities of

interest for insurers like the net aggregate loss and reinsurance recovery

costs.

5 TRACTABLE SPECIAL CASES

In this section we consider three tractable special cases.
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First, suppose that

fi(x) = δ(x− xi) i = 1, . . . ,m,

i.e. the loss from event i is fixed at xi. Then

E(Xk
i ) = xki and MXi(v) = evxi .

All of the bounds are trivial to compute.

Second, suppose that each fi is a Gamma distribution with parameters

(αi, βi):

fi(x) = Gam(x;αi, βi) =
βαi
i

Γ(αi)
xαi−1e−βix1x>0 i = 1, . . . ,m

for αi, βi > 0, where 1 is the indicator function and Γ is the Gamma function,

Γ(s) :=

∫ ∞
0

xs−1e−x dx.

Then

Mi(v) =

(
βi

βi − v

)αi

0 ≤ v < βi. (4)

The moments are

E(Xk
i ) =

Γ(αi + k)

βki Γ(αi)
(5)

and hence

E(Xi) =
αi
βi
, E(X2

i ) =
(αi + 1)αi

β2i
.
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Third, suppose that each fi is a finite mixture of Gamma distributions:

fi(x) =

pi∑
k=1

πik Gam(x;αik, βik) i = 1, . . . ,m

where
∑pi

k=1 πik = 1 for each i. Then

fY (y) =
m∑
i=1

λi
λ

pi∑
k=1

πik Gam(y;αik, βik)

=
m∑
i=1

pi∑
k=1

λiπik
λ

Gam(y;αik, βik).

In other words, this is exactly the same as creating an extended ELT with

plain Gamma fi’s (i.e. as in the second case), but where each λi is shared

out among the pi mixture components according to the mixture weights

πi1, . . . , πipi .

This third case is very helpful, because the Gamma calculation is so

simple, and yet it is possible to approximate any strictly positive absolutely

continuous probability density function that has limit zero as x→∞, with

a mixture of Gamma distributions (Wiper et al., 2001). It is also possible to

approximate point distributions by very concentrated Gamma distributions,

discussed below in Section 6.3. Thus the secondary uncertainty for an event

might be represented as a set of discrete losses, each with its own probability,

but encoded as a set of highly concentrated Gamma distributions, leading

to very efficient calculations.

Capped single-event losses. For insurers, a rescaled Beta distribution is

often preferred to a Gamma distribution, because it has a finite upper limit

14



representing the maximum insured loss. The moment generating function

of a Beta distribution is an untabulated function with an infinite series

representation, and so will be more expensive to compute accurately; this

will affect the Chernoff bound. There are no difficulties with the moments.

However, we would question the suitability of using a Beta distribution

here. The insurer’s loss from an event is capped at the maximum insured

loss. This implies an atom of probability at the maximum insured loss: if

fi is the original loss distribution for event i and u is the maximum insured

loss, then

fi(x;u) = fi(x)1x<u + (1− pi)δ(x− u)

where pi :=
∫ u
0 fi(x) dx and δ is the Dirac delta function, as before. A Beta

distribution scaled to [0, u] would be quite different, having no atom at u.

The Gamma distribution for fi is tractable with a cap on losses. If fi is

a Gamma distribution then the MGF is

Mi(v;u) =

(
βi

βi − v

)αi γ(αi, (βi − v)u)

Γ(αi)
+ (1− pi)evu,

where γ is the incomplete Gamma function,

γ(s, u) :=

∫ u

0
xs−1e−x dx,

and

pi :=
γ(αi, βiu)

Γ(αi)
.
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The moments of fi(·;u) are

E(Xk
i ;u) =

γ(k + αi, βiu)

βki Γ(αi)
+ (1− pi)uk

Introducing a non-zero lower bound is straightforward.

6 NUMERICAL ILLUSTRATION

We have implemented the methods of this paper in a package for the R

open source statistical computing environment (R Core Team, 2013), named

tailloss. In addition, this package includes a large ELT for US hurricanes

(32,060 rows).

6.1 The effect of merging

We provide a utility function, compressELT, which reduces the number of

rows of an ELT by rounding and merging. This speeds up all of the calcula-

tions, and is crucial for the successful completion of the Panjer approxima-

tion.

The rounding operation rounds each of the losses to a specified number

d of decimal places, with d = 0 being to an integer, and d < 0 being a value

with d zeros before the decimal point. Then the rounded value is multiplied

by 10d to convert it to an integer. Finally, the merge operation combines all

the rows of the ELT with the same transformed loss, and adds their rates.

Table II shows some of the original ELT, and Table III the same table

after rounding to the nearest $10k (i.e. d = −4). It is an empirical question,
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Table II: ELT US Hurricane dataset. Row i represents an event with arrival
rate λi, and expected loss xi.

Event ID Arrival rate, yr−1 Expected Loss, $

1 0.09265 1

2 0.03143 2

3 0.02159 3

4 0.01231 4

5 0.01472 5
...

...
...

32056 0.00001 17593790

32057 0.00001 18218506

32058 0.00001 18297003

32059 0.00001 19970669

32060 0.00001 24391615

Table III: ELT US Hurricane dataset, after rounding and merging to $10k
(d = −4). Cf. Table II.

Event ID Arrival rate, yr−1 Expected Loss, $10k

1 0.35764 1

2 0.16864 2

3 0.16088 3

4 0.12135 4

5 0.12239 5
...

...
...

1141 0.00001 1759

1142 0.00001 1822

1143 0.00001 1830

1144 0.00001 1997

1145 0.00001 2439
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how much rounding can be performed on a given ELT without materially

changing the distribution of t-year total losses. Ideally, this would be as-

sessed using an exact calculation, like Panjer recursion. Unfortunately it is

precisely because Panjer recursion is so numerically intensive that rounding

and merging of large ELTs is necessary in the first place. So instead we

assess the effect of rounding and merging using the Moment bound, which,

as already established, converges to the actual value when the number of

events in the time-interval is large.

Figure 2 shows the result of eight different values for d, from −7 to 0.

The outcome with d = −7 is materially different, which is not surprising

because this ELT only has two rows. More intriguing is that the outcome

with d = −6 is almost the same as that with no compression at all, despite

the ELT having only 20 rows.

6.2 Computational expense of the different methods

Here we consider one-year losses, and treat the losses for each event as cer-

tain; i.e. the first case in section 5. The methods we consider are Panjer,

Monte Carlo, Moment, Chernoff, Cantelli, and Markov. The first two pro-

vide approximately exact values for Pr(S1 ≥ s). Panjer is an approximation

because of the need to compress the ELT. For the Monte Carlo method,

we used 105 simulations, as discussed in section 4, and we report the 95%

confidence interval in the tail. The remaining methods provide strict upper

bounds on Pr(S1 ≥ s). Our optimisation approach for the Moment and

Chernoff bounds is given in the Appendix. All the timings are CPU times

in seconds on a MacBook Pro processor 2.53 GHz Intel Core 2 Duo.
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Values for s, $m
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d =  0: 32060
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Figure 2: The effect of compression and merging on the US Hurricanes
ELT. The curves show the values of the Moment bound on the exceedance
probability for one-year total losses. All values of d larger than −7 (only
two rows) give very similar outcomes, with values of −5 or larger being
effectively identical, and overlaid on the Figure.
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Table IV: Timings for the methods shown in Figure 3, in seconds on a stan-
dard desktop computer, for different degrees of rounding (see section 6.1).

d = −4 d = −3 d = −2 d = −1 d = 0

Panjer 0.461 40.784 4651.298 NA NA

MonteCarlo 1.246 2.085 5.820 10.228 12.413

Moment 0.011 0.006 0.010 0.019 0.025

Chernoff 0.112 0.310 0.634 1.017 1.284

Cantelli 0.001 0.002 0.001 0.002 0.002

Markov 0.001 0.001 0.001 0.005 0.001

Figure 3 shows the exceedance probabilities for the methods, computed

on 101 equally-spaced ordinates between $0 m and $40 m, with compression

d = −4. The Markov bound is the least effective, and the Cantelli bound is

surprisingly good. As expected, the Chernoff and Moment bounds converge,

and also, in this case, converge on the Panjer and Monte Carlo estimates.

The timings for the methods are given in Table IV. These values require

very little elaboration. The Moment, Cantelli, and Markov bounds are ef-

fectively instantaneous to compute, with timings of a few thousandths of a

second. The Chernoff bound is more expensive but still takes only a frac-

tion of a second. The Monte Carlo and Panjer approximations are hundreds,

thousands, or even millions of times more expensive. The Panjer bound is

impractical to compute at compression below d = −2 (and from now on we

will just consider d ≤ −3).

A similar table to Table IV could be constructed for any specified value

s0, rather than a whole set of values. The timings for the Moment, Chernoff,

Cantelli, and Markov bounds would all be roughly one hundredth as large,
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Figure 3: Exceedance probabilities for the methods, with rounding of d = −4
on the US Hurricanes ELT. The legend shows the Monte Carlo 95% con-
fidence interval for p0 at s0 = $40 m; see section 4. Each curve comprises
101 points, equally-spaced between $0 m and $40 m. Timings are given in
Table IV. For later reference, this Figure has t = 1, u = ∞, θ = 0, and
d = −4.
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because these are evaluated pointwise. The timing for Monte Carlo would be

unchanged. The timing for Panjer would be roughly the proportion s0/$40 m

of the total timing, because it is evaluated sequentially, from small to large

values of s.

6.3 Gamma thickening of the event losses

We continue to consider one-year losses, but now treat the losses from each

event as random, not fixed. For the simplest possible generalisation we use a

Gamma distribution with a specified expectation xi and a common specified

coefficient of variation, θ := σi/xi. The previous case of a fixed loss xi is

represented by lim θ → 0, which we write, informally, as θ = 0. Solving

xi =
αi
βi

and θxi =

√
αi
β2i

gives the two Gamma distribution parameters as

αi =
1

θ2
and βi =

αi
xi
.

Figure 4 shows the effect of varying θ on a Gamma distribution with expec-

tation $1 m.

The only practical difficulty with allowing random losses for each event

occurs for the Panjer method; we describe our approach in the Appendix.

Figure 5 shows the exceedance probability curve with θ = 0.5: note

that the horizontal scale now covers a much wider range of loss values than

Figure 3. The timings are given in Table V: these are very similar to the
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Figure 4: Effect of varying θ on the shape of the Gamma distribution with
expectation $1 m.

Table V: Timings for the methods shown in Figure 5.

d = −4 d = −3 d = −2 d = −1 d = 0

Panjer 1.509 121.062 NA NA NA

MonteCarlo 0.921 1.961 5.385 9.967 12.197

Moment 0.006 0.021 0.055 0.100 0.118

Chernoff 0.127 0.614 1.670 2.734 3.333

Cantelli 0.001 0.002 0.007 0.022 0.019
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Figure 5: As Figure 3, with t = 1, u = ∞, θ = 0.5, and d = −4. The
Markov bound has been dropped. Timings are given in Table V.
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Table VI: Timings for the methods shown in Figure 6.

d = −4 d = −3 d = −2 d = −1 d = 0

Panjer 0.275 11.950 NA NA NA

MonteCarlo 1.106 2.099 5.625 10.329 11.837

Moment 0.016 0.070 0.210 0.355 0.431

Chernoff 0.508 2.057 5.659 10.853 14.992

Cantelli 0.003 0.006 0.019 0.032 0.041

non-random case with θ = 0 (Table IV), with the exception of the Panjer

method, which takes longer because it scales linearly with the upper limit

on the horizontal axis.

6.4 Capping the loss from a single event

Now consider the case where the single-event loss is capped at $5 m. The

implementation of this cap is straightforward, and we describe it in the

Appendix. The results are given in Figure 6 and Table VI. For the timings,

the main effect of the cap is on the Panjer method, because the cap reduces

the probability in the righthand tail of the loss distribution, and allows

us to use a smaller upper limit on the horizontal axis. But the Panjer

approximation, where it can be computed, still takes a thousand times longer

to compute than the Moment bound.

6.5 Ten-year losses

Finally, consider expanding the time period from t = 1 to t = 10 years; the

results are given in Figure 7 and Table VII. The timings of the Markov,
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Figure 6: As Figure 3, with t = 1, u = $5 m, θ = 0.5, and d = −4. Timings
are given in Table VI.
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Table VII: Timings for the methods shown in Figure 7.

d = −4 d = −3 d = −2 d = −1 d = 0

Panjer 0.587 46.000 NA NA NA

MonteCarlo 918.101 2.312 7.189 11.834 14.869

Moment 0.027 0.141 0.435 0.592 0.736

Chernoff 3.989 2.101 7.794 10.503 18.314

Cantelli 0.002 0.007 0.020 0.164 0.046

Cantelli, Moment, and Chernoff bounds are unaffected by the value of t.

The timing for the Panjer method grows with t, because the righthand tail

of St grows with t. The timing for the Monte Carlo method grows roughly

linearly with t, but the ‘in simulation’ time for Monte Carlo is dominated

by other factors, so the additional computing time for the increase in t from

t = 1 to t = 10, is small.

7 SUMMARY

We have presented four upper bounds and two approximations for the upper

tail of the loss distribution that follows from an Event Loss Table (ELT).

We argue that in many situations an upper bound on this probability is

sufficient. For example, to satisfy the regulator, in a sensitivity analysis,

or when there is supporting evidence that the bound is quite tight. Of the

bounds we have considered, we find that the Moment bound offers the best

blend of tightness and computational efficiency. In fact, the Moment bound

is effectively costless to compute, based on the timings from our R package.

We have stressed that there are no exact methods for computing tail
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Figure 7: As Figure 3, with t = 10, u = $5 m, θ = 0.5, and d = −4. Timings
are given in Table VII.
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probabilities when taking into account limited computing resources. Of the

approximately exact methods we consider, we prefer Monte Carlo simulation

over Panjer recursion, because of the availability of an error estimate in the

former and the amount of information provided by the latter. A back-of-the-

envelope calculation suggests that 10,000 Monte Carlo simulations should

suffice to satisfy the Solvency II regulator.

The merging operation is a very useful way to condense an ELT that

has become bloated, for example after using mixtures of Gamma distri-

butions to represent more complicated secondary uncertainty distributions.

We have shown that the Moment bound provides a quick way to assess how

much merging can be done without having a major impact on the resulting

aggregate loss distribution.

We have also demonstrated the versatility of the Gamma distribution for

single event losses. The Gamma distribution has a simple moment generat-

ing function and explicit expressions for the moments. Therefore it fits very

smoothly into the compound Poisson process that is represented in an ELT,

for the purposes of computing approximations and bounds. We also show

how the Gamma distribution can easily be adapted to account for a cap on

single event losses. We favour the capped Gamma distribution over the Beta

distribution, which is often used in the industry, because the former has an

atom (as is appropriate) while the latter does not.
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APPENDIX

Minimisation for the Moment bound. The Moment bound is min-

imised over the control variable k = 1, 2, . . . . It is convenient to have an

upper bound for k, because it is efficient to compute Skt for a set of k val-

ues, rather than one k at a time, as shown in (3). We find an approximate

upper bound for k as follows. First, we compute the first two moments of

St exactly using (1) and (2). Then we approximate the distribution of St

using a Gamma distribution matched to these two moments, for which

αs =
µ2t
σ2t

βs =
µt
σ2t
.
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The moments for the Gamma distribution were given in (5). Starting from

this expression and k = 1, we step out in k until the Gamma approximation

to log E(Skt )/sk shows an increase on its previous value. The ceiling of

the resulting k is taken as the maximum k value. If the Moment bound is

required for a sequence of s values, we use the largest s value in the sequence.

Minimisation for the Chernoff bound. The MGF for a Gamma dis-

tribution is given in (4). Hence the range for the control variable v is

0 < v < mini{βi}. As explained in section 6.3, we specify the two pa-

rameters of the Gamma distribution for event i in terms of the fixed loss

xi, now treated as the expected loss, and a coefficient of variation θ (which

could vary with i). This gives βi = 1/(θ2xi), and hence

v < min
i

{
1

θ2xi

}
.

In the simpler case of a fixed loss for event i, we substitute the small co-

efficient of variation, θ = 0.1, to give v < mini{100/xi}. We perform the

minimisation over a set of 1001 equally-spaced values for v.

Panjer recursion for random event losses. The Panjer algorithm

needs each event loss to be a fixed (non-negative) integer. Therefore we

follow the mixture approach of section 5 to replace an event i with a ran-

dom loss with a collection of events with fixed losses. Consider event i, with

loss distribution fi. We replace row i in the original ELT with nq rows each
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with rate λi/nq, and with losses v
(i)
1 , . . . , v

(i)
nq , where v

(i)
j is the

(
j

nq
− 1

2nq

)
th

quantile of fi. Having done this for all rows, we then compress the expanded

ELT back to integer values again (i.e. using d = 0). We used nq = 10.

Capping single event losses. In the case where event losses are non-

random, a cap at u simply replaces each loss xi for which xi > u with the

value u. Where the event losses are Gamma-distributed with expectation xi

and specified coefficient of variation θ, the modified Gamma moment gen-

erating functions are used for the Markov, Cantelli, Moment, and Chernoff

method, see section 5. The Panjer method is implemented on an augmented

ELT, as described immediately above, and then each loss is capped at u.

The Monte Carlo method has each sampled loss capped at u.
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